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Abstract A theoretical study is presented of peri-

staltic hydrodynamics of an aqueous electrolytic non-

Newtonian Jeffrey bio-rheological fluid through an

asymmetric microchannel under an applied axial

electric field. An analytical approach is adopted to

obtain the closed form solution for velocity, volumet-

ric flow, pressure difference and stream function. The

analysis is also restricted under the low Reynolds

number assumption (Stokes flow) and lubrication

theory approximations (large wavelength). Small

ionic Peclét number and Debye–Hückel linearization

(i.e. wall zeta potential B 25 mV) are also considered

to simplify the Nernst–Planck and Poisson–Boltz-

mann equations. Streamline plots are also presented

for the different electro-osmotic parameter, varying

magnitudes of the electric field (both aiding and

opposing cases) and for different values of the ratio of

relaxation to retardation time parameter. Comparisons

are also included between the Newtonian and general

non-Newtonian Jeffrey fluid cases. The results pre-

sented here may be of fundamental interest towards

designing lab-on-a-chip devices for flow mixing, cell

manipulation, micro-scale pumps etc. Trapping is

shown to be more sensitive to an electric field (aiding,

opposing and neutral) rather than the electro-osmotic

parameter and viscoelastic relaxation to retardation

ratio parameter. The results may also help towards the

design of organ-on-a-chip like devices for better drug

design.

Keywords Peristalsis � Electrokinetic transport �
Analytical approach � Trapping � Viscoelastic fluids

1 Introduction

The word peristalsismeans clasping and compressing.

It describes a progressive wave of contraction along a

channel or tube whose cross-sectional area conse-

quently varies along the axis. Peristalsis is a very

efficient mechanism for transporting the fluid through

a distensible tube or channel using the mechanism of

contraction or expansion of the waves propagating

along the walls of the conduit. Peristaltic transport is

very significant in different biological systems, such as

the gastrointestinal tract, lymphatic vessels, insect

microscale internal flows etc. [1–5]. Peristaltic pump-

ing is also deployed in a number of industrial
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applications such as roller and finger pumps and

transfer of biological and chemical toxic liquids to

avoid contamination via leakage [6, 7].

The fundamentals of peristaltic pumping at low

Reynolds number have been explored by Jaffrin and

Shapiro [8]. Pozrikidis [9] considered channel width,

wave amplitude and phase shift effects in peristaltic

flow under sinusoidal waves in a channel Stokes flow

by applying a boundary integral method, noting that

under varying mean pressure gradient, efficient

molecular-convective transport is achieved. Subse-

quently a number of researchers have explored

peristaltic flow for different wave forms and geome-

tries, both experimentally and numerically. These

peristaltic studies have also included both Newtonian

and non-Newtonian models and representative works

in this regard are Hayat et al. [10] who considered

magnetic Maxwell fluids, Wang et al. [11] on Sisko

fluids, Hina et al. [12] on Johnson–Segalman fluids in

a curved channel, Abd elmaboud and Mekheimer [13]

on second-order fluids, Sutradhar et al. [14] on Casson

fluids, Tripathi and Bég [15] on generalized Burgers’

fluids, Abd-Alla and Abo-Dahab [16] on Jeffrey’s

viscoelastic fluids, Tripathi and Bég [17] on a variety

of viscoplastic fluids (including Herschel-Bulkley and

Vocaldo models) and Mekheimer [18] on couple-

stress fluids.

In recent time, microfluidcs is becoming a major

area of research due to its numerous applications in

separation techniques in medical systems. BioMEMS

and lab-on-a-chip devices usually involve sample

preparation, treatment, injection, delivery, separation

and detection. Most substances acquire surface elec-

tric charges when in contact with an aqueous (polar)

medium. With electric field applied tangentially along

a charge surface, a body force is generated on the ions

in the diffuse layer and this results in an electroosmotic

force (EOF). This phenomenon is used in electroos-

motic pumping such as valve-less switching, accurate

control of transportation and manipulation of liquid

samples by an electrical field. Since no solid moving

parts are involved, this feature makes electroosmosis a

preferred method for transporting liquids in

microfluidics.

