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Abstract Magneto-viscoelastic materials find their

interest in a variety of applications in which mechan-

ical properties are coupled with magnetic ones. In

particular, new materials such as magneto-rheological

elastomers or, in general, magneto-sensitive poly-

meric composites are more andmore widely employed

in new materials. The deformation evolution is

assumed to be viscoelastic, that is, the stress–strain

relation depends on the deformation history of the

material further to on the deformation at the present

time. This is a characteristic feature of all materials

with memory, namely those materials whose mechan-

ical and/or thermodynamical response depends on

time not only via the present time, but also through the

whole past history. To describe this behaviour integro-

differential model equations are adopted subject to the

fading memory assumption which corresponds to

require that, asymptotically, effects of past deforma-

tion events become negligible. Magneto-viscoelastic

materials are modelled aiming to describe viscoelastic

materials whose mechanical response is also influ-

enced by the presence of a magnetic field. Thus, the

model system is obtained on coupling the viscoelas-

ticity linear integro-differential equation with a non-

linear partial differential equation which describes

magnetic effects. The attention is focussed on the

kernel of the integro-differential equation: both reg-

ular as well as a singular kernel, at t ¼ 0, problems are

analysed. Indeed, singular kernel models allow to

describe a wider class of materials and are also

connected to materials modelled via kernels described

via fractional derivatives.

Keywords Materials with memory �
Viscoelasticity � Magneto-viscoelasticity � Regular
kernel integro-differential systems � Singular kernel
integro-differential systems
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1 Introduction

The study of materials with memory goes back to

Boltzmann [5] and Volterra [41] in connection to the

description of the strain–stress relation in the case

when linear elasticity does not capture the physical

behaviour of the material. An overview on non-

classical memory kernels in linear viscoelasticity is

comprised in [17] where non standard problems are
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considered aiming to describe effects of age of

materials as well as singular kernel models.

The crucial feature of the model of material with

memory is to take into account not only the instantaneous

response, but also the so called history of the material.

That is, consider that the mechanical behaviour of the

material is determined not only by the actual action on it

but also by the whole deformation history. The model of

material withmemory finds its application in a variety of

different frameworks among which isothermal vis-

coelasticity as described in [28, 29] and rigid heat

conduction with memory [2, 8–10, 26]; indeed, the

analogy under the analytical viewpoint between rigid

heat conduction with memory and isothermal viscoelas-

ticity is well known, see for instance [7].

The interest in magneto-viscoelasticity problems is

connected to consider model equations which are

suitable to describe innovative materials. Specifically,

the effects of a magnetic field which acts on a

viscoelastic body needs to be modelled when, for

instance, magneto-rheological elastomers or, in gen-

eral, magneto-sensitive polymeric composites are

investigated according to [34] and references therein.

The general framework of the models to describe

the materials under investigation are given in [28, 38].

The two books by Borcherdt [6] and by Mainardi [36],

represent an overview on new materials which include

also viscoelastic ones and their mechanical behaviour.

In particular [6] comprises applications of viscoelastic

model to seismic problems while [36] shows the

connection between fractional calculus and linear

viscoelasticity. Such a connection, see [35], is later

studied by Fabrizio [27], who analyses the relation

between Volterra integro-differential problems and

viscoelastic models when weaker constitutive assump-

tions the relaxation modulus must satisfy allow to

consider also cases of singular kernel problems. These

are of interest also under the perspective of bio-

materials studied by Deseriet al. [23] who also

consider fractional derivatives models.

Note that, when the relaxationmodulus is assumed to

satisfy regularity requirements which are weaker than

the usual ones, then the existence and uniqueness results

proved by Dafermos [20, 21] do not hold anymore.

Hence, new analytical problems arise. Nevertheless,

singular kernel models go back to Boltzmann [5] who

was concerned about special viscoelastic behaviours.

