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Abstract In this article, two exact analytical solu-

tions for heat convection in viscoelastic fluid flow

through isothermal tubes and slits are presented for the

first time. Herein, a Peterlin type of finitely extensible

nonlinear elastic (FENE-P) model is used as the

nonlinear constitutive equation for the viscoelastic

fluid. Due to the eigenvalue form of the heat transfer

equation, the modal analysis technique has been used

to determine the physical temperature distributions.

The closed form solution for the temperature profile is

obtained in terms of a Heun Tri-confluent function for

slit flow and then the Frobenius method is used to

evaluate the temperature distribution for the tube flow.

Based on these solutions, the effects of extensibility

parameter and Deborah number on thermal convection

in FENE-P fluid flow have been studied in detail. The

fractional correlations for reduced Nusselt number in

terms of material modulus are also derived. Here, it is

shown that by increasing the Deborah number from 0

to 100, the Nusselt number is enhanced by 8.5 and

13.5% for slit and tube flow, respectively.

Keywords Viscoelastic fluid � FENE-Pmodel �Heat
convection � Isothermal tube and slit

1 Introduction

Heat convection in straight tubes and channels con-

stitute fundamental and classical problems in the

science of heat transfer. The heat convection in

Newtonian fluids flowing through closed channels is

well established in the literature and significant

experimental and theoretical studies have been per-

formed in this regard. However relatively few studies

have been communicated concerning heat convection

in different types of non-Newtonian liquids in either

straight tubes or ducts. Heat convection in non-

Newtonian liquids is important in diverse areas of

modern technology including biotechnology, drug

production, pharmaceuticals manufacture (e.g. linc-

tuses), chemical processing industries, food produc-

tion, cosmetic product synthesis, paint and ink

production and injection of polymeric melts (the main

method for producing plastics).

Seminal analytical investigations addressing the

heat convection in Newtonian fluids in straight

channels were presented by Shah [1] and Shah and

London [2]. Subsequently considerable theoretical

work was conducted in this area and a number of

further analytical studies emerged which are reviewed

in for example [3, 4]. In the context of non-Newtonian
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flows in conduits and slits, a significant development

was made by Oliveira and Pinho [5] and Oliveira [6].

They derived closed-form solutions for internal heat

convection in viscoelastic flows through straight pipes

and slits using respectively the robust Phan-Thien–

Tanner (PTT) and Peterlin finitely extensible nonlin-

ear elastic (FENE-P) fluid models. These studies

mobilized a new chapter in rheological heat transfer

analysis. Based on the solution of Oliveira and Pinho

[5], Coelho et al. [7] have investigated the entrance

thermal problem for PTT fluid flow theoretically using

the separation of variables technique. They reported

that heat transfer characteristics are enhanced by

intensifying the shear thinning effect through increas-

ing the parameter eWe2, where We denotes the

Weissenberg number. Pinho and Oliveira [8] studied

analytically the problem of fully developed forced

convection in pipes and channels with the simplified

Phan-Thien–Tanner (SPTT) fluid. Assuming constant

wall heat flux and incorporating viscous dissipation,

they showed that a combination of elasticity and

extensibility increases the Nusselt number. Coelho

et al. [9] presented an analytical solution for the fully

developed forced convection of PTT fluid in ducts

under an imposed constant wall temperature.

Several researchers have also studied thermally-

developing flow in viscoelastic fluids. Filali et al. [10]

have numerically solved the Graetz problem for non-

linear viscoelastic fluids in non-circular tubes deploy-

ing the SPTT model. They analyzed the effects of

rheological parameters on the heat transfer and

validated their results with those findings reported in

[7] and [11]. Norouzi [12] presented an analytical

solution for heat convection of both linear and

exponential PTT fluids in circular pipes with constant

wall temperature, describing in detail the effects of

Weissenberg number and extensional parameter of the

PTT model on heat convection characteristics. Oli-

veira et al. [12] presented computational solutions for

thermally developing FENE-P fluid flow with viscous

dissipation in both channel and pipe geometries under

constant wall temperature and constant heat flux

boundary conditions. Their results revealed that

viscous dissipation and elasticity parameter respec-

tively decrease and increase the Nusselt number.

Revisiting the analysis of Oliveira et al. [12], Filali and

Khezzar [13] simulated the same problem through

ducts with various cross sections geometries under

constant wall heat flux without considering viscous

dissipation. The results verified the independence of

the Nusselt number from the Reynolds number for the

FENE-P fluids and also demonstrated agreement with

results reported for SPTT fluids by Filali et al. [10].

Iaccarino et al. [14] presented an eddy viscosity model

to simulate turbulent flows of homogeneous polymer

solutions represented by the FENE-P model. They

noted that for both low and high drag reduction

conditions, the kinetic energy, polymer elongation

profiles and the mean velocity in the channels are in a

good agreement with direct numerical simulations

(DNS) data. Resende et al. [15] developed a compre-

hensive lowReynolds number k � xmodel for FENE-

P viscoelastic fluids. They validated their work for

both low and intermediate drag reductions and

reported good correlation of the k � x model predic-

tions of the mean velocity with the k � e model

simulations of Resende et al. [16]. Further, the

behavior of the k � x model was shown to improve

with increasing elasticity in the intermediate drag

reduction regime, and additionally performed better

with increasing molecular extensibility parameter.

