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Abstract We use complex variable techniques to

obtain analytic solutions of Eshelby’s problem con-

sisting of an inclusion of arbitrary shape in an

anisotropic piezoelectric plane with a parabolic

boundary. The region of the physical plane below

the parabola is mapped onto the lower half of the

image plane. The problem is then more conveniently

studied in the image plane rather than in the physical

plane. The critical step in our approach lies in the

construction of certain auxiliary functions in the image

plane which allow for the technique of analytic

continuation to be applied to an inclusion of arbitrary

shape.

Keywords Eshelby inclusion � Piezoelectric

material � Parabolic boundary � Stroh octet formalism �
Analytic solution

1 Introduction

Piezoelectric materials are an important class of

advanced materials so-called because of their ten-

dency to deform when subjected to an electric field and

to polarize when stressed. This intrinsic electrome-

chanical coupling property has led to the use of

piezoelectric materials in many modern devices such

as electromechanical transducers, piezoelectric semi-

conductors, and MEMS/NEMS (micro/nanoelec-

tromechanical systems). Theoretical studies

involving Eshelby inclusions and inhomogeneities in

piezoelectric materials have received considerable

attention in the literature (see, for example, [1–6]). By

constructing certain auxiliary functions and by con-

fining his analysis to the physical (rather than the

image) plane, Ru [4, 5] derived analytic solutions for

Eshelby’s problem of an inclusion of arbitrary shape in

a piezoelectric plane or half-plane or in one of two

perfectly bonded dissimilar piezoelectric half-planes.

The corresponding solutions in the case of an inclusion

of arbitrary shape embedded in one of two imperfectly

bonded piezoelectric half-planes were obtained by

Wang and Pan [6].

In this paper, we are concerned with Eshelby’s

problem of an arbitrarily shaped inclusion in a

piezoelectric plane with a parabolic boundary. Our

method proceeds as follows. The region below the

parabola in the physical (z) plane is first mapped onto

the lower half of the image (na) plane using a

succession of one-to-one mappings from [7]. The
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presence of the parabolic boundary in the physical z-

plane makes it more convenient to analyze this

problem in the image plane rather than in the physical

plane (as in [4, 5]). Using analytic continuation and

conformal mappings which further map the exterior of

the region occupied by the (simply-connected) inclu-

sion in the na-plane onto the exterior of the unit circle,

four auxiliary functions are constructed and their

asymptotic behavior at infinity identified in terms of

polynomial functions. Analytic solutions for a para-

bola with four types of electroelastic boundary con-

ditions (namely, a traction-free and insulating

parabola; a rigid and conducting parabola; a rigid

and insulating parabola; a traction-free and conducting

parabola) are then derived using these auxiliary

functions. The practical importance of each of these

sets of boundary conditions is discussed by Ru in [5].

In fact, it is expected that the analytic solutions

obtained here will find a variety of applications

including in the design of strained semiconductor

devices in which residual electroelastic fields induced

by built-in electric field and lattice mismatch between

buried active components and surrounding materials

play a crucial role in electronic performance including

the prediction of conditions leading to failure and

degradation (see [4, 5] and the references therein for

more details). We mention in addition that these

problems are also significant in the study of fracture of

advanced materials. For example, the parabola can be

used to represent a crack (or anti-crack) with a blunt

crack tip and the inclusion perhaps a transformation

strain spot of arbitrary shape. In this way, the

corresponding model could be used to study the

shielding or anti-shielding effect of the transformation

strain spot on a nearby crack.

2 The Stroh octet formalism

In a fixed rectangular coordinate system

xi ði ¼ 1; 2; 3Þ, the governing equations for an aniso-

tropic piezoelectric solid are given by Suo et al. [8]:

rij ¼ Cijkluk;l þ ekij/;k; Dk ¼ ekijui;j� 2kl /;l;

rij;j ¼ 0; Di;i ¼ 0;
ð1Þ

where j, k, l,m = 1, 2, 3; we sum over repeated indices;

a comma in the subscript denotes differentiation; rij
and Di are the stress components and electric

displacements, respectively; ui and / are the displace-

ment components and electric potential, respectively;

Cijkl, ekij and 2ij are, respectively, the elastic, piezo-

electric and dielectric constants.

