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Abstract Closed-form representations are obtained

using an extension of the classical continuous dislo-

cation layer method combined with a method of

images for the components of the phonon and phason

stress and electric displacement fields around a

generally loaded strip crack in a half-space of one-

dimensional hexagonal piezoelectric quasicrystalline

material parallel to its free surface. Representative

numerical data are presented graphically.
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1 Introduction

Quasicrystals form an unusual class of previously

unencountered quasiperiodic metallic alloys that dis-

play non-classical rotational symmetry and quasiperi-

odic translational symmetry. Since Shechtman et al.

[1] first widely revealed in 1984 their discovery, there

has been a fascination with investigating both exper-

imentally and theoretically the characteristics of their

mechanically, electrically, thermally, magnetically

and optically dependent behaviour. This interest is

increasingly being motivated by the ever-expanding

technological exploitation within, for example, the

aerospace, automobile and nuclear fuel industries of

their most desirable properties.

The novel modern transducers, sensors, attenuaters

and transducers that are being developed in signal

processing seek to advantageously incorporate the

underlying coupling effects of piezoelectricity in

quasicrystals.

As quasicrystals have been shown experimentally

to be intrinsically quite brittle and thus prone to

premature failure, it is important to study extensively

the behaviour of cracks and flaws within them.

Quite shortly after quasicrystals were discovered,

the basic mathematical equations governing the linear

elasticity theory of quasicrystals became well estab-

lished and analyses of boundary value problems in

them, including various configurations of cracks,

continue to be published. Convenient comprehensive

reviews of, and references to, this literature have been

given by Ding et al. [2], Fan [3, 4], Fan et al. [5], Guo

et al. [6], Sladek et al. [7], Sladek et al. [8], Li [9],

Tupholme [10], and Sladek et al. [11], for example.

Yadav [12] provided a useful summary of the 56

presentations given at the 13th International Confer-

ence on Quasicrystals (ICQ13), which was held

recently in Nepal.

The corresponding general three-dimensional fun-

damental mathematical equations of the piezoelec-

tricity of quasicrystals were investigated in both

differential and variationally invariant forms by Altay
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and Dökmeci [13]. Thereafter, increasingly attention

has been devoted to the development of techniques for

studying boundary value problems in piezoelectric

quasicrystals.

Closed-form expressions for the components of the

electroelastic fields created by a screw dislocation

uniformly moving in a one-dimensional hexagonal

piezoelectric quasicrystal with point group 6mm were

derived by Wang and Pan [14] with the aid of the

fundamental results of the study by Li and Liu [15] of

the character formulae of the matrices representing the

physical property tensors of one-dimensional qua-

sicrystals with piezoelectric effects. Further, the

elastic-electric fields of a straight stationary disloca-

tion parallel to the periodicity axis of a one-dimen-

sional piezoelectric quasicrystal were studied both

analytically and numerically by Yang et al. [16] using

the Stroh generalized formalism. Li et al. [17]

rigorously applied operator theory and introduced

two displacement functions to obtain a set of general

three-dimensional solutions to facilitate the investiga-

tion of boundary value problems in hexagonal piezo-

electric quasicrystals. The general solution of the

governing equations of plane elasticity in one-dimen-

sional orthorhombic piezoelectric quasicrystals was

established by Zhang et al. [18] in terms of four

potential functions. The fundamental equations of

plane problems in the piezoelasticity of quasicrystals

have been solved generally for all point groups by Yu

et al. [19] using complex variable functions and

operator techniques. An application of the semi-

inverse method enabled them to then study the fields

near the tip of a mode III uniformly-loaded motionless

loaded Griffith crack in hexagonal piezoelectric qua-

sicrystals. In addition, with the aid of a Stroh-type

formalism and complex functions, Yu et al. [20]

considered a remotely loaded anti-plane elliptical

cavity in one-dimensional hexagonal piezoelectric

quasicrystals. The internal and interfacial Green’s

functions of quasicrystalline bi-materials with piezo-

electric effects under the influence of line forces or

dislocations were obtained by Zhang et al. [21].