Khezzar et al. [17] numerically studied the steady

laminar fully developed flow of FENE-P fluid in both

circular and non-circular ducts with uniform surface

flux neglecting viscous dissipation effects. They

computed the Nusselt number distribution and con-

firmed that the heat transfer rate is enhanced with

polymer concentration. Recently Masoudian et al. [18]

conducted a DNS study of turbulent heat transfer in

channel flow of homogenous polymer solutions mod-

eled by the FENE-P constitutive equation. They

developed the first RANS model to predict the heat

transfer rates in viscoelastic turbulent flows and

computed velocity and mean temperature profiles

which were in good agreement with the DNS results.

Varagnolo et al. [19] investigated non-Newtonian

drops sliding down a planar surface by considering the

effects of the polymer solution elasticity. They

reported that the drops made of flexible polymers

exhibit unusual stretching in a steady sliding, while in

the case of stiff polymers the elongation is not

observed even at the higher concentrations and this

is attributable to interface bending effects enhanced by

viscosity. Finally, it is important to mention that flow

and heat transfer of the viscoelastic fluids were also

studied for annular and non-circular cross sections in

both straight [20–24] and curved ducts [25–32].
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In present study, the exact analytical solutions for

heat convection in FENE-P fluid flow through isother-

mal tubes and slits are presented for the first time. The

slit temperature profile is obtained in terms of the

Heun function as a closed form solution. The Frobe-

nius method is used to determine the temperature

distribution for the tube flow. The fractional correla-

tions between the reduced Nusselt number and mate-

rial modulus are also derived. The current analysis

strongly indicates that the Frobenius method could be

used to find solutions for other complicated isothermal

systems and alternate viscoelastic fluid models which

would provide a useful benchmark for numerical

computations.

2 Governing equations and constitutive equation

The governing equations for internal heat convection

of viscoelastic flows comprise the continuity, momen-

tum and energy equations:

r: ~V ¼ 0 ð1aÞ

q ~V:r ~V ¼ �r~pþr:~s ð1bÞ

qcp ~V:r~T ¼ kr2 ~T ð1cÞ

where ~V is velocity vector, ~p is pressure, ~T is

temperature, q is density, ~s is stress tensor, cp is

specific heat capacity and k is thermal conductivity

coefficient. The underlying assumptions for the pre-

sent study are summarized as follows. The model

parameters are independent of temperature, the flow is

incompressible, rectilinear, laminar, hydrodynami-

cally and thermally fully-developed, the vicoelastic

fluid is simulated with the FENE-P constitutive

equation in two dimensions, the velocity profile (along

the longitudinal axis) is only dependent on the vertical

side and axial conduction is negligible relative to

radial conduction. In light of these assumptions,

Eq. (1) can be simplified as follows:

d

d~x
~uð~yÞð Þ ¼ 0 ð2aÞ

0 ¼ � d

d~x
~pð~xÞ þ 1

~y j

d

d~y
~y j~sxyð~yÞ
� �

ð2bÞ

~uð~yÞ d
~Tð~yÞ
d~x

¼ a
1

~y j

d

d~y
~y j d

d~y
~Tð~yÞ

� �� �
ð2cÞ

where a is the thermal diffusivity, ~y is profile direction
(it is identical with ~y0 for the slit scenario and ~r for the

tube case) and j equals 0 for slit flow and 1 for tube

flow. Here, the FENE-P model [33] is used as the

constitutive equation to determine the stress tensor.

The FENE-P equation is derived for dilute solutions

but it can be related to semi-dilute solutions which

follow the encapsulated dumbbell model from dilute

fluids to incompressible Newtonian polymers. The

appropriate constitutive equation results from a kinetic

theory derivation using a nonlinear elastic dumbbell

model [34] to represent the polymer molecules in a

dilute solution [35]. In this theory, polymer molecules

are modeled as the dumbbell beads which are

connected to each other via non-Hookean springs.

The parameter a is a constant which can be expressed

through the extensibility parameters, L and b:

a ¼ 1

1� 3=L2
¼ bþ 3

b
: ð3Þ

The FENE-P is one of the rare molecular

constitutive equations that can be used in computa-

tional fluid dynamics and analytical fluid mechanics

since it circumvents the need for statistical averag-

ing at each grid point at any instant in time. This

equation is able to accurately predict both shear-

thinning viscosity and elongational viscosity. The

multi-mode form of this model conforms accurately

to rheological data of dilute polymeric solutions in

oscillation tests. The FENE-P model is also able to

predict the polymer turbulence drag reduction.

However one drawback of the FENE-P model is

that it cannot model the second normal stress

difference. According to Bird [37], this constitutive

equation arises from a simple molecular theory.

However it has furnished a solid platform for

understanding of diverse spectrum of rheological

phenomena in terms of molecular motion.