For two-dimensional problems in which all quan-

tities depend on x1 and x2 only, the general solution of

Eq. (1) can be expressed as [2, 8–10]:

u ¼ u1 u2 u3 /½ �T¼ AfðzÞ þ �AfðzÞ;
u ¼ u1 u2 u3 u4½ �T¼ BfðzÞ þ �BfðzÞ;

ð2Þ

where

A ¼ a1 a2 a3 a4½ �; B ¼ b1 b2 b3 b4½ �;
fðzÞ ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ½ �T ;
zi ¼ x1 þ pix2; Im pif g[ 0; ði ¼ 1; 2; 3; 4Þ;

ð3Þ

with

N1 N2

N3 NT
1

� �
ai

bi

� �
¼ pi

ai

bi

� �
; ði ¼ 1; 2; 3; 4Þ ð4Þ

N1 ¼ �T�1RT ; N2 ¼ T�1; N3 ¼ RT�1RT � Q;

ð5Þ

and

Q ¼ QE e11

eT11 � 211

" #
; R ¼ RE e21

eT12 � 212

" #
;

T ¼ TE e22

eT22 � 222

" #
;

ð6Þ

ðQEÞik ¼ Ci1k1; ðREÞik ¼ Ci1k2; ðTEÞik ¼ Ci2k2;
ðeijÞm ¼ eijm:

ð7Þ

In addition, the extended stress function vector u is

defined in terms of the stresses and electric displace-

ments as follows

ri1 ¼ �ui;2; ri2 ¼ ui;1; ði ¼ 1; 2; 3Þ
D1 ¼ �u4;2; D2 ¼ u4;1:

ð8Þ

The two matrices A and B satisfy the following

orthogonality relations

BTA þ ATB ¼ I ¼ �B
T �A þ �A

T �B;

BT �A þ AT �B ¼ 0 ¼ �B
T
A þ �A

T
B:

ð9Þ
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Let t be the extended surface traction on a boundary

C. If s is the arc-length measured along C such that the

material remains on the right-hand side in the direction

of increasing s, it can be shown that [10]

t ¼ d

ds
u: ð10Þ

3 A piezoelectric inclusion in a region

with a parabolic boundary

Consider an anisotropic piezoelectric material that

occupies the region

x2 � bx2
1; b� 0; ð11Þ

the traction-free and charge-free surface of which is a

parabola described by

x2 ¼ bx2
1: ð12Þ

The parabola degenerates to a semi-infinite crack

when b ? ? and to a straight (plane) boundary when

b ¼ 0. The piezoelectric plane with the parabolic

boundary contains a subdomain (inclusion) which has

the same elastic, piezoelectric and dielectric constants

as its exterior region and which undergoes uniform

eigenstrains ðe�11; e
�
22; e

�
12; e

�
13; e

�
23Þ and eigenelectric

fields ðE�
1; E

�
2Þ. Let S2 and S1 denote the subdomain

and its exterior region with parabolic boundary,

respectively and C the perfectly bonded interface

separating S2 and S1 (see Fig. 1). Throughout the

paper, the quantities in S1 and S2 will be identified by

the subscripts 1 and 2, respectively.

The boundary value problem takes the following

form

Af1ðzÞ þ �Af1ðzÞ ¼ Af2ðzÞ þ �Af2ðzÞ þ u�;

Bf1ðzÞ þ �Bf1ðzÞ ¼ Bf2ðzÞ þ �Bf2ðzÞ;
z � x1 þ ix2 2 C;

ð13Þ

Bf1ðzÞ þ �Bf1ðzÞ ¼ 0; x2 ¼ bx2
1; ð14Þ

f1ðzÞ ffi Oð1Þ; zj j ! 1; ð15Þ

where u� given by

u� ¼

e�11x1 þ e�12x2

e�12x1 þ e�22x2

2ðe�13x1 þ e�23x2Þ
�E�

1x1 � E�
2x2

2
6664

3
7775; z 2 S2: ð16Þ

is the vector of additional displacements and electric

potential within the inclusion arising from uniform

eigenstrains and eigenelectric fields. Pre-multiplying

the two interface conditions in Eq. (13) by BT and AT ,

adding the resulting equations, and making use of the

orthogonality relations in Eq. (9), we find the follow-

ing decoupled form for the interface conditions in

Eq. (13)

f1ðzÞ ¼ f2ðzÞ þ\za [ c þ\�za [ d; z 2 C;

