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Abstract The natural convection boundary-layer

flow near a stagnation point on a permeable surface

embedded in a porous medium is considered when

there is local heat generation within the boundary layer

at a rate proportional to ðT � T1Þp; p� 1, where T is

the fluid temperature and T1 the ambient temperature.

There is mass transfer through the surface character-

ized by the dimensionless parameter c, with c[ 0 for

fluid injection and c\0 for fluid withdrawal. The

steady states are considered where it is found that, for

p[ 1, there is a critical value cc of c with solutions

existing for c� cc if 1\p\2 and for c� cc if p[ 2.

The initial-value problem reveals that, for 1� p\2,

the nontrivial steady states are stable and the solution

evolves to this state at large times. However, for p[ 2

these steady states are unstable and the solution either

approaches the trivial state with the local heating

dying out or a finite-time singularity develops for

sufficiently large initial inputs.

Keywords Boundary-layer flow � Convective flow �
Porous media � Local heat generation � Wall mass

transfer

1 Introduction

During the transport and storage of a porous material

heat can be generated locally within the medium. This

can set up a convective flow within the material which

may help to dissipate the heat or alternatively can lead

to enhanced heat generation and even thermal run-

away with possibly disastrous consequences. Exam-

ples include the spontaneous ignition in stock piles of

coal [1–4], in bagasse (the cellulose waste left after the

extraction of sugar from sugar cane) [5, 6] or in the

wetting of cellulosic materials [7–9]. Previously we

have modelled this problem assuming local heat

generation at a rate proportional to ðT � T1Þp, where
T1 is the (constant) ambient temperature and the

exponent p� 1 [10, 11]. We have assessed how the

effects of the input of heat from the boundary [12] and

of an outer flow [13] control the local heat generation,

finding that this depended critically on the exponent

p and the magnitude of the initial heat input. More

recently we have considered modified form of Arrhe-

nius kinetics [14], again seeing that the evolution of

the local internal heat generation depended on the

initial heat input as well as the local heating rate,

finding conditions under which the local heating died

away or produced a finite-time blow up in the solution.

The power-law expression for localised heat gen-

eration has been used previously in several other

contexts as a model for Arrhenius kinetics. These

studies have shown at least qualitative agreement with

those using the more general Arrhenius form, as seen
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for a specific case by comparing [12] and [14]. The use

of a power-law model is motivated in part by its

analytic simplicity as compared to the Arrhenius

function and to avoid the ‘cold boundary problem’. In

this, if an inert outer region is required, as is the case

here, the Arrhenius form has to be modified, as in [14].

This can, perhaps, to lead to some artificiality in the

kinetic scheme used. An alternative form for the local

heating has been suggested, based more on fluid flow,

is to model the local heat generation as a source term

with a particular spatial variation [15–18]. However,

this approach has the drawback, at least for the present

case of spontaneous combustion within a porous

material, in that it does not allow the local heat

generation to vary with the evolving temperature and

velocity fields.

Here we consider how the input from the boundary

influences the heat generation within the flow. We

again take the above power-law term to model the heat

generation within the boundary layer and allow for

fluid injection or withdrawal from a thermally insu-

lated surface. Previously, without any flow through the

wall [12] and without an outer flow, we found that,

when 1� p\2, the local heating died away. However,

for p[ 2 a finite-time blow up in the solution could

occur for a sufficiently large initial input, otherwise

the local heating also died out. Our aim here is to

determine how this behaviour is influenced by the fluid

input or withdrawal from the wall. We find that, when

p ¼ 1, a nontrivial steady state is attained giving a

balance between the rate of local heat generation and

the wall mass transfer. A similar situation applies

when 1\p\2 provided now the rate of mass transfer

through the wall is greater than some critical value,

dependent on p. Otherwise the heat generation is

inhibited. For p[ 2 there is a either finite-time

thermal runaway if the initial input is above some

threshold value or otherwise the local heating dies

away. We start by deriving our model.