3 Formulation

As mentioned before, the principal objective of the

current study is to derive, for the first time, exact

closed-form solutions for heat convection in FENE-P

Meccanica (2018) 53:817–831 819

123



fluid flow through tubes and slits. Oliveira [6]

presented an exact analytical solution for the velocity

field of this problem which takes the form:

~uðyÞ
U

¼ b1 1� y2
� �

1þ b2 1þ y2
� �� �

ð4Þ

where ~u is the main flow velocity (axial velocity) and

U is the mean velocity. In Eq. (4), y is dimensionless

profile direction and it is defined as y ¼ ~r=~ro for

tube flow and y ¼ ~y0=H for slit flow (here, ~r is

the radial direction of tube flow, ~ro is the radius of
the tube, ~y0 is the lateral direction in slit flow and

H is the half distance between the two parallel

plates i.e. semi-channel span). The constants b1 and

b2 can be determined from the following relation-

ships [6]:

For slit flow: b1¼
3

2
UN=U; b2 ¼ 9

De2ðUN=UÞ2

a2L2
;

UN ¼ �
~p;~xH

2

3g0
ð5aÞ

For tube flow: b1¼ 2UN=U; k

b2 ¼ 16
De2ðUN=UÞ2

a2L2
; UN ¼ �

~p;~x~r
2
o

8g0
:

ð5bÞ

In Eq. (5), De is the Deborah number which is

defined as De ¼ kU=H for slit flows and De ¼ kU=~ro
for tube flows. Oliveira [6] showed that the velocity

ratio (UN=U) can be calculated from the following

formulation in terms of rheological properties [6]:

UN

U
¼ 4361=6ðd2=3 � 22=3Þ

6v1=2d1=3
ð6Þ

where d is

d ¼ ð4þ 27vÞ1=2 þ 33=2v1=2: ð7Þ

In Eqs. (6) and (7), v is a constant which is

determined from the following equations [6]:

v ¼ 54

5

De2

a2L2
ðslit) & v ¼ 64

3

De2

a2L2
ðtube): ð8Þ

The following dimensionless groups are used to

normalize the problem i.e. render it non-dimensional:

u ¼ ~u

U
; T ¼

~T � ~Tw
~Tm � ~Tw

and Nu ¼ hdh

k

For slit flow: x ¼ ~x

H
; y ¼ ~r

H
; and De ¼ kU

H

For tube flow: x ¼ ~x

~ro
; y ¼ ~r

~ro
; and De ¼ kU

~ro

ð9Þ

where dh is the hydraulic diameter (for tube flow: dh ¼
2~ro & for slit flow: dh ¼ 4H), ~Tm is mean temperature,
~Tw is wall temperature, Nu is the Nusselt number and h

is the convective heat transfer coefficient. In the fully-

developed thermal condition, the axial gradient of

dimensionless temperature is zero [4]:

T;x ¼
~T � ~Tw
~Tm � ~Tw

� �

;x

¼ 0: ð10Þ

The following relation is easily derived from the

expansion of Eq. (10):

~T;~x ¼
~T � ~Tw
~Tm � ~Tw

� �
~Tm
� �

;~x
¼ T ~Tm

� �
;~x
: ð11Þ

Also, the axial mean temperature gradient can be

obtained by means of balancing the energy on a

differential control volume [4]:

hð~Tw � ~TmÞ~Pd~x ¼ q~AUcpd ~Tm

)
For slit flow: ~Tm

� �
;~x
¼ hð~Tw � ~TmÞ

qHUcp

For tube flow: ~Tm
� �

;~x
¼ 2hð~Tw � ~TmÞ

q~roUcp

8
>>><

>>>:

ð12Þ

where ~P and ~A denote the perimeter and area of the

conduit cross-section, respectively. Regarding

Eqs. (2c), (9), (11) and (12), the non-dimensional

form of the heat transfer equation for the FENE-P fluid

flow can be expressed as follows:

T;yy þ
j

y
T;y þ

1

4� 3j
Nu:b1 1� y2

� �

� 1þ b2 1þ y2
� �� 	

T ¼ 0

ð13Þ

where j = 0 and j = 1 correspond to the slit and tube

cases, respectively. The boundary conditions for this

equation consist of a constant wall temperature and a

symmetry condition at the centerline. Also, the finite

value of temperature at the centerline (no singularity
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point in temperature field) can be used as the boundary

condition for only the tube flow case, which is

suitable for eliminating the singular solution from

the final solution of this problem.

at y ¼ 0 ) T;y
¼ 0 or finite/nonsingular solution for tube flowð Þ

ð14aÞ

at y ¼ 1 ) T ¼ 0: ð14bÞ

The boundary value problem defining fully developed

isothermal internal heat convection, which is intro-

duced in Eq. (13) is an eigenvalue differential equa-

tion since both differential equations and boundary

conditions are homogeneous and an unknown constant

(Nu) exists in the equation. Therefore unlike in other

problems of heat convection, it is necessary to

determine a Nusselt number that satisfies the govern-

ing equation and boundary conditions and finally

obtain the temperature distribution (Note- the proce-

dure for obtaining the solution is inverse for other

problems where firstly the temperature distribution is

calculated and secondly the Nusselt number is deter-

mined from the temperature field). In this paper, the

possible value of the Nusselt number is obtained by

modal analysis of Eq. (13) under the boundary

condition introduced in Eq. (14). Due to the homoge-

nous form of the governing equation and boundary

conditions, they are not sufficient to obtain the non-

zero temperature distribution and a non-homogenous

condition or a non-homogeneous constraint is required

to complete the solution. Here, a constraint is

presented by integrating the product of dimensionless

velocity profile (u ¼ ~u=U) into the dimensionless

temperature distribution (T ¼ ð~T � ~TwÞ=ð~Tm � ~TwÞ)
for the entire cross section. The solution of this

integration can be easily calculated as follows:

Z1

0

y juðyÞTðyÞdy ¼ 1

1þ j
: ð15Þ

Using the above constraint, the coefficients of the

solution of Eq. (13) will be calculated and the

temperature distribution will be obtained.

4 Analytical solution of heat convection

4.1 Slit flow

The solution of heat convection of FENE-P fluid flow

in a slit is obtained by solving Eq. (13) and consid-

ering j = 0. The solution of this second order differ-

ential equation can be expressed as follows:

T yð Þ ¼ C1F1ðyÞ þ C
2
F2ðyÞ ð16Þ

where

F1ðyÞ¼ e
1=12

Nu b1y 2 y2b2þ3ð Þffiffiffiffiffiffiffiffiffi
Nu b1b2

p
HeunT 0:13

Nu2b21 2b2þ1ð Þ2

Nub1b2ð Þ4=3
;

 

0;0:72
Nub1

Nub1b2ð Þ2=3
;�0:69

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nub1b2

6
p

y

!

ð17aÞ

F2ðyÞ ¼ e
�1=6

Nu b1y y2b2þ3=2ð Þffiffiffiffiffiffiffiffiffi
Nu b1b2

p
HeunT 0:13

Nu2b21 2b2 þ 1ð Þ2

Nub1b2ð Þ4=3
;

 

0; 0:72
Nub1

Nub1b2ð Þ2=3
; 0:69

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nub1b2

6
p

y

!

ð17bÞ

where HeunT is the Heun Tri-confluent function. A

summary about introducing the hypergeometric func-

tion is provided for readers in Appendix A. In order to

obtain the Nusselt number, we should use the bound-

ary conditions defined in Eq. (14).

at y ¼ 0 ! Ty ¼ 0 : C1F
0
1ð0Þ þ C2F

0
2ð0Þ ¼ 0 ð18aÞ

at y ¼ 1 ! T ¼ 0 : C1F1ð1Þ þ C2F2ð1Þ ¼ 0: ð18bÞ

The above set of equations is homogenous and

therefore its solution will be non-zero if it is linearly

dependent (determinant of Eq. (18) should be equal to

zero):

F0
1ð0Þ F0

2ð0Þ
F1ð1Þ F2ð1Þ

����

���� ¼ 0: ð19Þ

The remaining unknown of Eq. (19) is the Nusselt

number and also Eq. (19) can be expanded as follows:

For any Deborah number and extensibility param-

eter (L), it is possible to determine the constants of

velocity profile (b1 and b2) from Eq. (5). Therefore,
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for known values of b1 and b2, the Nusselt number can

be obtained by calculating the roots of GðNuÞ (This

function is defined in Eq. (20)). For example, the

graph of GðNuÞ versus Nu is plotted in Fig. 1 at De ¼

10 and L2 ¼ 10. For clearer display we present the

distribution of GðNuÞ in three different ranges of Nu.

According to Fig. 1, this function has infinite discrete

roots. According to the scaling law, the Nusselt

number in laminar closed channels is of first order.

This root is specified by a filled square in Fig. 1 and

denotes that Nu = 8.0206.

After determining the Nusselt number, we should

find the remaining constants of C1 and C2 to complete

the solution of heat convection of FENE-P fluid flow

in a slit. Owing to a linear dependence between

Eq. (18a) and (18b), we should use one of them to

determine the constants. The other non-homogenous

equation which is necessary for extracting C1 and C2

can be obtained by substituting Eqs. (4) and (16) into

the Eq. (15) and performing the resulting integration.

In this case (case of Fig. 1), C1 = 0.6788 and

C2 = 0.6792.

4.2 Tube flow

The solution of heat convection of FENE-P fluid flow

inside a circular tube can be obtained by solving

Eq. (13) by substituting j = 1. Unfortunately, there is

no closed form solution for this problem based on the

known mathematical functions. For this reason, the

Frobenius method is used to find the Taylor series

expansion of this problem.