Later, investigations on the viscoelastic behaviour of

polymers and/or bio-materials whose mechanical

response can be modelled on introduction of a singular

kernel are comprised in [1, 23–25, 38, 39]. Analytical

developments in this direction are due to Berti [3] and

Grasselli and Lorenzi [32] who study viscoelasticity

problems characterised by a singular memory kernel;

Giorgi and Morro [31], are concerned about the

thermodynamical admissibility of a viscoelastic model

with a singular viscoelastic relaxationmodulus. Among

themany further results, see [17] and references therein,

[37] is concerned about stability results in this context.

The material is organised as follows. The opening

Sect. 2 is devoted to a concise summary of the

properties and, then, analytical assumptions needed

to describe the model of viscoelastic body. The

viscoelastic body is assumed to be homogeneous and

isotropic: its reference configuration is represented by

a bounded set X � R3 whose boundary is a smooth

surface. The crucial feature of the model is that the

elastic behaviour of the body is assumed to depend on

time not only via the instantaneous response at the

time t considered, but also on the past history of the

material. The subsequent Sect. 3 is concerned about

magneto-viscoelastic bodies. In particular, the idea is

to couple the viscoelastic behaviour of the material

with a sensibility to magnetic effects. This require-

ment is suggested by newmaterials which are obtained

by inserting magnetic defects into a solid body to have

the opportunity to control and influence the mechan-

ical behaviour of the body when a magnetic field is

applied. Accordingly, in Sect. 3, the model of coupled

response of a linear viscoelastic body subject to a

magnetic field is briefly recalled. In Sect. 4, existence

results of two different magneto-viscoelasticity prob-

lems, in turn, one and three dimensional, are given

[13, 14]. The differences, both in the obtained results

as well as in the technical tools needed to achieve

them, are pointed out. Then, singular kernel problems

are addressed to in Sect. 5. In Sect. 5.1, the viscoelas-

tic singular kernel model is recalled together with an

existence and uniqueness results [11], which refers

to a 1-dimensional viscoelastic body. The closing

Sect. 5.2 is concerned about a 1-dimensional singular

magneto-viscoelasticity problem [16].

2 The viscoelastic material model

This section is devoted to a brief summary of the

model of viscoelastic body under investigation. The
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model here considered relies on the thermodynamical

assumptions, and in particular on the notion of free

energy given by Gentili [29], applied to initial

boundary value problems by Deseri, Fabrizio and

Golden [22]. The model by Giorgi and Morro [31],

was further developed by Gentili [29], and recently

described in [17] in connection with new materials.

The body is assumed to be homogeneous and isotropic

and its crucial feature is that the stress response at time

t linearly depends on the whole past history of the

strain up to the present time t. In the three-dimensional

case, all fields depend on the space-time pair

ðx; tÞ 2 X� R, where X � R3 is the reference con-

figuration. The displacement vector uðx; tÞ is given by

uðx; tÞ ¼ lðx; tÞ � x;

where lðx; �Þ is the motion of x, and

E ¼ 1

2

h
ruþruT

i
;

is the infinitesimal strain tensor. Under the assumption

that the material satisfies both the isotropy and

homogeneity conditions, no space dependence is

indicated, that is the x-dependence is omitted. The

quantities of interest can be listed:

E ¼ E ðtÞ;T ¼ T ðtÞ;G ¼ G ðtÞ ð2:1Þ

which represent, in turn, the strain tensor, the stress

tensor and the relaxation modulus. Furthermore the

constitutive assumptions are given [29, 41], via:

T ðtÞ ¼
Z 1

0

GðsÞ _E ðt � sÞds; ð2:2Þ

or, equivalently, when EtðsÞ denotes the strain past

history, namely EtðsÞ :¼ Eðt � sÞ, via

T ðtÞ ¼ G0EðtÞ þ
Z 1

0

_GðsÞ Et ðsÞds;whereG0 :

¼ Gð0Þ
ð2:3Þ

and G0 denotes the initial relaxation modulus.