2 Model

We consider the unsteady, two-dimensional natural

convection boundary-layer flow that can arise near a

forward stagnation point in a fluid-saturated porous

material in which there is local heat generation within

the boundary layer at a rate proportional to ðT � T1Þp,

where T is the fluid temperature and T1 is the ambient

temperature. We assume that the bounding surface is

thermally insulated and that there is normal wall

velocity vw, where vw can be either positive or

negative. We further assume the flow is given by

Darcy’s law and we make the standard Boussinesq

approximation. The basic equations for our model are,

see [12, 19–21] for example,

ou

ox
þ ou

ox
¼ 0; ð1Þ

u ¼ gbK
m

ðT � T1Þ SðxÞ; ð2Þ

r
oT

ot
þ u

oT

ox
þ v

oT

oy
¼ am

o2T

oy2
þ H0 ðT � T1Þp;

ð3Þ

on 0� y\1; t[ 0, subject to the boundary

conditions

v ¼ vw;
oT

oy
¼ 0 on y ¼ 0; u ! 0; T ! T1

as y ! 1 ðt[ 0Þ;
ð4Þ

together with some initial condition and where we

assume that p� 1. Here x measures distance along the

body surface and y normal to it, u and v are

respectively the velocity components in the x and y

directions. Also K is the permeability of the porous

media, m the kinematic viscosity of the fluid, b the

coefficient of thermal expansion, g the acceleration

due to gravity, am the effective thermal diffusivity and

r the heat capacity ratio of the fluid-filled porous

medium to that of the fluid. In Eq. (2), S(x) is the sine

of the angle between the outward normal and the

downward vertical and for a stagnation-point flow

SðxÞ ¼ x

‘
for some length scale ‘.

To make Eqs. (1–4) dimensionless we write

x ¼ x

‘
; y ¼ R1=2 y

‘
; t ¼ Us

r‘
t; u ¼ Us u;

v ¼ Us R
�1=2 v; T � T1 ¼ Ts h;

ð5Þ

where Ts;Us are respectively temperature and velocity

scales given by
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Ts ¼
gbK
mH0‘

� �1=p�2

; Us ¼ H0‘ T
p�1
s ; ðp 6¼ 2Þ

and R ¼ Us‘

am
:

ð6Þ

Equation (2) becomes (on dropping the overbars) u ¼
x h and the continuity Eq. (1) is satisfied by introduc-

ing a streamfunction w defined so that

u ¼ wy; v ¼ �wx. We then write w ¼ x f ðy; tÞ, and
consequently h ¼ hðy; tÞ, to obtain

o3f

oy3
þ of

oy

� �p

þ f
o2f

oy2
¼ o2f

oyot
; ð7Þ

subject to the boundary conditions

f ¼ �c;
o2f

oy2
¼ 0;

of

oy
! 0 as y ! 1; ð8Þ

where c ¼ vw R
1=2=Us. In (8), c[ 0 gives fluid

injection from the boundary (blowing) and c\0 gives

fluid withdrawal from the boundary (suction).

We find different behaviour depending on whether

p ¼ 1; 1\p\2 or p[ 2, treating these cases, as well

as the transition case when p ¼ 2, see expression (6),

separately. We start by considering the steady states of

Eq. (7) as these can represent the possible large time

behaviour of the full initial-value problem.

3 Steady states

These represent possible large time limit of the initial-

value problem (7, 8) and, for a general value of p, are

given by

f 000 þ f f 00 þ ðf 0Þ p ¼ 0; f ð0Þ ¼ �c;

f 00ð0Þ ¼ 0; f 0 ! 0 as y ! 1;
ð9Þ

where primes denote differentiation with respect to y.

We note that, for p ¼ 2, Eq. (9) can be integrated to

give

f 00 þ f f 0 ¼ 0; ð10Þ

on satisfying the boundary condition as y ! 1.