Further papers involving one-dimensional hexago-

nal quasicrystals with piezoelectic effects appeared in

2016–2017. Yang and Li [22] presented analytical

solutions for the field components created by a circular

hole with an embedded straight crack by means of

complex variable functions with conformal mappings

and Fan et al. [23] established solutions for three-

dimensional cracks in terms of unit point phonon and

phason displacement and electric potential disconti-

nuities and boundary integral equations for an arbi-

trarily-shaped planar crack were deduced. A

composite matrix with an embedded elliptical inclu-

sion was studied by Guo et al. [24] using complex

variable and conformal mappings methods. Guo and

Pan [25] proposed and analyzed a three-phase model

of one-dimensional hexagonal piezoelectric qua-

sicrystal composites. Expressions in closed-form for

the mechanical and electric fields around an anti-plane

non-uniformly loaded moving crack were given by

Tupholme [26]. Most recently, Yang et al. [27] applied

the methods of the Stroh-type formalism with confor-

mal mappings in studying the antiplane problem of an

ellipsoidal inclusion with two impermeable edge

cracks.

Further demonstrations of the wider continuing

interest in quasicrystal are provided by investigations

of the behaviour of thermal effects within them. For

example, Guo et al. [28] studied two-dimensional

thermoelastic deformations of a conductive elliptical

hole embedded within a two-dimensional decagonal

quasicrystal and Fan et al. [29] used extended

displacement discontinuities (EDD) with the EDD

boundary integral equation method to analyze cracks

in one-dimensional thermal hexagonal quasicrystals.

But no study at all by any technique has appeared of

the physically interesting situation of a non-uniformly

generally loaded anti-plane crack in a half-space of a

piezoelectric quasicrystal. The objective of the current

consideration is to give a brief explanation of how the

basic technique of dislocation layers that was devel-

oped originally for classical isotropic elastic media

can be extended in conjunction with a method of

images to study the fields’ components of such a crack.

In Sect. 2, a summary is first presented of the

underpinning general quasistatic three-dimensional

equations governing the deformation of piezoelectric
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quasicrystals. The geometry and specification of the

physical crack problem being studied here and the

particular constitutive equations of one-dimensional

hexagonal piezoelectric quasicrystals with point group

6mm are formulated. The underlying properties of a

piezoelectric quasicrystal screw dislocation are then

described in Sect. 3. The required extension of the

original dislocation layer method together with a

method of images is used in Sect. 4 to derive and solve

the singular integral equations which govern the

necessary density functions. From these, expressions

are deduced and discussed in Sect. 5 for the compo-

nents of the phonon and phason stresses and the

electric displacement. Representative numerical

results are presented graphically to illustrate the

effects of the distance of the crack from the free

surface. Finally, the main features of this investigation

are summarized in the concluding Sect. 6.

2 Governing equations of a piezoelectric

quasicrystal and specification of the crack

problem

Within the framework of the linear theory of piezo-

electric quasicrystals, Altay and Dökmeci [13] have

presented and discussed in both differential and

variational invariant forms the general three-dimen-

sional equations which govern the deformation fields’

components. The general quasistatic equilibrium

equations in the absence of any body forces or electric

charge densities and the constitutive equations can be

written concisely, respectively, in the forms

rij;i ¼ 0; Hij;i ¼ 0; Di;i ¼ 0 ; ð1Þ

rij ¼ cijklðuk;l þ ul;kÞ=2þ Rijklwk;l � ekijEk; ð2Þ

Hij ¼ Rklijðuk;l þ ul;kÞ=2þ Kijklwk;l � e0kijEk; ð3Þ

Di ¼ ekijðuj;k þ uk;jÞ=2þ e0kijwj;k � eijEj; ð4Þ

relative to a fixed system of rectangular Cartesian

coordinates ðx1; x2; x3Þ. Here the compact repeated

summation convention over the suffices i, j, k, l = 1, 2,

3 is utilized and partial differentiation with respect to

xp for p = i, j, k, l is indicated by a comma followed by

p. The phonon stress and displacement, the phason

stress and displacement and the electric displacement

and field have components that are denoted by rij, ui,

Hij, wi, Di and Ei, respectively, and the phonon elastic

constants, the phonon-phason coupling constants, the

phason elastic constants, the phonon and phason

piezoelectric constants and the dielectric constants,

respectively, are represented by cijkl, Rijkl,Kijkl, eijk, e
0
ijk

and eij.
Here the mode III fracture problem of a non-

uniformly loaded strip crack of Griffith type which is

embedded within a half-space of one-dimensional

hexagonal piezoelectric quasicrystalline material with

point group 6mm is considered. In its initial natural

reference state, the homogeneous material is every-

where at rest and unstressed. Relative to a fixed system

of rectangular Cartesian coordinates (x, y, z), the

positive z-axis is in the direction of its quasiperiodicity

and in the x–y plane it is periodic.