Mathematical simulations of peristaltic transport in

microfluidic devices have recently attracted some

attention. Chakraborty [19] studied the augmentation

of peristaltic transport via electroosmotic means,

considering Newtonian fluids. This model however

constitutes a relatively simple formulation for analyz-

ing electro-peristaltic transport. In this direction, some

more recent investigations [20–25] have been reported

to analyze the electro-peristaltic transport with chan-

nel flow [20], capillary flow [21], power law fluids

[22], couple stress fluid [23], magnetohydrodynamics

[24], Viscoelastic fluids [25]. They have concluded

that peristaltic transport/physiological flow may be

controlled by adding and opposing the external

electric field. Some other investigations of electroos-

motic induced flow of non-Newtonian fluids have been

communicated. However these generally involve

pumping through straight micro-channels or tubes

[26–31]. It is of greater practical importance to

analyze the more general case of peristaltic pumping

in the presence of applied electric fields with a

peristaltic pumping zone of fixed length. Advances

in silicon micromachining and novel actuation mech-

anisms of the channel wall such as electrostatic

actuation and thermo-pneumatic actuation have been

implemented for the development of micro-peristaltic

pumps [32]. It has been observed that electroosmosis

plays a key role in controlling and stabilizing the

interface between two-fluids driven by a pressure

gradient [33]. Owing to applications in capillary

electrophoresis [34] there has been a significant

amount of effort towards understanding the process

of combined pressure driven and electroosmosis in

various configurations [35, 36]. More recently, from a

molecular viewpoint, Gillespie and Pennathur [37]

have investigated enhanced ionic separation by means

of a combined pressure driven and electroosmotic flow

where the direction of electroosmosis opposes the

direction of the pressure driven flow.

The volume of work indicates that there is a need

for more robust mathematical models for electro-

osmotic pumping processes. A unification of the

Nernst–Plank theory for the transport of the elec-

trolytes in the lubrication framework of peristalsis is a

possible methodology for further elucidating the

mechanisms of electro-osmotic pumping in micro-

scale devices. This is the motivation for the present

work. Furthermore the Jeffrey’s non-Newtonian vis-

coelastic model is employed. This rheological model

has been used previously by Kothandapani and

Srinivas [38] for magnetohydrodynamic peristaltic

pumping in an asymmetric channel. The rheology of

the Jeffrey model is different from the Newtonian fluid

as it encloses a linear model using time derivatives. It
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has further been utilized by Tripathi et al. [39] for

thermal transport in intestinal peristalsis, Ellahi et al.

[40] for MHD flow and Bhatti et al. [41] for peristaltic

flow through non-uniform rectangular duct having

compliant walls. In the present investigation, electro-

kinetic peristaltic pumping of an aqueous ionic

solution of Jeffrey’s fluid in an asymmetric channel

is examined as a simulation of microscale electro-

osmotic transport. There exist many different vis-

coelastic formulations in the literature, including the

Oldroyd-B model, PTT model, FENE-P model, the

Giesekus model, Williamson model etc. Each has its

relative merits. The attraction with the Jeffery’s model

is that is a modified form of the Maxwell model

achieved by an additional linear relationship, i.e. the

time derivative of shear strain to the Maxwell model.

The convected Jeffrey model in due course gives the

Oldroyd-Bmodel. Since we are considering biological

flows, not polymer flows, the Jeffrey model is

adequate. It is known (as with the convected Maxwell

model) to be able to predict the appearance of the first

difference of normal stresses but does not predict non-

Newtonian behavior of the shear viscosity nor the

second difference of the normal stresses, these char-

acteristics being more important in polymer flows.