Applying the boundary conditions on y ¼ 0 then

shows that the only possibility when c 6¼ 0 is the trivial

solution f � �c with a nontrivial solution only for

c ¼ 0.

In Fig. 1 we plot f 0ð0Þ against c for p ¼ 1 obtained

from the numerical solution of Eq. (9). The numerical

solution terminated at c ¼ �2, where f 0ð0Þ becomes

zero (we were only able to obtain the trivial solution

f � �c for c\� 2), and proceeded to large positive

values of c with the values of f 0ð0Þ increasing as c is
increased.

We plot f 0ð0Þ against c in Fig. 2 for p ¼ 1:5,

representative of values of p in the range 1\p\2. In

this case we see that there is a critical value cc of c,
where cc ’ �0:5085 giving two solution branches in

cc\c. The upper branch solution continues to large

positive c, with f 0ð0Þ increasing as c is increased, and
we find only the trivial solution for c\cc. This leads us
to consider the critical values in more detail. To

calculate cc numerically we follow the approach given

in [22], for example, whereby we make a linear

perturbation to Eq. (9) resulting in a linear homoge-

neous equation subject to homogeneous boundary

conditions and it is the solution to this eigenvalue

problem that determines cc. We plot cc against p in

Fig. 3 where we see that cc ! 0 as p ! 2, as perhaps

might be expected, and approaches a finite negative

value as p ! 1, with our numerical results suggesting

that cc is approaching �2.

We now consider the nature of the solution as p !
2 from below. We put p ¼ 2� �, with then c ¼ l �,
and look for a solution valid for � small by expanding

f ðy; �Þ ¼ f0ðyÞ þ � f1ðyÞ þ � � � : ð11Þ

At leading order we obtain f0 ¼ 2b0 tanhðb0yÞ for

some constant b0 [ 0 to be found. At Oð�Þ we have

f 0001 þ f0 f
00
1 þ f1 f

00
0 þ 2f 00 f

0
1 ¼ f 0 20 log ðf 00Þ;

f1ð0Þ ¼ �l; f 001 ð0Þ ¼ 0; f 01 ! 0 as y ! 1:

ð12Þ

We can integrate Eq. (12) to obtain, on applying the

boundary conditions and the expression for f0,

2b20 l ¼
Z 1

0

f 0 20 log ðf 00Þdy ¼
16b30
3

ðlog b0 þ bÞ where

b ¼ 3

4
2 log 2� 10

9

� �
’ 0:206387;

ð13Þ
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on using a result given in [12]. From (13) we have

l ¼ 8b0

3
ðlog b0 þ bÞ: ð14Þ

Expression (14) gives l ¼ 0 at b0 ¼ 0, has b0 [ 0 for

b0 [ e �b and has a turning point (local minimum) at

b0 ¼ e �ð1þbÞ; l ¼ lc ¼ � 8

3
e �ð1þbÞ ’ �0:79807.

Hence

cc � � 0:79807 ð2� pÞ þ � � � as p ! 2: ð15Þ

Asymptotic expression (15) is shown in Fig. 3 by a

broken line showing good agreement with the numer-

ically determined values as p ! 2.

We now take a value of p ¼ 3:0 as representative of

the case when p[ 2 and in Fig. 4 we plot f 0ð0Þ against
c. In this case there is a positive value critical value
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γ

f
(0
)

Fig. 1 Steady states: plot of f 0ð0Þ against c obtained from the numerical solution to (9) for p ¼ 1
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Fig. 2 Steady states: plot of

f 0ð0Þ against c obtained from
the numerical solution to (9)

for p ¼ 1:5
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cc ’ 0:6082 with nontrivial solutions now only for

c� cc. This is different to the previous case when

1\p\2, compare this figure with Fig. 2. The upper

solution branch for this case continues to large

negative values of c and the lower solution branch

terminates as c ! 0 with f 0ð0Þ ! 0. We can again

calculate the critical values cc and in Fig. 5 we plot cc

against p when p[ 2. We see that cc is positive

throughout for this case, approaching zero as p ! 2

from above, and that cc increases as p is increased. The
above discussion for the asymptotic behaviour as p !
2 follows directly for this case on putting p ¼ 2þ �.