Generally, any second order differential equation

can be specified in the following general form:

PðxÞf 00 þ QðxÞf 0 þ RðxÞf ¼ 0 ð21Þ

where P, Q, and R are the arbitrary polynomials. The

roots of P(x) are the singularity points provided that at

least one of the other polynomials (Q(x) and R(x)) is

non-zero at these roots. Assuming that x0 is a

singularity point, this is designated as a regularFig. 1 Diagrams of G(Nu) versus Nusselt number for an

isothermal slit at L2 ¼ 10 and De ¼ 10

GðNuÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
Nub1

p

4
ffiffiffiffiffi
b2

p

HeunT 0:13
Nu2b21 2b2 þ 1ð Þ2

Nub1b2ð Þ4=3
; 0; 0:72

Nub1
Nub1b2ð Þ2=3

;�0:69
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nub1b2

6
p

 !

e
1=12

Nu b1 2 b2þ3ð Þffiffiffiffiffiffiffiffiffi
Nu b1b2

p
þ

e
�1=12

Nu b1 2 b2þ3ð Þffiffiffiffiffiffiffiffiffi
Nu b1b2

p
HeunT 0:13

Nu2b21 2b2 þ 1ð Þ2

Nub1b2ð Þ4=3
; 0; 0:72

Nub1
Nub1b2ð Þ2=3

; 0:69
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nub1b2

6
p

 !

0

BBBBB@

1

CCCCCA
:

ð20Þ
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singular point provided the following conditions are

satisfied [38]:

lim
x!x0

ðx� x0Þ
QðxÞ
PðxÞ is finite ð22aÞ

lim
x!x0

ðx� x0Þ2
RðxÞ
PðxÞ is finite: ð22bÞ

Based on the conditions presented in Eq. (22), it is

evident that the center of the tube (y ¼ 0) is a regular

singular point of Eq. (13). Therefore, the tube tem-

perature distribution for FENE-P fluid flow can be

derived by applying the Frobenius method on Eq. (13)

with j = 1, as follows:

It is important to remember that the temperature

distribution is finite over the whole of the cross

section. Therefore, based on the Eq. (14a), the term C2

should be zero to remove the singular solution at

r = 0. The Nusselt number can be calculated using the

thermal boundary condition at the wall. By applying

the boundary condition presented in Eq. (14b) on the

temperature distribution, a polynomial in terms of Nu

is obtained. In Appendix B, this polynomial is

presented up to seventh order (refer to Eq. (34)).

According to the scaling law in heat convection, the

Nusselt number in internal laminar flow is of the first

order. Therefore, the first order positive root of

Eq. (34) is the physical Nusselt number of the

FENE-P fluid flow. It is evident that C1 is equal to

the maximum value of dimensionless temperature

since the maximum dimensionless temperature is

located at the center of the tube (r = 0). Therefore,

the temperature distribution of FENE-P fluid flow

inside the isothermal tube, can be presented with

greater accuracy as Eq. (24).

After calculating the Nusselt number from Eq. (34),

the remaining constant of temperature distributions

(C1) can be determined by substitution of Eqs. (4) and

T yð Þ ¼ C1

1� 1

2

Nu

a2L2
ðUN

U
Þ3 ð U

UN

Þ2a2L2 þ 16De2
� �

y2þ

1

32

Nu

a4L4
ðUN

U
Þ6

2Nu þ 4
U

UN

� �
ð U
UN

Þ4a4L4þ

64NuDe2ð U
UN

Þ2a2L2 þ 512NuDe4

0

BBB@

1

CCCA
y4 þ O y6

� �

0

BBBBBBBB@

1

CCCCCCCCA

þ C2

ln yð Þ

1� 1

2

Nu

a2L2
ðUN

U
Þ3 ð U

UN

Þ2a2L2 þ 16De2
� �

y2þ

1

32

Nu

a4L4
ðUN

U
Þ6

2Nu þ 4
U

UN

� �
ð U
UN

Þ4a4L4þ

64NuDe2ð U
UN

Þ2a2L2 þ 512NuDe4

0

BBBB@

1

CCCCA
y4 þ O y6

� �

0

BBBBBBBBB@

1

CCCCCCCCCA

þ 1

2

Nu

a2L2
ðUN

U
Þ3 ð U

UN

Þ2a2L2 þ 16De2
� �

y2

þ 1

8
Nu

UN

U
� 3

64

Nu

a4L4
ðUN

U
Þ6

2Nu þ 4
U

UN

� �
ð U
UN

Þ4a4L4þ

64NuDe2ð U
UN

Þ2a2L2 þ 512NuDe4

0

BBB@

1

CCCA

0

BBB@

1

CCCA
y4 þ O y6

� �

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

ð23Þ
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(24) into the constraint presented in Eq. (15) and by

taking j = 1into account.

In Appendix B, the formulation of this constant

(Tmax) is presented (refer to Eq. (35)).

5 Results and discussion

5.1 Verification

The present analytical solution is verified in two ways:

firstly via comparing the results with the analytical

solution for the Newtonian case and secondly by

comparison with numerical solutions for FENE-P fluid

flow. The FENE-P constitutive equation is reduced to

the Newtonian model by considering De = 0. In this

TðyÞ
Tmax

¼

1� 1

2

Nu

a2L2
ðUN

U
Þ3 ð U

UN

Þ2a2L2 þ 16De2
� �

y2

þ 1

32

Nu

a4L4
ðUN

U
Þ6

2Nu þ 4
U

UN

� �
ð U
UN

Þ4a4L4 þ 64NuDe2ð U
UN

Þ2a2L2þ

512NuDe4

0

BB@

1

CCAy4

� 1

288

Nu
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ðUN

U
Þ9

Nu2 þ 10Nu
U

UN

� �
ð U
UN
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48Nu2De2 þ 160NuDe2
U