2 Mathematical model

The two-dimensional peristaltic flow of a non-New-

tonian aqueous ionic solution in an infinite asymmetric

channel having width b1 þ b2 is considered, as

illustrated in Fig. 1. An asymmetric flow regime is

produced by choosing the peristaltic wave train,

travelling with wave velocity c along the walls to

have different amplitudes (a1; a2) and phase (u).The
upper and lower walls of the asymmetric microchan-

nel (see Fig. 1) are geometrically modelled using the

respective relations:

�h2 ¼ b1 þ a1 sin
2p
k
ð�x� c�tÞ

� �
; upper wall ð1aÞ

�h1 ¼ � b2 � a2 sin
2p
k
ð�x� c�tÞ þ u

� �
; lower wall

ð1bÞ

where k, �x, �t are the wavelength, axial coordinate, and
time. The phase difference u varies in the range

0�u� p. When u ¼ 0, a symmetric channel with

waves out of phase can be described and foru ¼ p, the
waves are in phase.

The aqueous ionic solution of Jeffrey viscoelastic

fluid is sensitive to an externally applied electric field

along the length of the asymmetric channel. The

positive ions nþ and negative ion n� are both assumed

to have bulk concentration (number density) n0, and a

valency of zþ and z� respectively. For simplicity, we

consider the electrolyte to be a z : z symmetric

electrolyte, i.e. zþ ¼ � z� ¼ z. It may be noted that

the channel material for typical peristaltic pumps

comprise silicone elastomers, Teflon, polyvinyl chlo-

ride, polyurethane rubber or similar substances. These

materials are typically employed in a wide variety of

microfluidic devices owing to their flexibility and ease

of fabrication. When an aqueous solution is brought

into contact with such materials, it acquires a net

surface potential (referred to as zeta potential, f)
relative to the bulk through a solution pH-dependent

surface charging process. It may be observed that for

majority cases, with pH near 7, the zeta potential is

around - 25 mV or less. Regardless of the charging

mechanism, the presence of a negative surface poten-

tial leads to an attraction of nþ ions and repulsion of n�
ions, leading to the establishment of the electrical

double layer (EDL). It is assumed that the wavelength

of the pulse is much larger than the channel height; i.e.

we assume that the lubrication approximation is valid

(d � 1). The governing equations for unsteady, two-

dimensional, viscous, incompressible flow under an

applied axial electrical field are given as:

ou

ox
þ ov

oy
¼ 0; ð2Þ

q
o

ot
þ u

o

ox
þ v

o

oy

� �
u ¼ � op

ox
þ oSxx

ox
þ oSxy

oy

þ qe Ex; ð3Þ

q
o

ot
þ u

o

ox
þ v

o

oy

� �
v ¼ � op

oy
þ oSyx

ox
þ oSyy

oy
; ð4Þ

where Sxx; Sxy; Syx; Syy are the extra stress components

and q; u; v; p; l; and Ex denote the fluid density, axial

velocity, transverse velocity, pressure, fluid viscosity,

and axial electrical field. The constitutive equation of

extra stress S for the Jeffrey viscoelastic model,

following [38–41] may be defined as:
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S ¼ l
1þ k1

ð _cþ k2€cÞ; ð5Þ

where _c; k1; k2 are the rate of strain, the ratio of

relaxation and retardation times, the retardation time

and dots denote differentiation with respect to time.

Also, qe � zþnþeþ z�n�e, denotes the charge

number density of the aqueous solution present with

e being the protonic charge. The charge number

density is related to the electrical potential in the

transverse direction (/) through the Poisson equation:

r2/ ¼ � qe
e
; ð6Þ

where e is the electrical permittivity. Furthermore in

order to determine the potential distribution, it is

necessary to describe the charge number density. For

this, the ionic number distributions of the individual

species are given by the Nernst–Planck equation for

each species as:

on�
ot

þ u
on�
ox

þ v
on�
oy

¼ D
o2n�
ox2

þ o2n�
oy2

� �

� Dze

kBT

o

ox
n�

o/
ox

� �
þ o

oy
n�

o/
oy

� �� �
; ð7Þ

where, we have assumed equal ionic diffusion coef-

ficients for both the species, and that the mobility of

the species is given by the Einstein formula where D

represents the diffusivity of the chemical species, T is

the average temperature of the electrolytic solution

and kB is Boltzmann constant.