The stationary crack is assumed to be of width 2c

and a distance l from the load-free surface y ¼ 0 in the

region L1 of the x-z plane defined by

L1 ¼ ðx; y; zÞ : �c\ x\c; y ¼ l; �1\ z\1f g;
ð5Þ

as depicted in Fig. 1.

The medium is subjected to an antiplane mode III

deformation by applying symmetrically non-uniform

phonon and phason mechanical and electrical loads to

the two crack faces.

For such a hexagonal piezoelectric quasicrystal, the

constitutive Eqs. (2)–(4) connecting the created com-

ponents rXY , eXY and uX of the phonon stress and strain
tensors and displacement vector, HzX , wzX and wX of

the phason stress and strain tensors and displacement

vector, andDX and EX of the electric displacement and

field vectors, for X and Y = x, y or z, can be written in

matrix form as

2c

y

l

x0

Fig. 1 A loaded shear crack in a half-space of a piezoelectric

quasicrystal
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with

eXY ¼ 1

2

ouX

oY
þ ouY

oX

� �
; wzX ¼ owz

oX
: ð8Þ

In the customary contracted notation of Voigt, the

constants involved are the phonon elastic moduli, cij,

the phason elastic moduli, Ki, the phonon-phason

coupling elastic moduli, Ri, the piezoelectric moduli,

eij and e0ij, and the dielectric moduli, eij, with i and j

taking integer values, and the electric field vector, E,

can be expressed in terms of the electric potential, /,
with the relation

E ¼ �r/: ð9Þ

The representative general boundary conditions

considered here are that

ryzðx; yÞ ¼ TðxÞ; Hzyðx; yÞ ¼ HðxÞ;
Dyðx; yÞ ¼ DðxÞ on L1

ð10Þ

where TðxÞ, HðxÞ and DðxÞ are prescribed functions,

with the plane surface y ¼ 0 remaining free of stress

and electrically insulated, so that

ryzðx; 0Þ ¼ 0; Hzyðx; 0Þ ¼ 0; Dyðx; 0Þ ¼ 0:

ð11Þ

Alternatively, an interested reader can develop the

analyses corresponding to those below for analogous

antiplane deformations when instead any desirable

combinations of three of the components

ryz; eyz; Hzy; wzy; Dy; or Ey are prescribed.

It is interesting to observe here that substantial

exciting applications of quasicrystals are continually

being developed, but as yet it is unclear how phason

loads can be actually physically applied. For example,

Sladek et al. [7] mentioned that ‘‘… a physical

interpretation on these phason forces is still missing

…’’. Similarly Li [9] discussed this and observed that

‘‘Although no experiments have reported yet on how

to impose the phason loads, within the theory of

elasticity of QC …, however, traction in the phason

field must exist on the boundary of a QC, from a

theoretical point of view’’.