UN

� 256De2ð U
UN

Þ2
� �

ð U
UN
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768Nu2De4ð U
UN

Þ2a2L2 þ 4096Nu2De6

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

y6

þ 1

36864

Nu2

a8L8
ðUN

U
Þ12

4Nu2 þ 112Nu
U

UN

þ 144 ð U
UN

Þ2
� �

ð U
UN

Þ8a8L8þ

256Nu2De2 þ 3584NuDe2
U

UN

� 10240De2ð U
UN

Þ2
� �

ð U
UN
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U
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�

163840De4ð U
UN
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0
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condition, the Nusselt number for the present study in

an isothermal slit flow (Eqs. (16) to (20)) is equal to

7.541 which is exactly equal to the Nusselt number

reported in the literature (see for example Bejan [39]).

The Nusselt number of Newtonian fluid flow in the

isothermal tube is reported as around 3.66 in the

literature [4, 39] which is obtained using successive

approximations. Recently, Norouzi and Davoodi [40]

obtained an exact closed form analytical solution for

this problem as follows:

T ¼ 1:09615

r
M0:6761 ; 0 2:7044r2

� �
ð25Þ

whereM is the mth-kind of Whittaker function. Based

on this solution, the Nusselt number and dimension-

less temperature at the center of the tube are Nu0 ¼
3:6568 and Tmax;0 ¼ 1:8026 [40]. It is important to

remember that the solution of heat convection of

FENE-P fluid flow in isothermal tubes is obtained

using Frobenius method. By calculating up to the

eighth order terms in the Frobenius series (Eq. (24))

and considering De = 0, we have Nu = 3.6571 and

Tmax = 1.8025 which shows good agreement with the

results reported by Norouzi and Davoodi [40].

We have further verified the analytical solutions for

heat convection in FENE-P fluid flow by comparing

Fig. 3 Profiles of velocity and temperature of FENE-P fluid in

an isothermal tube at L2 ¼ 10 for different values of Deborah

number. a axial velocity, b temperature and c radial temperature

gradient

Fig. 2 Profiles of velocity and temperature of FENE-P fluid in

an isothermal slit at L2 ¼ 10 for different values of Deborah

number. a axial velocity, b temperature and c lateral temper-

ature gradient
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the results with numerical solutions. The solution of

Eq. (13) can be obtained using second order finite

difference discretization. In the case of tube flow, we

can cancel the singularity situation by avoiding the

term T;y=y at the center of the tube (applying the

boundary condition (14a)). At last, the discretized

form of Eq. (13) for isothermal slits and tubes can be

specified as follows:

AijTj ¼ NuTj ) ðAij � NudijÞTj ¼ 0 ð26Þ

where Aij is the tri-diagonal matrix of coefficients of

discretization and dij is the Kronecker delta. Accord-

ing to the Eq. (26) and scaling law, the Nusselt number

is the first order eigenvalue of Aij. Due to the

symmetric form of Aij, the eigenvalues are obtained

using the Jacoby method [41]. Here, the Nusselt

number is computed using 500 grid points and the

convergence condition of Jacoby method is enforced

by decreasing the value of non-diagonal elements of

the mapped matrix of Aij to less than 10-6. The

maximum deviation of the present analytical solution

for slit and tube flow from the numerical solution is

less than 1.7% at L2\ 100 and De\ 10. This small

deviation could be attributed to the truncation error of

numerical solution and also the truncation of Frobe-

nius series.