To facilitate analytical solutions of Eqs. (2–7) it is

advantageous to introduce a group of non-dimensional

parameters; �x ¼ x
k ; �y ¼

y
b1
; �t ¼ tc

k ;
�k1 ¼ k1c

k ; �k2 ¼ k2c
k ;

�p ¼ pb2
1

lck ;
�h1 ¼ h1

b1
; �h2 ¼ h2

b1
;/1 ¼ a1

b1
;/2 ¼ a2

b1
; b ¼ b2

b1
;

d ¼ b1
k ;

�/ ¼ ze/
kBT

; �n ¼ n
n0
, where d are the wave number.

The nonlinear terms in the Nernst–Planck equations

are OðPe k2Þ, where Pe ¼ Re Sc represents the ionic

Peclét number, Sc ¼ l=qD denotes the Schmidt

number and Re ¼ ck
l=q denotes the Reynolds number,

where the nonlinear terms in the momentum equation

are found to be OðRe d2Þ. Therefore, the nonlinear

terms may be dropped in the limit that Re; Pe; d � 1.

In the above approximations, dropping the bars, the

emerging Poisson equation is:

o2/
oy2

¼ �j2
nþ � n�

2

� �
; ð8Þ

where j ¼ b1ez
ffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ b1

kd
, is known as the electro-

osmotic parameter and kd / 1
j is Debye length or

characteristic thickness of the electrical double layer

(EDL).

And the ionic distribution may be determined by

means of the simplified Nernst Planck equations:

0 ¼ o2n�
oy2

� o

oy
n�

o/
oy

� �
; ð9Þ

subjected to n� ¼ 1 at / ¼ 0 and on�=oy ¼ 0 where

o/=oy ¼ 0 (bulk conditions). These yield the much

celebrated Boltzmann distribution for the ions

2b ϕ

2 2( )hφ ζ=

1 1( )hφ ζ=

1a

2a

1b

y

x

Direction of peristaltic wave 

Net flow due to 
combined effects of 
applied electric field 
and peristaltic 

Net positive 
solution

λ

Fig. 1 Physical model for

peristaltic pumping in an

asymmetric microchannel

under an applied external

electric field
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n� ¼ e�/: ð10Þ

Combining Eqs. (8) and (10), we obtain the Pois-

son–Boltzmann paradigm for determining the electri-

cal potential distribution:

o2/
oy2

¼ j2 sinh /ð Þ: ð11Þ

In order to make further analytical progress, we

must simplify Eq. (11). Equation (11) may be lin-

earized under the low-zeta potential approximation.

This assumption is not ad hoc since for a wide range of

pH, the magnitude of zeta potential is less than 25 mV.

Therefore, Eq. (11) may be simplified to yield:

o2/
oy2

¼ j2/; ð12Þ

which may be solved subject to /jy¼h1
¼ f1 and

/jy¼h2
¼ f2. The electrical potential function thereafter

emerges in terms of transcendental hyperbolic

functions:

/ ¼ C1e
jy þ C2e

�jy; ð13Þ

where C1 ¼ eh2jf2�eh1jf1
e2h2j�e2h1j

and C2 ¼
eh1jþh2j eh1jf2�eh2jf1ð Þ

e2h1j�e2h2j
.

In the above limit, dropping the bars, the continuity

and momentum equations are reduced as:

ou

ox
þ ov

oy
¼ 0; ð14Þ

op

ox
¼ 1

1þ k1

� �
o2u

oy2
þ j2uhs/; ð15Þ

op

oy
¼ 0; ð16Þ

where uhs ¼ � Exef
l c is the Helmholtz–Smoluchowski

velocity or maximum electro-osmotic velocity. The

associated normalized boundary conditions are:

u ¼ 0 at y ¼ h1; ð17aÞ

u ¼ 0 at y ¼ h2; ð17bÞ

Integrating Eq. (15) and imposing the above boundary

conditions, the axial velocity is found to be:

u ¼ 1þ k1ð Þ y2

2

op

ox
� uhsðC2e

�yj þ C1e
yjÞ

� �
þ C3

þ yC4;