ð17Þ

where \ � [ is a 4 
 4 diagonal matrix in which

each component varies with the index a (from 1 to 4),

and

c ¼ \
�pa

�pa � pa
[BT

e�11

e�12

2e�13

�E�
1

2
6664

3
7775�\

1

�pa � pa
[BT

e�12

e�22

2e�23

�E�
2

2
6664

3
7775;

d ¼ \
1

�pa � pa
[BT

e�12

e�22

2e�23

�E�
2

2
6664

3
7775�\

pa

�pa � pa
[BT

e�11

e�12

2e�13

�E�
1

2
6664

3
7775:

ð18Þ

We now consider the following one-to-one map-

ping functions [7]

za ¼ xaðnaÞ ¼ na þ bpan
2
a; na ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4bpaza

p
� 1

2bpa
;

Im naf g� 0; a ¼ 1; 2; 3; 4:

ð19Þ

The parabola is mapped onto the real axis in the na-
plane and the region below the parabola is mapped

onto the lower half na-plane. Furthermore, the inclu-

sion za 2 S2a is mapped onto na 2 X2a; the matrix za 2
S1a is mapped onto na 2 X1a; the interface za 2 Ca is

mapped onto na 2 La.

Equation (17) can be further expressed in a decou-

pled form in the na-plane as

Meccanica (2018) 53:2659–2667 2661

123



f1ðnÞ ¼ f2ðnÞþ\xaðnaÞ[cþ\xaðnaÞ[d;
na 2 La;

ð20Þ

where the following notation has been adopted:

fðnÞ ¼ f1ðn1Þ f2ðn2Þ f3ðn3Þ f4ðn4Þ½ �T

¼ f1ðx1ðn1ÞÞ f2ðx2ðn2ÞÞ f3ðx3ðn3ÞÞ f4ðx4ðn4ÞÞ½ �T :

ð21Þ

If z 2 S2 is simply-connected, za 2 S2a is also

simply-connected. As a result, na 2 X2a is simply-

connected. Consequently, there exists a conformal

mapping na ¼ waðgaÞ that maps the exterior of X2a in

the na-plane onto the exterior of the unit circle in the

ga-plane [10–12]. We can construct an auxiliary

function DaðnaÞ for each na 2 La as

xaðnaÞ ¼ �na þ b�pa
�n2
a

¼ �wa
1

w�1
a ðnaÞ

� �
þ b�pa �wa

1

w�1
a ðnaÞ

� �� �2

¼ DaðnaÞ;
na 2 La;

ð22Þ

where w�1
a ðnaÞ is the inverse mapping of na ¼ waðgaÞ.

In addition DaðnaÞ is analytic in the exterior of X2a

except at the point at infinity where it has a pole of

finite degree determined by its asymptotic behavior

DaðnaÞ ffi PaðnaÞ þ Oðn�1
a Þ; naj j ! 1; ð23Þ

where PaðnaÞ is a polynomial of order 2N in na if

na ¼ waðgaÞ is a polynomial of order N in 1=ga.

We now introduce a new vector function hðnÞ ¼
h1ðn1Þ h2ðn2Þ h3ðn3Þ h4ðn4Þ½ �T defined by

hðnÞ ¼ f1ðnÞ �\DaðnaÞ � PaðnaÞ[ d; na 2 X1a;
f2ðnÞ þ\xaðnaÞ[ c þ\PaðnaÞ[ d; na 2 X2a:

�

ð24Þ

It is seen from the above and Eq. (20) that hðnÞ is

continuous across na 2 La and is then analytic in the

lower (na) half-plane including at the point at infinity.