Table 2 Nusselt number data for FENE-P fluid flow in an

isothermal tube for different Deborah numbers at three values

of extensibility parameter

De Nu Tmax b1 b2

L2 = 10

0.1 3.6717 1.8048 1.9828 0.0077

1 3.8039 1.8244 1.3550 0.3598

10 4.0517 1.8574 0.3952 3.0609

20 4.0896 1.8616 0.2559 5.1355

30 4.1056 1.8633 0.1975 6.8788

40 4.1148 1.8643 0.1640 8.4357

50 4.1209 1.8649 0.1419 9.8670

60 4.1248 1.8652 0.1260 11.2056

70 4.1286 1.8657 0.1140 12.4716

80 4.1308 1.8658 0.1044 13.6785

90 4.1329 1.8660 0.0967 14.8361

100 4.1348 1.8663 0.0902 15.9516

L2 = 100

0.1 3.6628 1.8034 1.9991 0.0015

1 3.7147 1.8109 1.7397 0.1139

10 3.9851 1.8496 0.6472 1.5762

20 4.0429 1.8564 0.4285 2.7643

30 4.0686 1.8593 0.3335 3.7666

40 4.0834 1.8609 0.2783 4.6630

50 4.0936 1.8620 0.2415 5.4876

60 4.1008 1.8628 0.2149 6.2589

70 4.1064 1.8634 0.1947 6.9887

80 4.1108 1.8639 0.1786 7.6845

90 4.1144 1.8642 0.1655 8.3519

100 4.1174 1.8645 0.1546 8.9951

Table 1 Nusselt number data for FENE-P fluid flow in an

isothermal slit for different Deborah numbers at three values of

extensibility parameter

De Nu C1 C2 b1 b2

L2 = 10

0.1 7.5484 0.6586 0.6586 1.4945 0.0044

1 7.6146 0.6617 0.6706 1.1478 0.2582

10 8.0206 0.6788 0.6792 0.3647 2.6072

20 8.0787 0.6813 0.6810 0.2380 4.4406

30 8.1036 0.6832 0.6806 0.1842 5.9829

40 8.1180 0.6825 0.6829 0.1532 7.3608

50 8.1275 0.6834 0.6825 0.1327 8.6278

60 8.1345 0.6811 0.6858 0.1179 9.8128

70 8.1396 0.6837 0.6832 0.1067 10.9336

80 8.1438 0.6817 0.6859 0.0978 12.0022

90 8.1471 0.6859 0.6813 0.0906 13.0271

100 8.1500 0.6906 0.6763 0.0846 14.0148

L2 = 100

0.1 7.5447 0.0060 - 0.1043 1.5008 0.0008

1 7.5782 0.6607 0.6606 1.3832 0.0720

10 7.9202 0.6749 0.6751 0.5878 1.3004

20 7.9507 0.6595 0.6997 0.3947 2.3455

30 8.0463 0.6797 0.6802 0.3088 3.2304

40 8.0693 0.6813 0.6801 0.2585 4.0227

50 8.0848 0.6807 0.6823 0.2247 4.7520

60 8.0961 0.6825 0.6809 0.2003 5.4344

70 8.1048 0.6830 0.6811 0.1816 6.0801

80 8.1118 0.6814 0.6838 0.1667 6.6959

90 8.1173 0.6824 0.6829 0.1546 7.2866

100 8.1220 0.6840 0.6813 0.1445 7.8560
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5.2 Effect of rheological properties on heat

convection

In this section, the effects of rheological properties

characterizing the FENE-P model (extensibility

parameter and Deborah number) on heat convection

in slit and tube flow are studied. Figures 2 and 3

illustrate the velocity and temperature profiles in

isothermal slit and tube scenarios, respectively. These

diagrams are plotted at L2 ¼ 10 for different values of

Deborah number. It is evident from the plots that

increasing Deborah number tends to increase the

flatness of the velocity profile and decrease the

maximum value of axial velocity. It is also apparent

that the velocity gradient is increased near to the wall.

This can be attributed to an intensification in the shear-

thinning behavior of FENE-P fluid which manifests in

a reduction in fluid viscosity in the vicinity of the wall,

associated with higher Deborah number. The present

solutions are corroborated with similar reports in the

literature [5, 6, 12, 42] which also describe an

accentuation in bluntness of velocity profile connected

with stronger shear-thinning behavior of non-Newto-

nian liquids at greater Deborah number. According to

Figs. 2 and 3, the temperature and Nusselt number are

increased with a rise in Deborah number. This effect is

induced by elevating the velocity gradient near to the

wall. The data of Nusselt number, constants of

temperature formulation (Eq. (16)) and constants of

Table 3 Nusselt number data and constants of temperature

profile for slit and tube flow in terms of De=aL

De=aL Slit Tube

Nu C1 C2 Nu Tmax

0.1 7.6278 0.6615 0.6582 3.7138 1.8104

0.2 7.6613 0.6643 0.6643 3.7923 1.8229

0.3 7.7891 0.6714 0.6601 3.8450 1.8307

0.4 7.8378 0.6748 0.6609 3.8824 1.8359

0.5 7.8756 0.6776 0.6613 3.9121 1.8402

0.6 7.8809 0.6767 0.6658 3.9280 1.8419

0.7 7.8861 0.6754 0.6699 3.9439 1.8436

0.8 7.8914 0.6738 0.6738 3.9598 1.8453

0.9 7.9091 0.6745 0.6747 3.9777 1.8487

1.0 7.9833 0.6868 0.6612 3.9863 1.8494

2.0 8.0102 0.6785 0.6786 4.0449 1.8566

3.0 8.0488 0.6800 0.6800 4.0703 1.8595

4.0 8.0718 0.6810 0.6807 4.0850 1.8611

5.0 8.0848 0.6810 0.6817 4.0935 1.8620

6.0 8.0979 0.6808 0.6833 4.1020 1.8629

7.0 8.1334 0.6810 0.6817 4.1067 1.8634

8.0 8.1690 0.7325 0.6301 4.1113 1.8638

9.0 8.1740 0.7364 0.6267 4.1147 1.8642

10.0 8.1790 0.7431 0.6199 4.1182 1.8646

Fig. 4 Diagram of reduced Nusselt number in an isothermal slit

versus Deborah number for different values of L2

Fig. 5 Diagrams of (a) reduced Nusselt number and (b) ratio of
the maximum temperature of FENE-P fluid flow to the

Newtonian one versus Deborah number for different values of

L2
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a velocity profile for slit flow (Eq. (4)) are presented in

Table 1. These data are obtained for 0\De � 100

and L2 = 10 and 100 which cover a wide range of

realistic rheological properties of viscoelastic liquids.

The corresponding results for tube flow are docu-

mented in Table 2. It is important to remember that the

temperature distribution of FENE-P fluid flow is

obtained using the Frobenius method and a constant

(Tmax) is utilized in the execution of this solution (see

Eq. (24)). The maximum temperature for different

values of Deborah number is reported in Table 3.