ð18Þ

where C3 ¼ 1þk1
h1�h2

h2
h2
1

2
op
ox
� uhsðC2e

�h1j
�n

þC1e
h1jÞÞ

�h1
h2
2

2
op
ox
� uhsðC2e

�h2j þ C1e
h2jÞ

� �o
; C4 ¼

1þk1ð Þe�h1j�h2j

2 h2�h1ð Þ eh1jþh2j op
ox

h22 � h21
� �

þ
n

uhs 2C2ðeh2j�
�

eh1jÞþ 2C1ðe2h1jþh2j � eh1jþ2h2jÞ
�o

:

The volumetric flow rate in laboratory frame of

reference is defined as:

Q ¼
Zh2
h1

u dy; ð19Þ

which, by virtue of Eq. (18), assumes the following

form:

Q ¼ e� h1þh2ð Þj

j

(
C2uhs 1þ k1ð Þ eh1j � eh2j

� �

þ e h1þh2ð Þj C1 eh1j � eh2j
� �

uhs 1þ k1ð Þ
�

þ j
6

�6C3 h1 � h2ð Þ � 3C4 h21 � h22
� ��

� op

ox
1þ k1ð Þ h31 � h32

� ���	
: ð20Þ

The transformations between a wave frame ðxw; ywÞ
moving with velocity c and the fixed frame (x; y) are

given by:

x ¼ xw � ct; y ¼ yw; u ¼ uw þ c; v ¼ vw;

ð21Þ

where ðuw; vwÞ and ðu; vÞ are the velocity components

in the wave and fixed frame respectively.

The volumetric flow rate in the wave frame is given

by:

qw ¼
Zh2
h1

uwdyw ¼
Zh2
h1

ðu� 1Þdyw; ð22Þ

which, on integration, yields:

qw ¼ Qþ h1 � h2: ð23Þ
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Averaging the volumetric flow rate along one time

period, we get:

�Q ¼
Z1

0

Qdt ¼
Z1

0

ðqþ h2 � h1Þdt; ð24Þ

which, on integration, yields

�Q ¼ qw þ 1þ b ¼ Qþ 1þ bþ h1 � h2: ð25Þ

Rearranging the terms of Eq. (18) and using

Eq. (23), the pressure gradient is obtained as:

op

ox
¼ 16e�2 h1þh2ð Þj

h1 � h2ð Þ3j 1þ k1ð Þ
C2e

h1þh2ð Þjuhs

�
eh1j �2ð
�

þ h1j� h2jÞ

þ eh2j 2ð þ h1j� h2jÞÞ 1þ k1ð Þ
þ e2 h1þh2ð Þj 2Qjþ C1uhsð eh1j �2ð

�
þ h1j

�h2jÞ þ eh2j 2ð þ h1j� h2jÞÞ 1þ k1Þð Þ
�
:

ð26Þ

The pressure difference across one wavelength

(Dp) is defined as follows:

Dp ¼
Z1

0

op

ox
dx; ð27Þ

Using Eq. (18), the stream function in the wave frame

(obeying the Cauchy–Riemann equations, uw ¼ ow
oyw

and vw ¼ � ow
oxw

) takes the form:

3 Computational results

The solutions of governing equations are analytically

solved. However some integrations present in

Eqs. (19) and (27) are solved numerically by using

Simpson’s 1/3rd Rule. The plots are drawn by

Mathematica symbolic software. Figures 2, 3, 4 and

5 present selected graphical solutions for velocity,

volumetric flow rate, pressure difference and stream-

line distributions, with different values of j (ratio of

the one side width of the capillary b1 and the Debye

length k), uhs (Helmholtz-Smoluchowski velocity or

maximum electro-osmotic velocity) and k1 (ratio of

relaxation to retardation times).