The result is that

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 1  1.2  1.4  1.6  1.8  2
p

γ
c

Fig. 3 Steady states: plot of

the critical values cc against
p for 1\p\2. Asymptotic

expression (15) is shown by

a broken line
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Fig. 4 Steady states: plot of f 0ð0Þ against c obtained from the numerical solution to (9) for p ¼ 3:0
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cc � 0:79807 ð2þ pÞ þ � � � as p ! 2: ð16Þ

This asymptotic result is shown in Fig. 5 by a broken

line, again showing good agreement with the numer-

ically determined values.

We next consider how the solution behaves with p

for a fixed value of c, taking c ¼ 1:0 representative of

blowing and c ¼ �1:0 representative of suction. We

plot f 0ð0Þ against p in Fig. 6 for these two cases, in

Fig. 6a for p in the range 1 6 p\2 and in Fig. 6b for

p[ 2. In Fig. 6a both curves start with their values at

p ¼ 1 as shown in Fig. 1 with, for c ¼ 1:0; f 0ð0Þ
increasing and becoming large and the boundary-layer

thickness decreasing as p is increased with our

numerical integrations suggesting that f 0ð0Þ ! 1 as

p ! 2. For c ¼ �1:0, however, f 0ð0Þ decreases to the

critical point at p ¼ pc ’ 1:220 for cc ¼ �1:0 shown

in Fig. 3, leading to a lower solution branch in p\pc,

not particularly clear in the figure.

For p[ 2, Fig. 6b, there is now a critical value for

c ¼ 1:0 at p ¼ pc ’ 3:938 giving rise to solutions only

in p > pc and also a lower solution branch in p[ pc.

For c ¼ �1:0 the values of f 0ð0Þ increase rapidly as

p ! 2, similar to that seen for c ¼ 1:0 in Fig. 6a. In

both cases the values of f 0ð0Þ appear to be approaching
the same limit as p is increased.

To see how the solution for c[ 0 in Fig. 6a

behaves as p ! 2 from below we put p ¼ 2� d and

look for a solution for d � 1 by writing f ¼

aðdÞF; f ¼ aðdÞ y for some aðdÞ to be determined,

expecting that a 	 1 for d small. Equation (9)

becomes

F000 þ F F00 þ
�
F0�2�d

a�2d ¼ 0;

Fð0Þ ¼ � c
a
; F00ð0Þ ¼ 0; F0 ! 0 as f ! 0:

ð17Þ

Primes now denote differentiation with respect to f.
Since a�2d � 1� 2d log aþ � � �, we look for a solu-

tion by expanding

Fðf; dÞ ¼ F0ðfÞ þ ðd log aÞF1ðdÞ þ � � � : ð18Þ

At leading order we have

F000
0 þ F0 F

00
0 þ F02

0 ¼ 0 giving F0 ¼ 2c0 tanhðc0fÞ;
ð19Þ

for some constant c0 [ 0 to be found. To obtain a

solution at next order we require

d logðaÞ� 1

a
giving a� 1

d ð� log dÞ þ � � � :

ð20Þ

This then gives at Oðd log aÞ, on integrating the

equation once and applying the boundary conditions

as f ! 1,

F00
1 þ F0 F

0
1 þ F1 F

0
0 ¼ �

Z 1

f
F0
0ðsÞ

2
ds: ð21Þ
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Fig. 5 Steady states: plot of

the critical values cc against
p for p[ 2. Asymptotic

expression (16) is shown by

a broken line
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If we now apply the boundary conditions on f ¼ 0,

particularly that F1ð0Þ ¼ �c, and the above expres-

sion for F0 we obtain

c c20 ¼
Z 1

0

sech 4ðc0fÞdf ¼
8c30
3

so that c0 ¼
3c
8
:

ð22Þ

Hence

f 0ð0Þ� 9c2

32
a2 þ � � � or

f 0ð0Þ� 9c2

32

1

d2 ð� log dÞ2
þ � � � as p ! 2:

ð23Þ

We can readily adapt this analysis to the case when

c\0 and p ! 2 from above, Fig. 6b. We now put

p ¼ 2þ d and make the above transformation. We

then follow the above discussion, the only difference

 0
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a
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Fig. 6 Steady state: plots of

f 0ð0Þ against p for

a 1 6 p\2, b for p[ 2 and

c ¼ 1:0; �1:0, obtained
from the numerical solution

to (9)
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being in a sign change on the right-hand side of

Eq. (21). This in turn leads to, on applying the

boundary conditions on f ¼ 0,

c0 ¼
3

8
ð�cÞ; ð24Þ

with the expression for f 0ð0Þ being the same as that

given in (23).

3.1 Strong fluid withdrawal, jcj large

We have seen that, when p[ 2, the solution proceeds

to large negative values of c and to obtain a solution

valid in this limit we put f ¼ jcj þ jcjð3�pÞ=ðp�1Þ
G;

Y ¼ jcj y. Equations (9) become

G000 þ ð1þ jcj2ð2�pÞ=ðp�1ÞÞG00 þ G0 p ¼ 0;

Gð0Þ ¼ G00ð0Þ ¼ 0; G0 ! 0 as Y ! 1:
ð25Þ

This gives, at leading order, on writing u ¼ G0,

u00 þ u0 þ up ¼ 0; u0ð0Þ ¼ 0; u! 0 as Y !1:

ð26Þ

Now suppose uð0Þ ¼ u0. We then put u¼ u0U to

obtain the eigenvalue problem for u0 as

U00 þ U0 þ u
p�1
0 U p ¼ 0;

Uð0Þ ¼ 1; U ! 0 as Y ! 1:
ð27Þ

A plot of u0 against p is shown in Fig. 7 obtained from

the numerical integration of Eq. (27). The graph

increases from its value of u0 ¼ 0:8587 at p ¼ 2, has

a maximum value of u0 ’ 1:2418 at p ’ 4:9 before

decreasing slowly to u0 ¼ 1 as p ! 1. We note that

the numerical integration of (27) continues smoothly

through p ¼ 2 into 1\p\2 though this asymptotic

solution is valid only for p[ 2. Hence

f 0ð0Þ� jcj2=ðp�1Þ
u0 þ � � � as jcj ! 1: ð28Þ

4 Initial-value problem

Our discussion of the steady states suggests that we

should treat the cases p ¼ 1; 1\p\2 and p[ 2

separately. We solved initial-value problem (7, 8)

numerically using the scheme described in [10, 12] for

example, taking as our initial condition
of

oy
¼ a0 e �y

and prescribing a value for a0 [ 0.

4.1 p ¼ 1

Here we took a0 ¼ 1:0 and in Fig. 8 we plot values of

the wall temperature hw � hð0; tÞ against t obtained

from the numerical solution of initial-value problem

(7, 8) for representative values of c. We see that these

curves approach at large times the constant, nontrivial

value given by the corresponding steady state solution

shown in Fig. 1. For values of c� � 2 the numerical

solutions approached the trivial state f � �c as

t increased.

4.2 1\p\2

Here we took p ¼ 1:5, as in Fig. 2, and in Fig. 9 we

plot the wall temperature hw for representative values

of c. In this case, for c\0, there is the possibility of

two steady states. Our numerical integrations indicate

that it is the solution on the upper solution branch that

is approached at large times, indicating that the saddle-

node bifurcation at c ¼ cc changes the temporal

stability from stable on the upper branch to unstable on

the lower branch. For values of c\cc ’ �0:5085 we

found only the trivial solution f � �c at large times.