All the field components are independent of z in

these antiplane deformations. Therefore the compo-

nents uz and wz of the phonon and phason displace-

ments, respectively, are related to the relevant non-

zero components of the phonon and phason strains by

the expressions

rxx
ryy
rzz
ryz
rxz
rxy
Hzz

Hzx

Hzy

2
6666666666664

3
7777777777775

¼

c11 c12 c13 0 0 0 R1 0 0

c12 c11 c13 0 0 0 R1 0 0

c13 c13 c33 0 0 0 R2 0 0

0 0 0 2c44 0 0 0 0 R3

0 0 0 0 2c44 0 0 R3 0

0 0 0 0 0 c11 � c12 0 0 0

R1 R1 R2 0 0 0 K1 0 0

0 0 0 0 2R3 0 0 K2 0

0 0 0 2R3 0 0 0 0 K2

2
6666666666664

3
7777777777775

exx
eyy
ezz
eyz
exz
exy
wzz

wzx

wzy

2
6666666666664

3
7777777777775

�

0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0

0 0 0

0 0 e033
e015 0 0

0 e015 0

2
6666666666664

3
7777777777775

Ex

Ey

Ez

2
4

3
5; ð6Þ

Dx

Dy

Dz

2
4

3
5 ¼

0 0 0 0 2e15 0 0 e015 0

0 0 0 2e15 0 0 0 0 e015
e31 e31 e33 0 0 0 e033 0 0

2
4

3
5

exx
eyy
ezz
eyz
exz
exy
wzz

wzx

wzy

2
666666666664

3
777777777775

þ
e11 0 0

0 e11 0

0 0 e33

2
4

3
5 Ex

Ey

Ez

2
4

3
5: ð7Þ

976 Meccanica (2018) 53:973–983

123



exz ¼
1

2

ouz

ox
; eyz ¼

1

2

ouz

oy
; ð12Þ

wzx ¼
owz

ox
; wzy ¼

owz

oy
; ð13Þ

and, from Eqs. (6) and (7), the generalized Hooke’s

laws that are required become

rxz ¼ 2 c44 exz þ R wzx � e15Ex;

ryz ¼ 2 c44 eyz þ R wzy � e15Ey;
ð14Þ

Hzx ¼ 2 R exz þ K wzx � e015Ex;

Hzy ¼ 2 R eyz þ K wzy � e015Ey;
ð15Þ

Dx ¼ 2e15 exz þ e015 wzx þ e11Ex;

Dy ¼ 2e15 eyz þ e015 wzy þ e11Ey;
ð16Þ

where, here and henceforth, in the interests of brevity

of presentation, R and K, are utilized as abbreviations

for the constants R3 and K2.

3 A screw dislocation in a piezoelectric

quasicrystal

As a preliminary, it is convenient to provide the

foundations for analyzing this antiplane crack problem

by outlining the main features of the fields created by a

‘‘piezoelectric quasicrystal screw dislocation’’ in an

infinite piezoelectric quasicrystal.

The Burgers vector of the originally conceived

screw dislocation of a purely linearly elastic solid is

extended to a piezoelectric quasicrystalline material

by incorporating a slip plane across which there are

finite discontinuities of magnitudes b, d and b4 in the

phonon displacement component, the phason dis-

placement component and the electric potential; uz, wz

and /, respectively.
It can be deduced from the more general results of

Wang and Pan [14] for a moving dislocation of this

type that the expressions for the phonon and phason

displacement components and electric potential

around a stationary straight dislocation which is

situated at the origin parallel to the z-axis in an infinite

region of a one-dimensional hexagonal piezoelectric

quasicrystal with point group 6mm are

uIIIz ðx; yÞ ¼ b

2p
tan�1 y

x

� �
; wIII

z ðx; yÞ ¼ d

2p
tan�1 y

x

� �
;

/IIIðn; yÞ ¼ b4

2p
tan�1 y

x

� �
;

ð17Þ

with the field quantities related to a mode III

deformation indicated by the III superscript, here

and subsequently.

Consequently, by recalling Eqs. (14)–(16), it fol-

lows that the required non-zero phonon and phason

stress and electric displacement components have the

forms

rIIIxz ðx; yÞ ¼ � c44bþ Rd þ e15b4

2p
y

x2 þ y2
;

rIIIyz ðx; yÞ ¼
c44bþ Rd þ e15b4

2p
x

x2 þ y2
;

ð18Þ

HIII
zx ðx; yÞ ¼ �Rbþ Kd þ e015b4

2p
y

x2 þ y2
;

HIII
zy ðx; yÞ ¼

Rbþ Kd þ e015b4
2p

x

x2 þ y2
;

ð19Þ

DIII
x ðx; yÞ ¼ � e15bþ e015d � e11b4

2p
y

x2 þ y2
;

DIII
y ðx; yÞ ¼ e15bþ e015d � e11b4

2p
x

x2 þ y2
:

ð20Þ

4 Analysis by extension of the dislocation layer

technique and the solution of the governing

singular integral equations

The underlying procedure of the ‘dislocation layer

technique’ is based upon the original recognition for a

solely elastic material that the field around a strip

crack is equivalent to that of a suitable continuously-

spread array of elastic dislocations, as conveniently

described by, for example, Lardner [30] and Bilby and

Eshelby [31]. This classical method is here extended

using appropriate distributions of piezoelectric qua-

sicrystal screw dislocations alongside the technique of

images.
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For the boundary conditions (11) to be maintained,

it is necessary to distribute dislocations not only over

the region L1 but also to consider a similar distribution

over its image region L2 given by

L2 ¼ ðx; y; zÞ : �c\ x\ c; y ¼ �l; �1\ z\1f g:
ð21Þ

If the density functions of the appropriate discon-

tinuities in the components of the phonon and phason

displacements and the electric potential of the dislo-

cations are taken to be f ðiÞðxÞ, gðiÞðxÞ and f
ðiÞ
4 ðxÞ on Li,

for i = 1, 2, then Eqs. (18)–(20) yield the correspond-

ing components of their fields at a general point (x, y)

as

with the lines L1 and L2 integrated from x0 ¼ �c to

x0 ¼ c.

It can be seen from Eqs. (23), (25) and (27) that the

boundary conditions (11) imposed on the surface y ¼ 0

are met if

f ð1Þðx0Þ ¼ �f ð2Þðx0Þ; gð1Þðx0Þ ¼ �gð2Þðx0Þ;
f
ð1Þ
4 ðx0Þ ¼ �f

ð2Þ
4 ðx0Þ;

ð28Þ

and clearly therefore, by observing Eqs. (10),

ryzðx; yÞ ¼ �TðxÞ;Hzyðx; yÞ ¼ �HðxÞ;
Dyðx; yÞ ¼ �DðxÞ; on L2:

ð29Þ

rxzðx; yÞ ¼ � 1

2p

Z
L1

c44bf
ð1Þðx0Þ þ Rdgð1Þðx0Þ þ e15b4 f

ð1Þ
4 ðx0Þ

h i
ðy� lÞ

ðx� x0Þ2 þ ðy� lÞ2
dx0

8<
: þ

Z
L2

c44bf
ð2Þðx0Þ þ Rdgð2Þðx0Þ þ e15b4 f

ð2Þ
4 ðx0Þ

h i
ðyþ lÞ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð22Þ

ryzðx; yÞ ¼
1

2p

Z
L1

c44bf
ð1Þðx0Þ þ Rdgð1Þðx0Þ þ e15b4 f

ð1Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðy� lÞ2

8<
: dx0þ

Z
L2

c44bf
ð2Þðx0Þ þ Rdgð2Þðx0Þ þ e15b4 f

ð2Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð23Þ

Hzxðx; yÞ ¼ � 1

2p

Z
L1

Rbf ð1Þðx0Þ þ Kdgð1Þðx0Þ þ e015b4 f
ð1Þ
4 ðx0Þ

h i
ðy� lÞ

ðx� x0Þ2 þ ðy� lÞ2

8<
: dx0þ

Z
L2

Rbf ð2Þðx0Þ þ Kdgð2Þðx0Þ þ e015b4 f
ð2Þ
4 ðx0Þ

h i
ðyþ lÞ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð24Þ

Hzyðx; yÞ ¼
1

2p

Z
L1

Rbf ð1Þðx0Þ þ Kdgð1Þðx0Þ þ e015b4 f
ð1Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðy� lÞ2

8<
: dx0þ

Z
L2

Rbf ð2Þðx0Þ þ Kdgð2Þðx0Þ þ e015b4 f
ð2Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð25Þ

Dxðx; yÞ ¼ � 1

2p

Z
L1

e15bf
ð1Þðx0Þ þ e015dg

ð1Þðx0Þ � e11b4 f
ð1Þ
4 ðx0Þ

h i
ðy� lÞ

ðx� x0Þ2 þ ðy� lÞ2

8<
: dx0þ

Z
L2

e15bf
ð2Þðx0Þ þ e015dg

ð2Þðx0Þ � e11b4 f
ð2Þ
4 ðx0Þ

h i
ðyþ lÞ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð26Þ

Dyðx; yÞ ¼
1

2p

Z
L1

e15bf
ð1Þðx0Þ þ e015dg

ð1Þðx0Þ � e11b4 f
ð1Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðy� lÞ2

8<
: dx0þ

Z
L2

e15bf
ð2Þðx0Þ þ e015dg

ð2Þðx0Þ � e11b4 f
ð2Þ
4 ðx0Þ

h i
ðx� x0Þ

ðx� x0Þ2 þ ðyþ lÞ2
dx0

9=
;;