4 Discussion

The velocity of the fluid with varying magnitude of the

electro-osmotic parameter is shown in Fig. 2 for the

fixed values of /1 ¼ 0:6;/2 ¼ 0:6; b ¼ 1; f1 ¼
0:5; f2 ¼ 1; u ¼ p=2 and uhs ¼ 1; k1 ¼ 1. Since j
denotes the ratio of one side width of the capillary b1
and the Debye length k, it follows that for j ? 1, the

one side thickness of the capillary is reduced to the

same order of magnitude as the Debye length. This

situation is not completely compatible with the

solution for which Debye–Hückel approximation is

valid. However it still remains a reasonable approx-

imation to follow. In the present analysis, therefore we

consider three different values of electro-osmotic

parameter i.e. j ¼ b1ez
ffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ b1

kd
i.e. 2, 3 and 4.

w ¼ e� 2 h1þh2ð Þþyð Þj

h1 � h2ð Þ3j
ye 2 h1þh2ð Þþyð Þjð �Q� 1� bþ h2 � h1Þ 6h1h2 � 3h1yþ 3h2yþ 2y2

� �
j

� �

þ C2uhs e2 h1þh2ð Þj h1 � h2ð Þ3
� �

þ e h1þ2h2þyð Þjy 2y2
�

� h32j� h21 2h2 � yð Þjþ 2h22yj

� h2y 3þ yjð Þ � h1 h22jþ y 3� yjð Þ þ h2 �6þ yjÞð Þ
� �

þ e 2h1þh2þyð Þjy h31
�

jþ h21 h2 � 2yð Þj
þ y �2yþ h22jþ h2 3� yjð Þ

� �
þ h1 �2ð h22jþ h2 �6þ yjð Þ þ y 3þ yjÞÞÞð Þ 1� k1ð Þ

þ C1uhs �ð e2 h1þh2þyð Þj h1 � h2ð Þ3þe 2h1þ3h2þyð Þjy h31j� h21 h2 � 2yð Þj
� �

þ y 2yþ h22j� h2 3þ yjð Þ
� �

þ h1 �2ð h22jþ y �3þ yjð Þ þ h2 6þ yjÞÞð Þ þ e 3h1þ2h2þyð Þjy �2y2
�

� h32jþ h21 2h2 � yð Þjþ 2h22yj

þ h2y 3� yjð Þ � h1 h22j� y 3þ yjð Þ þ h2 6þ yjÞÞð Þ
� �

1� k1ð Þ

ð28Þ

2084 Meccanica (2018) 53:2079–2090

123



Flow reversal is computed for all the cases. It is

emphasized that the velocity of the fluid attains its

minimum value at the wall of the capillary i.e.

strongest deceleration is induced at the wall. It is also

evident that beyond a critical height of the capillary

there is no significant change in the velocity with

electro-osmotic parameter and near the wall, with

increasing electro-osmotic parameter (i.e. for smaller

Debye length) there is a substantial deceleration in the

axial velocity. uhs ¼ � Exef
l c and it is clear that the

maximum velocity is directly proportional to the

external applied electric field. The axial velocity of the

fluid is studied for three different values of uhs each

depicting the case of adding (uhs [ 0), opposing

(uhs\0) and vanishing applied electric field

(uhs ¼ 0). Increasing uhs depletes the electrokinetic

body force resistance and manifests in increasing axial

velocity (Fig. 2b). Quite an opposite phenomenon

observed when the rheology of the fluid changes from

Newtonian (k1 = 0) to a Jeffrey fluid (k1[ 0) in the

presence of aiding applied electric field. The velocity

of the fluid is markedly decelerated with an increase in

k1 i.e. ratio of relaxation to retardation times (which

signifies stronger viscoelastic effect).

Figure 3 depicts the variation of the time-mean flow

rate as a function of electroosmotic parameter (j),
characteristic electro-osmotic velocity (uhs) and ratio

of relaxation to retardation times (k1). It is observed
that the volumetric flow rate increases with greater

electro-osmotic parameter i.e., as the EDL becomes

thinner, as seen in Fig. 3a. This is a result of the

increased body force for thin EDL. Volumetric flow

rate becomes positive for higher values of j. Volu-
metric flow rate decreases (in the negative sense) when

an opposing electric field changes to the case of an

aiding electric field. Volumetric flow rate is increased

with positive electro-osmotic velocity (uhs) whereas it

is reduced with negative electro-osmotic velocity, as

plotted in Fig. 3b. Volumetric flow rate is decreased

with greater ratio of relaxation to retardation param-

eter as observed in Fig. 3c. Lower values are obtained

for the Jeffrey fluid (k1[ 0) rather than the Newtonian

fluid (k1 = 0) in the presence of aiding electric field.