4.3 p[ 2

In this casewe found different behaviour to the previous

cases in that now the solution either becomes singular at

a finite time or approaches the trivial state at large times.

We illustrate this in Fig. 10 for p ¼ 3:0, taking values

of c\cc ’ 0:6082. In Fig. 10a we plot the wall

temperature hw for representative values of c, here
taking a0 ¼ 3:0 in the initial condition. In each case

we find that hw increases very rapidly as the singularity
at t ¼ ts is approached, finally becoming unbounded.

To attain this finite-time singularity require a suffi-

ciently large initial input, i.e. having a0 greater than

some threshold value. We illustrate this in Fig. 10b

with plots of hw for c ¼ �1:0, again with p ¼ 3:0.

With a0 ¼ 2:18 we again see the the development of

the finite-time singularity. However, with a0 ¼ 2:17

the solution approaches the trivial state at large times.

766 Meccanica (2018) 53:759–772

123



In Fig. 10c we plot the times ts at which the finite-

time singularity occurred, at the values of c shown by

þ. The numerical method involved a procedure for

halving the time step Dt to maintain accuracy, with the

numerical integration terminating when

Dt\5
 10�6. The values of ts in Fig. 10c are the

values of t at this final time step. The values of ts

depend on the value of a0 taken, as well as whether a

finite-time singularity occurs, Fig. 10b. For Fig. 10c

we took a0 ¼ 3:0, noting that, for example, with c ¼
�3:0 the solution approached the trivial state, how-

ever, with a0 ¼ 5:0 a finite time singularity was seen.

Thus it appears from our numerical investigation that,

even though nontrivial steady states exist for p[ 2,

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 2  4  6  8  10  12  14
p

u
0

Fig. 7 Steady state, solution for jcj large a plot of u0 against p for p[ 2 obtained from the numerical solution of Eq. (27)
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Fig. 8 Initial-value

problem: plots of the wall

temperature hw against t for

p ¼ 1 and

c ¼ �1:0; 0:0; 1:0; 2:0,
taking a0 ¼ 1:0 in the initial

condition
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these are unstable with the result that the solution

evolves to either the trivial state or becomes singular at

a finite time. This latter case gives thermal runaway

with the wall temperature, as well as the temperature

field within the boundary layer, becoming increasingly

larger.

4.4 Solution near the singularity

The nature of the singularity as t ! ts has been

discussed for related cases in [12, 13] for a general

value of p. Here we restrict attention to p ¼ 3 in line

with the results shown in Figs. 10 and 11. We start by

putting s ¼ ts � t and looking for a solution for s
small. There is an inner region where we put,

following [12, 13],

f ¼ �cþ /ðg; sÞ; g ¼ y s�1=2; ð29Þ

with Eqs. (7, 8) becoming

o3/

og3
þ o/

og

� �3

þs1=2ð�cþ /Þ o
2/

og2

¼ 1

2

o/
og

þ g
2

o2/

og2
� s

o2/
ogos

;

/ ¼ o2/

og2
¼ 0 on g ¼ 0:

ð30Þ

Equation (30) leads to an eigenfunction expansion,

following [13],

/ðg; sÞ ¼ /0ðgÞ þ s /1ðgÞ þ � � � ; ð31Þ

where

/0 ¼ u0 g; /1 ¼ �u1ðg5 � 20g3 þ 60gÞ;

where u0 ¼
ffiffiffi
2

p

2
and u1 [ 0:

ð32Þ

There is then a middle region where we put

f ¼ s�1=4 gðn; sÞ; n ¼ y s�1=4: ð33Þ

Matching with the inner region given by (31, 32)

suggests an expansion in powers of s1=4, the leading-
order term g0 being given by

g00 ¼
u0

1þ 10u1g4

u0

� �1=2
: ð34Þ

There is then an outer region in which f and y are left

unscaled and in which there is a regular expansion for

f, the leading-order term f0 being indeterminate in the

expansion, as could be expected from Stewartson [23].