ð27Þ
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Expressions for appropriate complex combinations

of the field components (22)–(27) can now be written

most elegantly in terms of complex variables in the

concise forms

UðfÞ ¼ bc44

2p

Z
L

f ðf0Þ
f� f0

df0 þ dR

2p

Z
L

gðf0Þ
f� f0

df0

þ b4e15

2p

Z
L

f4ðf0Þ
f� f0

; ð30Þ

WðfÞ ¼ bR

2p

Z
L

f ðf0Þ
f� f0

df0 þ dK

2p

Z
L

gðf0Þ
f� f0

df0

þ b4e
0
15

2p

Z
L

f4ðf0Þ
f� f0

;

ð31Þ

U4ðfÞ ¼
be15

2p

Z
L

f ðf0Þ
f� f0

df0 þ de015
2p

Z
L

gðf0Þ
f� f0

df0

� b4e11
2p

Z
L

f4ðf0Þ
f� f0

;

ð32Þ

with L ¼ L1 [ L2 and

UðfÞ ¼ ryz þ irxz
� �

ðf¼xþiyÞ;

WðfÞ ¼ Hzy þ iHzx

� �
ðf¼xþiyÞ;

U4ðfÞ ¼ Dy þ iDx

� �
ðf¼xþiyÞ;

ð33Þ

where

f0 ¼ xþ iy; f0 ¼ x0 þ ‘ on L1;
x0 � i‘ on L2;

�
ð34Þ

and

f ðf0Þ ¼ f ð1Þðx0Þ on L1;

f ð2Þðx0Þ on L2;

(

gðf0Þ ¼ gð1Þðx0Þ on L1;

gð2Þðx0Þ on L2;

(

f4ðf0Þ ¼
f
ð1Þ
4 ðx0Þ on L1;

f
ð2Þ
4 ðx0Þ on L2:

(
ð35Þ

In accordance with the Plemelj formulae (see, for

example, Plemelj [32], Muskhelishvili [33] and Lard-

ner [30]), the improper integrals in Eqs. (30)–(32)

need to be given their Cauchy principal value integral

interpretations.

The system (30)–(32) of coupled equations can be

solved to render ultimately three singular integral

equations for the density functions f ðfÞ, gðfÞ and f4ðfÞ
which after extensive manipulation and simplification

become

1

2p

Z
L

f ðf0Þ
f� f0

df0 ¼ 1

be11ðc44K � R
2Þ

e11KUðfÞ
	

�e11RWðfÞ þ ðKe15 � Re015ÞU4ðfÞ


;

ð36Þ

1

2p

Z
L

gðf0Þ
f� f0

df0 ¼ � 1

de11ðc44K � R
2Þ

e11RUðfÞ
	

�e11c44WðfÞ � ðc44e015 � Re15ÞU4ðfÞ


;

ð37Þ

1

2p

Z
L

f4ðf0Þ
f� f0

df0 ¼ 1

b4e11ðc44K � R
2Þ

� ðKe15 � Re015ÞUðfÞ þ ðc44e015 � Re15ÞWðfÞ
	

�ðc44K � R2ÞU4ðfÞ


;

ð38Þ

with the piezoelectrically stiffened elastic constants

in the phonon and phason fields, c44 and K , and

the piezoelectrically stiffened phonon-phason cou-

pling elastic constant, R , respectively, given by

c44 ¼ c44 þ
e215
e11

; K ¼ K þ e
02
15

e11
;

R ¼ Rþ e15 e
0
15

e11
:

ð39Þ

The intricacies of the extensions of the underlying

techniques of Gakhov [34], Mikhlin [35] and Muskhe-

lishvili [33], as used by Tupholme [36] in the simpler

analogous elastic isotropic situation, which are nec-

essary to solve the governing Eqs. (36)–(38) are

omitted here in the interest of conciseness. But it can

be shown that with

SþðfÞ ¼

�ðc2� x2Þ
1
2 c2�ðxþ 2ilÞ2
n o1

2

;
for f on L1

ðc2� x2Þ
1
2 c2�ðx� 2ilÞ2
n o1

2

; for f on L2

8>>>>><
>>>>>:

ð40Þ
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the solutions can be expressed as

f ðfÞ ¼ 2

pbe11ðc44K � R
2Þ SþðfÞ

�
Z
L

Sþðf0Þ
f0 � f

e11KTðf0Þ � e11RHðf0Þ
	

þðKe15 � Re015ÞDðf
0Þ


df0;

ð41Þ

gðfÞ ¼ � 2

pde11ðc44K � R
2Þ SþðfÞ

�
Z
L

Sþðf0Þ
f0 � f

e11RTðf0Þ � e11c44Hðf0Þ
	

�ðc44e015 � Re15ÞDðf0Þ


df0;

ð42Þ

f4ðfÞ ¼ 2

pb4e11ðc44K � R
2Þ SþðfÞ

�
Z
L

Sþðf0Þ
f0 � f

ðKe15 � Re015ÞTðf
0Þ

	

þðc44e015 � Re15ÞTðf0Þ�ðc44K � R2ÞHðf0Þ


df0:

ð43Þ

5 Distributions of the phonon and phason stresses

and the electric displacement

Having determine the necessary density functions, the

expressions (41)–(43) can now be substituted into

Eqs. (30)–(32) to yield closed-form representations

for the complex combinations (33) of the phonon and

phason stress and electric displacement components.

The orders of integration of the resultant repeated

integrals can be interchanged and, by using the residue

theorem of Cauchy to evaluate the inner integrals, they

reduce to the concise simplified forms

ryz þ irxz
� �

ðf¼xþiyÞ¼ CðTÞ;

Hzy þ iHzx

� �
ðf¼xþiyÞ¼ CðHÞ;

Dy þ iDx

� �
ðf¼xþiyÞ¼ CðDÞ: ð44Þ

Here the function C is defined for F ¼ T ; H and D

by

CðFÞ ¼ � i

p f� ð�cþ ilÞf g f� ðcþ ilÞf g½ �
1
2

� 1

ff� ð�c� ilÞgff� ðc� ilÞg½ �
1
2

Z c

�c

c2 � x02
� �1

2Fðx0Þ

�
c2 � ðx0 þ 2ilÞ2

n o1
2

x� x0 þ iðy� lÞ þ
c2 � ðx0 � 2ilÞ2

n o1
2

x� x0 þ iðyþ lÞ

2
64

3
75dx0;

ð45Þ

with all the square roots that occur interpreted when

x or x0 is zero as having real and positive values. These
explicit representations enable the general behaviour

of the components to be studied.

However, it is particularly of interest practically to

consider the variations of the components’ magnitudes

with the distance q and the angle w near the tip of the

crack which are related by

f ¼ ðcþ ilÞ þ qeiw ð46Þ

with q � c. It follows by the substitution of the

relation (46) into the expression (45), with the

branches selected appropriately, that as q ? 0

CðFÞ½ �ðnear cþilÞ� � i

2p
e�iw=2

ð2cqÞ
1
2ðilÞ

1
2ðcþ ilÞ

1
2

�
Z c

�c

c2 � x02
� �1

2Fðx0Þ

�
c2 � ðx0 þ 2ilÞ2

n o1
2

c� x0
þ

c2 � ðx0 � 2ilÞ2
n o1

2

c� x0 þ 2il

2
64

3
75dx0:

ð47Þ

This demonstrates that all the field components are

governed by a 1=
ffiffiffi
q

p
crack-tip behaviour, as exhibited

near the tip of a crack within an isotropic purely elastic

medium. Moreover, it can be noted from Eqs. (41)–

(43) that the density functions all depend not only

upon the geometrical parameters, c and l, and the

piezoelectric quasicrystal material constants but also

upon the imposed loadsTðxÞ,HðxÞ andDðxÞ. However,
in contrast, clearly from Eq. (45) the components in

Eq. (44) of the phonon stress, phason stress and

electric displacement are decoupled and depend solely

on the respective loads TðxÞ,HðxÞ and DðxÞ, as well as
the geometric parameters, c and l, and not on the

values of the material constants.
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Further, taking the limit as l?? of the expression