(a)

(b)

(c)

(d)

bFig. 2 Velocity profile (axial velocity vs. transverse coordi-

nate) at /1 ¼ 0:6; /2 ¼ 0:5; b ¼ 1; f1 ¼ 0:5; f2 ¼ 1; and a
uhs ¼ 1; k1 ¼ 1; u ¼ p=2, b j ¼ 1; k1 ¼ 1; u ¼ p=2, c uhs ¼
1; j ¼ 1; u ¼ p=2 d uhs ¼ 1; j ¼ 1; k1 ¼ 1
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Figure 4 depicts the variation in pressure difference

as a function of time averaged volumetric flow rate

across a single wavelength for different values of j, uhs
and k1. Figure 4a–c demonstrate that the relation

between pressure difference and the volumetric flow

rate is inversely proportional i.e., the pressure rise

gives larger values for small volumetric rate and vice

versa. It is also noted that the pressure difference is

larger for the absence time averaged flow rate.

However, all the variations are linearly dependent.

(a)

(b)

(c)

(d)

Fig. 3 Volumetric flow rate versus channel length at constant

pressure gradient and /1 ¼ 0:6; /2 ¼ 0:5; b ¼ 1; f1 ¼ 0:5; f2
¼ 1; and a uhs ¼ 1; k1 ¼ 1; u ¼ p=2, b j ¼ 1; k1 ¼
1; u ¼ p=2, c uhs ¼ 1;j ¼ 1; u ¼ p=2, d uhs ¼ 1;j ¼
1; k1 ¼ 1

(a)

(b)

(c)

Fig. 4 Pressure difference across one wavelength versus time

averaged volumetric flow rate at /1 ¼ 0:6; /2 ¼ 0:5; b ¼
1; f1 ¼ 0:5; f2 ¼ 1; u ¼ p=2, a uhs ¼ 1; k1 ¼ 1, b j ¼
1; k1 ¼ 1, c uhs ¼ 1; j ¼ 1

cFig. 5 Stream lines in wave form at /1 ¼ 0:7; /2 ¼
1:5; b ¼ 3; �Q ¼ 1:5, f1 ¼ 0:5; f2 ¼ 1; u ¼ p=2 for a
uhs ¼ 0; j ¼ 1; k1 ¼ 1, b uhs ¼ � 1; j ¼ 1; k1 ¼ 1, c uhs ¼
1;j ¼ 1; k1 ¼ 1, d uhs ¼ �1;j ¼ 2; k1 ¼ 1, e uhs ¼ �1;j ¼
3; k1 ¼ 1, f uhs ¼ � 1; j ¼ 1; k1 ¼ 2, g uhs ¼ � 1;j ¼ 1; k1 ¼
3, h uhs ¼ � 1; j ¼ 1; k1 ¼ 0
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(a) (b)

(c) (d)

(e) (f)
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The electroosmotic parameter introduces an additional

electro-osmotic force which enhances the pressure

difference (Fig. 4a). The pressure difference and the

time average flow rate are larger for the favorable

electric field. Pressure difference is increased with

positive electro-osmotic velocity (uhs) whereas it is

reduced with negative electro-osmotic velocity, as

plotted in Fig. 4b. The pressure difference decreases

with increase of k1. This implies that pressure

difference is larger for the Newtonian fluid than the

Jeffrey fluid but only up to a critical flow rate;

thereafter the reverse trend is computed.