On matching with the middle region,

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7

t

2.0

1.0

0.0

−0.4

θ w

Fig. 9 Initial-value

problem: plots of the wall

temperature hw against t for

p ¼ 1:5 and

c ¼ �0:4; 0:0; 1:0; 2:0,
taking a0 ¼ 1:0 in the initial

condition
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Fig. 10 Initial-value

problem: a plots of the wall

temperature hw against t for

p ¼ 3:0 and c ¼
�1:0; 0:0; �0:4; �1:0 with

a0 ¼ 3:0, b plots of hw
against t for c ¼ �1:0 and

a0 ¼ 2:17; 2:18. c A plot of

the time ts, when there is a

finite-time singularity,

against c for p ¼ 3:0, taking
a0 ¼ 3:0 in the initial

condition
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of

oy
� u

3=2
0ffiffiffiffiffiffiffiffiffiffi
10u1

p y�2 þ � � � as y ! 0;

of

oy
! 0 as y ! 1:

ð35Þ
This outer region is unaffected by the singularity

developing near the wall and depends essentially on

how the solution evolves from its initial input.

We can see this structure in Fig. 11a where we plot

h profiles taken at times close to ts, the outer boundary

condition in this numerical integration was taken at
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Fig. 11 Initial-value problem: a plots of h against y for p ¼
3:0; c ¼ �1:0 taking a0 ¼ 3:0 in the initial condition and with a
space step size Dy ¼ 0:005, taken at times t ¼ 0:12124;

0:12179; 0:12191; 0:12198; 0:12203; 0:12207, b a plot of h�2
w

against t, data points shown by þ
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y ¼ 10:0, much greater than used to plot the figure.

The increasingly larger temperatures developing near

the wall as t ! ts can clearly be seen with the

temperature field essentially the same at relatively

small distances from the wall. From (29), hw � u0 ðts �
tÞ�1=2

so that a plot of h�2
w against t should be a straight

line, at least close to ts. We can see this in Fig. 11b

where we estimate the slope to be approximately

�1:702 giving u0 ’ 0:767, a little greater than the

theoretical value of 0.707. This difference could be

accounted for by the difficulty in maintaining accuracy

in integrating numerically very close to a singularity.

5 Conclusions

We have considered the effect that fluid transfer

through the wall, both injection and withdrawal, can

have on the development the boundary layer near a

forward stagnation point when there is local heat

generated at a rate proportional to ðT � T1Þp within

the boundary layer. Previously we have seen [12, 13]

that, without the fluid transfer, how the solution

evolved depended on whether 1 6 p\2 or p[ 2,

respectively approaching a nontrivial steady state, or

either dying away or having a finite-time singularity.

A similar situation arises here though the injection/

withdrawal of fluid through the wall can have signif-

icant effects. For 1 6 p\2, the solution approaches a

nontrivial steady state provided the dimensionless

parameter c measuring the wall transfer is such that it

is greater than some critical value cc, dependent on p.

Otherwise only the trivial state is attained at large

times. When there is fluid injection, i.e. c[ 0, large

temperatures can be achieved within the boundary

layer, increasing as c is increased, see Figs. 1, 2, 7 and
8. These critical values depend on the exponent p

increasing from �2 for p ¼ 1 to zero as p ! 2, see

Fig. 3. Thus if fluid withdrawal is sufficiently large the

effect is to inhibit boundary layer development.

However fluid injection can greatly increase both the

heat transfer and the fluid flow.

The situation is essentially different when the

exponent p[ 2. Here the effect of fluid injection is to

limit the range of existence of any nontrivial steady

state, see Figs. 4 and 5, whereas it is now fluid

withdrawal that increases the temperatures seen within

the boundary layer. However, these nontrivial steady

states are unstable and the time dependent solution

either evolves to the trivial state or reaches a finite-

time singularity, see Fig. 10a. Which of these states is

achieved depends strongly on the initial temperature

input, see Fig. 10b.
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