(47) shows that then close to the crack tip at x = c

ryz �
KTffiffiffi
q

p cos
w
2

� �
; rxz � � KTffiffiffi

q
p sin

w
2

� �
; ð48Þ

Hzy �
KHffiffiffi
q

p cos
w
2

� �
; Hzx � � KHffiffiffi

q
p sin

w
2

� �
; ð49Þ

Dy �
KDffiffiffi
q

p cos
w
2

� �
; Dx � � KDffiffiffi

q
p sin

w
2

� �
; ð50Þ

as q ? 0, where the phonon and phason stress and

electric displacement intensity factors,KT,KH andKD,

are defined analogously to that at the tip of an isotropic

elastic strip-like crack, for F ¼ T; H and D, by

KF ¼ � 1

p
ffiffiffiffiffi
2c

p
Z c

�c

cþ x0

c� x0

� �1
2

Fðx0Þdx0: ð51Þ

These do attain agreement, in the stationary limit,

with the general results derived by Tupholme [26] for

a moving shear crack in an infinite one-dimensional

hexagonal piezoelectric quasicrystal.

The representations (44)with (47) are convenient for

the evaluation numerically using mathematical com-

puter software of the field components near the crack tip

for specified forms of the loads TðxÞ,HðxÞ and DðxÞ, as
desired. But, for illustration, attention is restricted here

to the situation normally considered in the literature of

fracture in which TðxÞ ¼ T; HðxÞ ¼ H and DðxÞ ¼ D

for constants T; H and D. The non-dimensional

T

Fig. 3 Variation of �rxzðx; lÞ=T with x=c for a range of l=c

T

Fig. 2 Variation of �ryzðx; lÞ
�
T with x=c for a range of l=c
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variations with x=c of �ryzðx; lÞ
�
T and �rxzðx; lÞ=T

for a range of values of l=c are presented graphically in

Figs. 2 and 3, respectively. Because of the previously-

noted decoupling in Eqs. (44), the curves depicting the

corresponding variations of �Hzyðx; lÞ
�
T and

�Dyðx; lÞ=D are the same as those in Fig. 2, and

likewise those of �Hzxðx; lÞ=H and �Dxðx; lÞ=D are

as in Fig. 3.

For a fixed width, 2c, of the crack, it can be

observed that ryz and rxz both have magnitudes which

decrease as the distance l from the crack to the free

surface is increased for a fixed value of x, and similarly

for a fixed value of l as x is increased.

Finally, it is noteworthy that fromEqs. (32) and (33),

it can be observed that the analysis above would not be

valid if c44K � R
2 ¼ 0. The data values reported for

the piezoelectric quasicrystal material moduli are not

yet fully reliable. But c44 ¼ 5:0� 1010 Nm�2,

R ¼ 1:2� 109 Nm�2, K ¼ 3:0� 108 Nm�2,

e15 ¼ � 0:138 cm�2, e015 ¼ � 0:160 cm�2 and

e11 ¼ 82:6� 10�12 C2N�1m�2 are suggested by Li

et al. [17] as being typical. With this, R
2
is thus much

smaller than the product of c44 and K, so that c44K �
R
2
is not zero.

6 Conclusions

In this paper the components of the deformed fields

around a mode III, non-constantly loaded, Yoffe-type

strip crack embedded within and parallel to the free of

surface of a one-dimensional hexagonal quasicrystal

are studied.

The analysis is fundamentally focussed upon

adopting extensions and adaptations with a method

of images of the traditional distribution of dislocations

technique for modelling such a crack.

Solutions of the singular integral equations gov-

erning the density functions of the discontinuities in

the appropriate piezoelectric quasicrystalline screw

dislocations are derived explicitly. These yield closed-

form expressions for the phonon and phason stress and

electric displacement components.

Illustrative graphs are presented of the non-dimen-

sional variations of these components with distance

ahead of the crack tip for a range of values of the

distance from the crack to the free surface.

Quasicrystals are a class of quite recently discov-

ered very modern solid materials that have far-

reaching practical applications and have attracted the

attention of researchers who are able to study them

theoretically. Not only are the investigations of crack

problems in them of interest individually, but they also

develop a portfolio of explicit benchmark solutions

that are of value in more complex physical practical

situations for providing the necessary checks against

the numerical/experimental results which have to be

sought when exact solutions are not available.
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