Another interesting phenomenon in peristaltic

motion is trapping. It is basically the formation of an

internally circulating bolus of fluid by closed stream

lines. This trapped bolus is pushed along by peristaltic

waves. The streamlines for the different governing

parameters uhs, j, k1 are shown in Fig. 5a–h. Fig-

ure 5a–c depict the streamlines for different values of

uhs with j = 1 and k1 = 1. It is evident that with

increase of the electro-kinetic slip velocity, there is a

decreasing resistance to the fluid motion. It is this

reduction in resistance which ensures an augmented

propensity of the fluid particles to propagate along the

axial direction and contributes to the elimination of

trapping. In the presence of opposing electric field, the

effect of the electro-osmotic parameter on the stream-

lines is shown in Fig. 5b, d, e for j = 1, 2 and 3. It is

clear that smaller value of j leads to parallel

streamlines while for the case of higher value of j,
there is a small region where there is a fluid bolus

which is trapped. It observed that the trapping of the

bolus decreases in both upper and lower half of the

channel with an increase in osmotic parameter. The

characteristic of bolus with different value of k1 (= 0, 1

and 3) is visualized in Fig. 5f–h, with all other

parameters invariant. It is evident that the shape of

the bolus is larger for the case of Newtonian fluid than

the non-Newtonian Jeffrey fluid. The trapping bolus

for both upper and lower channel decreases with an

increase in viscoelastic parameter, k1.

5 Conclusions

A mathematical study has been conducted for peri-

staltic motion of aqueous electrolyte solution of a non-

Newtonian Jeffrey fluid through an asymmetric

microchannel altered by concomitant applied electric

field. The study is motivated by further expounding the

electro-hydrodynamics of peristaltic electro-osmotic

(EO) mechanisms in on-chip drug release and micro-

scale biomimetic EO pumps. Assuming low Reynolds

number and lubrication theory approximations, exact

solutions for the transformed boundary value problem

are derived for velocity, volumetric flow rate and

pressure difference. Streamlines are also computed.

The influence of electroosmotic parameter,

(g) (h)

Fig. 5 continued
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Helmholtz–Smoluchowski velocity (varying magni-

tudes of the electric field for both aiding and opposing

cases) and the ratio of relaxation and retardation time

parameter on flow characteristics is investigated.

Furthermore a comparison is made between the

Newtonian and Jeffrey fluid results. The existence of

the trapping is observed to be highly dependent on the

electric field (aiding, opposing and neutral). Bolus

magnitude is enhanced for a Newtonian fluids com-

pared with non-Newtonian Jeffrey fluid. Increasing

relaxation to retardation time ratio parameter therefore

decreases bolus size. Pressure difference is enhanced

with positive electro-osmotic velocity (uhs) whereas it

is decreased with negative electro-osmotic velocity.

Stronger viscoelasticity as characterized by greater

relaxation to retardation time ratio parameter sup-

presses the pressure difference. Increasing electro-

osmotic parameter (i.e. smaller Debye length) induces

a significant retardation in the axial. Furthermore the

flow is decelerated with an increase in ratio of

relaxation to retardation times indicating that stronger

viscoelasticity of the aqueous solution is inhibiting.

The present computations may provide deeper insight

into electro-osmotic propulsion mechanisms for

micro-scale applications including lab-on-a-chip

devices for flow mixing, cell manipulation, etc. The

one-dimensional solutions derived herein furthermore

provide a more realistic insight into non-Newtonian

electroosmotics since we evaluate simultaneously the

combined effects of peristaltic waves, viscoelasticity

and electro-osmotic body force. These solutions also

provide a solid foundation for benchmarking more

complex computational fluid dynamics models of flow

characteristics of rheological fluids deployed in elec-

tro-osmotic pumps. The current work has been

restricted to a one-fluid viscoelastic model and has

ignored slip effects at the walls. It has also only

considered a simple conduit. Important work in two-

fluid electro-kinetic transport has been reported by

Afonso et al. [42], in slip electro kinetic flows also by

Afonso et al. [43] and in annular electro-osmotic

pumping by Ferrás et al. [44]. These complexities

constitute interesting pathways for extending the

current work and will be addressed imminently.
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