For the convenience of the following analysis, we

introduce a further conformal mapping:

z ¼ x1 þ ix2 ¼ xðnÞ ¼ nþ ibn2;

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4ibz

p
� 1

2ib
; Im nf g� 0:

ð25Þ

Fig. 1 An Eshelby inclusion of arbitrary shape in a piezoelectric plane with a parabolic boundary
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In view of the fact that n1 ¼ n2 ¼ n3 ¼ n4 ¼ n ¼
x1 on the real axis, we can first replace na by the same

variable n. Once the analysis is complete, the complex

variable n should be returned accordingly to the

corresponding complex variables na.
The traction-free and charge-free boundary condi-

tions on the parobola in Eq. (14) can be expressed in

the n-plane as follows

Bf1ðnÞ þ �Bf1ðnÞ ¼ 0; Im nf g ¼ 0�; ð26Þ

which can further be expressed in terms of hðnÞ and its

analytic continuation as

Bh�ðnÞ þ �B\ �DaðnÞ � �PaðnÞ[ �d
¼ �BhþðnÞ � B\DaðnÞ � PaðnÞ[ d;
Im nf g ¼ 0;

ð27Þ

where the superscripts ‘?’ and ‘-’ denote limiting

values from the upper and lower half-planes, respec-

tively. It is seen that the left- and right-hand sides of

Eq. (27) are analytic in the lower and upper half-

planes, respectively, including at the point at infinity.

By applying Liouville’s theorem, the left- and right-

hand sides of Eq. (27) should be identically zero.

Consequently, we arrive at the following expression

for hðnÞ

hðnÞ ¼ �B�1 �B\ �DaðnÞ � �PaðnÞ[ �d; Im nf g� 0:

ð28Þ

The above expression is valid only on the real axis

of the na-plane. The full-field expression can be

conveniently expressed as

hðnÞ ¼ �
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[B�1 �BIj �d;

Im naf g� 0;

ð29Þ

where

I1 ¼ diag 1 0 0 0½ �; I2 ¼ diag 0 1 0 0½ �;
I3 ¼ diag 0 0 1 0½ �; I4 ¼ diag 0 0 0 1½ �:

ð30Þ

The analytic vector functions inside and outside the

Eshelby inclusion can be obtained from Eqs. (24) and

(29) as

f1ðnÞ¼\DaðnaÞ�PaðnaÞ[d�
X4

j¼1

\ �DjðnaÞ

��PjðnaÞ[B�1 �BIj �d; na 2X1a;

f2ðnÞ¼�\xaðnaÞ[c�\PaðnaÞ[d

�
X4

j¼1

\ �DjðnaÞ� �PjðnaÞ[B�1 �BIj �d; na 2X2a:

ð31Þ

It is seen that the structure of the solution in

Eq. (31) for an anisotropic piezoelectric material is

much simpler than that for an isotropic elastic material

[13]. The underlying reason is that the isotropic elastic

material belongs to the class of mathematically

degenerate materials [10]. The electroelastic fields

inside and outside the inclusion can be obtained by

substituting Eq. (31) into Eq. (2). In particular, the

extended hoop stress vector th along the parabola

acting on a surface perpendicular to the parabola can

be derived from Eqs. (31) and (10) as

th ¼ 4 cos dIm B\
pa � tan d

1 þ pa tan d
[B�1

� �

Im B\ D0
aðx1Þ � P0

aðx1Þ
	 


[ d
� �

; x2 ¼ bx2
1;

ð32Þ

where d ¼ tan�1ð2bx1Þ is the angle the tangent to the

parabola makes with the x1-axis.

4 Other electroelastic boundary conditions

on the parabola

In the previous section, we have considered the case in

which the parabolic boundary is traction-free and

charge-free. In this section, we will consider further

electroelastic boundary conditions on the parabola.

More specifically, we will address cases describing:

(1) a rigid and conducting parabola; (2) a rigid and

insulating parabola; (3) a traction-free and conducting

parabola.

4.1 A rigid and conducting parabola

In this case, the boundary conditions on the parabola

are

Meccanica (2018) 53:2659–2667 2663

123



u1 ¼ u2 ¼ u3 ¼ 0; / ¼ 0; x2 ¼ bx2
1; ð33Þ

or equivalently

Af1ðzÞ þ �Af1ðzÞ ¼ 0; x2 ¼ bx2
1: ð34Þ

Using a method similar to that in Sect. 3, the

analytic vector functions defined inside and outside

the Eshelby inclusion can eventually be shown to be

f1ðnÞ ¼ \DaðnaÞ � PaðnaÞ[ d �
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[A�1 �AIj �d; na 2 X1a;

f2ðnÞ ¼ �\xaðnaÞ[ c �\PaðnaÞ[ d

�
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[A�1 �AIj �d; na 2 X2a:

ð35Þ

The extended hoop stress vector th along the

parabola can be determined as

th ¼ 4 cos dIm B\
pa � tan d

1 þ pa tan d
[A�1

� �

Im A\ D0
aðx1Þ � P0

aðx1Þ
	 


[ d
� �

; x2 ¼ bx2
1:

ð36Þ

4.2 A rigid and insulating parabola

In this case, the boundary conditions on the parabola

are

u1 ¼ u2 ¼ u3 ¼ 0; u4 ¼ 0; x2 ¼ bx2
1; ð37Þ

or equivalently

ðI � I4ÞA þ I4B½ �f1ðzÞ þ ðI � I4Þ �A þ I4
�B

	 

f1ðzÞ

¼ 0;

x2 ¼ bx2
1:

ð38Þ

Using a method similar to that in Sect. 3, the

analytic vector functions defined inside and outside

the Eshelby inclusion are given by

f1ðnÞ ¼ \DaðnaÞ � PaðnaÞ[ d

�
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[ ðI � I4ÞA þ I4B½ ��1

ðI � I4Þ �A þ I4
�B

	 

Ij �d; na 2 X1a;

f2ðnÞ ¼ �\xaðnaÞ[ c �\PaðnaÞ[ d

�
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ

[ ðI � I4ÞA þ I4B½ ��1

ðI � I4Þ �A þ I4
�B

	 

Ij �d; na 2 X2a:

ð39Þ

The extended hoop stress vector th along the

parabola can be determined as

th¼4cosdIm

B\
pa� tand

1þpa tand
[ ðI�I4ÞAþI4B½ ��1

� �


 Im ðI�I4ÞAþI4B½ �\ D0
aðx1Þ�P0

aðx1Þ
	 


[d
� �

;

x2 ¼bx2
1:

ð40Þ

4.3 A traction-free and conducting parabola

In this case, the boundary conditions on the parabola

are

u1 ¼ u2 ¼ u3 ¼ 0; / ¼ 0; x2 ¼ bx2
1; ð41Þ

or equivalently

ðI� I4ÞBþ I4A½ �f1ðzÞþ ðI� I4Þ �Bþ I4
�A

	 

f1ðzÞ¼ 0;

x2 ¼ bx2
1:

ð42Þ

Using a method similar to that in Sect. 3, the

analytic vector functions inside and outside the

Eshelby inclusion in this case are shown to be
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f1ðnÞ ¼ \DaðnaÞ � PaðnaÞ[ d

�
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[ ðI � I4ÞB þ I4A½ ��1

ðI � I4Þ �B þ I4
�A

	 

Ij �d; na 2 X1a;

f2ðnÞ ¼ �\xaðnaÞ[ c �\PaðnaÞ[ d

�
X4

j¼1

\ �DjðnaÞ � �PjðnaÞ[ ðI � I4ÞB þ I4A½ ��1

ðI � I4Þ �B þ I4
�A

	 

Ij �d; na 2 X2a:

ð43Þ

The extended hoop stress vector th along the

parabola can be determined as

th¼4cosdIm

B\
pa� tand

1þpa tand
[ ðI�I4ÞBþI4A½ ��1

� �


Im ðI�I4ÞBþI4A½ �\ D0
aðx1Þ�P0

aðx1Þ
	 


[d
� �

;

x2¼bx2
1:

ð44Þ

5 Discussion of a special case

In this section, we consider the special case of a

hexagonal piezoelectric material exhibiting 6 mm

symmetry with its poling direction along the x3-axis.

The subdomain z 2 S2 undergoes only uniform anti-

plane eigenstrains ðe�13; e
�
23Þ and eigenelectric fields

ðE�
1; E

�
2Þ. In this case, the general solution can be

expressed in terms of a two-dimensional analytic

vector function fðzÞ of the complex variable z ¼
x1 þ ix2 as follows

r32 þ ir31

D2 þ iD1

� �
¼ Cf 0ðzÞ; u3

u4

� �
þ iC

u3

/

� �
¼ CfðzÞ;

C ¼ CT ¼ C44 e15

e15 � 211

� �
:

ð45Þ

We introduce the conformal mapping function in

Eq. (25). By using this mapping function, the inclu-

sion z 2 S2 is mapped onto n 2 X2, the matrix z 2 S1 is

mapped onto n 2 X1, and the interface z 2 C is

mapped onto n 2 L. In addition, there is a conformal

mapping n ¼ wðgÞ which maps the exterior of X2 in

the n-plane onto the exterior of the unit circle in the g-

plane for a simply-connected inclusion. As a result, we

can construct the following auxiliary function DðnÞ:

xðnÞ ¼ �n� ib�n2 ¼ �w
1

w�1ðnÞ

� �
� ib �w

1

w�1ðnÞ

� �� �2

¼ DðnÞ; n 2 L:

ð46Þ

In addition, DðnÞ is analytic in the exterior of X2

except at the point at infinity, where it has a pole of

finite degree, namely

DðnÞ ffi PðnÞ þ Oðn�1Þ; nj j ! 1; ð47Þ

where PðnÞ is a polynomial of order 2 N in n if n ¼
wðgÞ is a polynomial of order N in 1=g.

In what follows, we derive analytic solutions for

four types of boundary conditions on the parabola. For

convenience and without loss of generality, we write

f iðnÞ ¼ f iðxðnÞÞ; i ¼ 1; 2.

5.1 A traction-free and insulating parabola

ðu3 ¼ u4 ¼ 0Þ

In this case, the analytic vector functions inside and

outside the inclusion are finally found to be

f1ðnÞ ¼ �
e�23 � ie�13

�1
2
ðE�

2 � iE�
1Þ

� �
DðnÞ � PðnÞ½ �

þ
e�23 þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �
�DðnÞ � �PðnÞ½ �; n 2 X1;

f2ðnÞ ¼ �
e�23 þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �
xðnÞ

þ
e�23 � ie�13

�1
2
ðE�

2 � iE�
1Þ

� �
PðnÞ þ

e�23 þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �

�DðnÞ � �PðnÞ½ �; n 2 X2:

ð48Þ

5.2 A rigid and conducting parabola ðu3 ¼ / ¼ 0Þ

In this case, the analytic vector functions inside and

outside the inclusion are:

Meccanica (2018) 53:2659–2667 2665

123



f1ðnÞ¼�
e�23� ie�13

�1
2
ðE�

2 � iE�
1Þ

� �
DðnÞ�PðnÞ½ �

�
e�23þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �
�DðnÞ� �PðnÞ½ �; n2X1;

f2ðnÞ¼�
e�23þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �
xðnÞþ

e�23� ie�13

�1
2
ðE�

2 � iE�
1Þ

� �
PðnÞ

�
e�23þ ie�13

�1
2
ðE�

2 þ iE�
1Þ

� �
�DðnÞ� �PðnÞ½ �; n2X2:

ð49Þ

5.3 A rigid and insulating parabola ðu3 ¼ u4 ¼ 0Þ

Here, the analytic vector functions inside and outside

the inclusion are given by

f1ðnÞ¼�
e�23� ie�13

�1
2
ðE�

2� iE�
1Þ

� �
DðnÞ�PðnÞ½ �

�
e�23þ ie�13

2e15

211

ðe�23þ ie�13Þþ
1

2
ðE�

2þ iE�
1Þ

2
4

3
5

�DðnÞ� �PðnÞ½ �; n2X1;

f2ðnÞ¼�
e�23þ ie�13

�1
2
ðE�

2þ iE�
1Þ

� �
xðnÞþ

e�23� ie�13

�1
2
ðE�

2� iE�
1Þ

� �
PðnÞ

�
e�23þ ie�13

2e15

211

ðe�23þ ie�13Þþ
1

2
ðE�

2þ iE�
1Þ

2
4

3
5

�DðnÞ� �PðnÞ½ �; n2X2:

ð50Þ

5.4 A traction-free and conducting parabola

ðu3 ¼ / ¼ 0Þ

In this case, the analytic vector functions inside and

outside the inclusion are

f1ðnÞ¼�
e�23� ie�13

�1
2
ðE�

2� iE�
1Þ

� �
DðnÞ�PðnÞ½ �

þ
e�23þ ie�13�

e15

C44

ðE�
2þ iE�

1Þ
1
2
ðE�

2þ iE�
1Þ

2
4

3
5

�DðnÞ� �PðnÞ½ �; n2X1;

f2ðnÞ¼�
e�23þ ie�13

�1
2
ðE�

2þ iE�
1Þ

� �
xðnÞþ

e�23� ie�13

�1
2
ðE�

2� iE�
1Þ

� �
PðnÞ

þ
e�23þ ie�13�

e15

C44

ðE�
2þ iE�

1Þ
1
2
ðE�

2þ iE�
1Þ

2
4

3
5

�DðnÞ� �PðnÞ½ �; n2X2:

ð51Þ

6 Conclusions

A general method is presented leading to analytic

solutions of Eshelby’s problem of a two-dimensional

inclusion of arbitrary shape in a piezoelectric plane

with a parabolic boundary. The analytic vector

functions inside and outside the inclusion are given

in terms of auxiliary functions DaðnbÞ; a; b ¼
1; 2; 3; 4, the polynomials PaðnbÞ; a; b ¼ 1; 2; 3; 4

and their analytic continuations. The electroelastic

boundary conditions on the parabola can be: (1)

traction-free and insulating (Sect. 3); (2) rigid and

conducting (Sect. 4.1); (3) rigid and insulating

(Sect. 4.2); (4) traction-free and conducting

(Sect. 4.3). The special case of a transversely isotropic

piezoelectric material is discussed in Sect. 5.

Acknowledgements This work is supported by the National

Natural Science Foundation of China (Grant No. 11272121) and

through a Discovery Grant from the Natural Sciences and

Engineering Research Council of Canada (Grant No: RGPIN –

2017 - 03716115112).

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

2666 Meccanica (2018) 53:2659–2667

123



References

1. Wang B (1992) Three-dimensional analysis of an ellipsoidal

inclusion in a piezoelectric material. Int J Solids Struct

29:293–308

2. Chung MY, Ting TCT (1996) Piezoelectric solid with an

elliptic inclusion or hole. Int J Solids Struct 33:3343–3361

3. Dunn ML, Wienecke HA (1997) Inclusions and inhomo-

geneities in transversely isotropic piezoelectric solids. Int J

Solids Struct 34:3571–3582

4. Ru CQ (2000) Eshelby’s problem for two-dimensional

piezoelectric inclusions of arbitrary shape. Proc R Soc Lond

A 456:1051–1068

5. Ru CQ (2001) A two-dimensional Eshelby problem for two

bonded piezoelectric half-planes. Proc R Soc Lond A

457:865–883

6. Wang X, Pan E (2010) Two-dimensional Eshelby’s problem

for two imperfectly bonded piezoelectric half-planes. Int J

Solids Struct 47:148–160

7. Ting TCT, Hu Y, Kirchner HOK (2001) Anisotropic elastic

materials with a parabolic or hyperbolic boundary: a clas-

sical problem revisited. ASME J Appl Mech 68:537–542

8. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture

mechanics for piezoelectric ceramics. J Mech Phys Solids

40:739–765

9. Wang X (1994) Trial discussions on the mathematical

structure of inclusion, dislocation and crack. Dissertation,

Xi’an Jiaotong University

10. Ting TCT (1996) Anisotropic elasticity-theory and appli-

cations. Oxford University Press, New York

11. Savin GN (1961) Stress concentration around holes. Perg-

amon Press, London

12. England AH (1971) Complex variable methods in elasticity.

Wiley, London

13. Wang X, Chen L, Schiavone P (2017) Eshelby inclusion of

arbitrary shape in isotropic elastic materials with a parabolic

boundary. J Mech Mater Struct (in press)

Meccanica (2018) 53:2659–2667 2667

123


	Two-dimensional Eshelby’s problem for piezoelectric materials with a parabolic boundary
	Abstract
	Introduction
	The Stroh octet formalism
	A piezoelectric inclusion in a region with a parabolic boundary
	Other electroelastic boundary conditions on the parabola
	A rigid and conducting parabola
	A rigid and insulating parabola
	A traction-free and conducting parabola

	Discussion of a special case
	A traction-free and insulating parabola (\varphi_{3} = \varphi_{4} = 0) 
	A rigid and conducting parabola (u_{3} = \phi = 0) 
	A rigid and insulating parabola (u_{3} = \varphi_{4} = 0) 
	A traction-free and conducting parabola (\varphi_{3} = \phi = 0) 

	Conclusions
	Acknowledgements
	References