According to Tables 2 and 3, by increasing the

Deborah number from 0 to 100, the Nusselt number

is boosted up to 8.5 and 13.5% for the slit and tube flow

cases, respectively.

The reduced Nusselt number is a useful dimen-

sionless group which denotes the difference between

the heat convection of non-Newtonian and Newtonian

flows:

Nur ¼ Nu� Nu0

Nu0
: ð27Þ

Here Nu0 is the Nusselt number of the Newtonian

flow and it is equal to 7.5410 and 3.6568 for isothermal

slit and tube, respectively. The evolution of reduced

Nusselt number with variation in Deborah number for

the slit and tube flow scenarios, respectively, are

illustrated in Figs. 4 and 5. The distribution of

maximum temperature for tube flow is also depicted

in Fig. 5b. According to these plots, the reduced

Nusselt number and Tmax are enhanced asymptotically

by increasing the Deborah number and decreasing the

extensibility parameter. This indicates that a fractional

correlation exists between the reduced Nusselt number

and rheological properties. It is important to remember

that the constants of velocity distribution (b1 and b2)
are dependent on De=aL for both slit and tube flow

(see Eqs. (4) to (8)). Consequently, the temperature

distribution and Nusselt number should likewise be

dependent on this ratio. The results for Nusselt number

corresponding to slit and tube flow and Tmax for tube

flow in terms of De=aL are provided in Table 3. By

applying the fractional curve fitting on this set of data,

we can find the following correlations:

For slit flow:Nur ¼
0:08428De=aL

0:5544þ De=aL
ð28aÞ

For tube flow:Nur ¼
0:1327De=aL

0:5016þ De=aL
&

Tmax

Tmax;0
¼ 1þ 0:03621De=aL

0:4346þ De=aL
:

ð28bÞ

The above correlations are exact for the Newtonian

case and have around 98% confidence forDe=aL� 10.

Using the above correlations, Nu and Tmax can be

calculated and these values are necessary to obtain the

temperature profiles of FENE-P flow in isothermal

slits and tubes.

6 Conclusions

In this article, two exact analytical solutions for heat

convection in FENE-P fluid flow through isothermal

tubes and slits have been presented for the first time.

The closed-form solutions for temperature profiles are

obtained based on the modal analysis technique and by

considering the scaling law in heat convection. Two

fractional correlations for the Nusselt number of slit

flow and tube flow are derived in terms of Deborah

number and extensibility parameter, key rheological

parameters associated with the FENE-P model. It is

shown that an increase in the Deborah number and

decrease in the extensibility parameter result in an

asymptotic increase in the Nusselt number and tem-

perature in the core flow region. It is also found that the

Nusselt number and temperature distributions of

FENE-P flow are dependent on De/aL. The present

method of solution shows significant promise for

determining exact solutions for other complicated

isothermal systems and fluids described by alternate

viscoelastic constitutive equations.

Appendix A: Heun functions

Heun functions are one of the closed form solutions for

particular ODEs in mathematics and there are four

standard forms, namely HeunB, HeunC, HeunD and

HeunT which correspond to Biconfluent, Confluent,

Doubleconfluent and Triconfluent Heun equations.

HeunT function is the solution for the linear differen-

tial equation of second order given by:
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d2

dy2
f ðyÞ � 3y2 þ c

� � d

dy
f ðyÞ � �bþ 3ð Þy� að Þf ðyÞ

¼ 0

ð29Þ

in which all of the four parameters, a; b; c; yð Þ, are
algebraic expressions. By solving the Eq. (29) the

closed form solution (HeunT) would be derived as

follows:

f ðyÞ ¼ C1HeunT a; b; c; yð Þ
þ C2HeunT a;�b; c;�yð Þeyðy2þcÞ: ð30Þ

Now based on the boundary conditions introduced

in Eqs. (31) and (32), the second term in Eq. (30) will

vanish, so that Eq. (30) will be simplified to the one

given by Eq. (33).

at y ¼ 0 ) f;y ¼ 0 ð31Þ

at y ¼ 0 ) f ¼ 0 ð32Þ

f ðyÞ ¼ C1HeunT a; b; c; yð Þ: ð33Þ

Furthermore, the HeunT function could be written

in the series solution form. Since the single singularity

is located at infinity, this series converges into the

entire complex plane. The Handbook of Mathematical

functions prepared by the National Institute of Stan-

dards and Technology (NIST), Maryland, USA, is an

excellent reference for Heun functions.

Appendix B: The Nusselt number and constants

of temperature profile

In this section, the polynomial equation of the Nusselt

number of FENE-P flow in an isothermal tube has

been presented. This polynomial is obtained by

applying the boundary condition (14b) to Eq. (24)

and considering C2 = 0. According to the scaling law

in heat convection, the Nusselt number is the first

order root of the following algebraic equation:
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The nonzero constant of temperature distribution

(C1) can be determined using the constraint presented

in Eq. (15), for j = 1, as follows:

C�1
1 ¼ T�1

max ¼
4096
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