According to Volterra [41], the following regularity

requirements are assumed

_G2 L1ðRþÞ;GðtÞ¼G0þ
Z t

0

_GðsÞds ;Gð1Þ¼ lim
t!1

GðtÞ

ð2:4Þ

Hence, the relaxation modulus G enjoys the fading

memory property which reads

8e[ 0 9 ~a ¼ a ðe; EtÞ 2 Rþs:t:8a[ ~a;Z 1

0

_Gðsþ aÞEtðsÞds
����

����\e:
ð2:5Þ

3 The magneto-viscoelastic material model

This section aims to provide a sketch of the adopted

model to describe the mechanical behaviour of a

viscoelastic body when it is also influenced by the

presence of a magnetic field. Accordingly, not only the

magnetic effects, but also the interaction between the two

different effects needs to be taken into account. Specif-

ically, based on [17], summarizes some of the crucial

features of the model of magnetic effects acting on a

viscoelastic body, again, X � R3 denotes a connected

bounded set which represents the body configuration.

Such a body is termed magneto-viscoelastic body

when its status is also characterized by the related

magnetization, which, according to the Landau Lif-

shitz equation [4, 30] in Gilbert form, where m

represents the magnetization vector

c�1mt �m� aDm�mtð Þ ¼ 0; jmj ¼ 1; c; a 2 Rþ

ð3:1Þ

The quantities of interest, in the general 3-dimensional

case, including also those ones already introduced to

describe the viscoelastic behaviour, are here listed,

where the convention that summation over repeated

indices is tacitly understood.

u :¼ u ðx; tÞ
m :¼ m ðx; tÞ
GðsÞ ¼ fGklmnðsÞg; s 2 ½0; T�
L ¼ fkklmng
E ¼ f�lmg
Gklmn�klðuÞ�mnðvÞ ¼ Gru � rv;

fkklmnmkmlg ¼ Lm�m

fkklmnmk�lmðuÞg ¼ Lm�ru

kklmnmkml�mnðuÞ ¼ Lm�m � ru

�lmðuÞ ¼
1

2
ul;m þ um;l
� �

where, u denotes the displacement vector, m the

magnetization vector, G the visco-elasticity tensor, L
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the magneto-elasticity tensor, E the strain tensor; in

addition, the coefficients kklmn of the magneto-elastic-

ity tensor are subject to the condition

kijkl ¼ k1dijkl þ k2dijdkl þ k3ðdikdjl þ dildjkÞ ð3:2Þ

Then, the following constitutive assumptions are adopted.

Thus, the exchange magnetization energy is given by

EexðmÞ ¼ 1

2

Z

X
aijmk;imk;jdX ð3:3Þ

where

• aij ¼ aji symmetric positive definite matrix

• aij ¼ a dji; a 2 Rþ diagonal matrix (most materi-

als).

Then, the magneto-elastic energy is given by

Eemðm; uÞ ¼ 1

2

Z

X
kijklmimj�klðuÞdX ð3:4Þ

• kijkl ¼ k1dijkl þ k2dijdkl þ k3ðdikdjl þ dildjkÞ;
• dijkl ¼ 1 if i ¼ j ¼ k ¼ l and dijkl ¼ 0 otherwise;

• k1; k2; k3 2 R constants.

The viscoelastic energy is given by

EveðuÞ ¼
1

2

Z

X
Gklmnð0Þ�kl�mndX

þ 1

2

Z t

0

ds
Z

X

_Gklmnðt � sÞ�klðsÞ�mnðsÞdX
� �

ð3:5Þ

where the tensor’s entries of G satisfy

� Gklmn ¼ Gmnkl ¼ Glkmn

� Gklmn eklemn > b eklekl; b [ 0; ekl ¼ elk

� _Gklmneklemn 6 0

� €Gklmneklemn > 0

ð3:6Þ

Then, the total energy of the system is represented by

the sum of all the considered contributions, that is

Eðm;uÞ ¼ EexðmÞ þ Eemðm; uÞ þ EveðuÞ: ð3:7Þ

4 Regular magneto-viscoelasticity problems

This section is concerned about the regular problems,

respectively, in the case of a 1 and 3-dimensional

body. Indeed, the two cases which, under the physical

viewpoint, can be modeled in the same way according

to the previous section, can be treated analytically via

different methods. Hence, the two different cases are

considered in dedicated subsections.

4.1 One-dimensional problem

Consider the following model equation1

utt�Gð0Þuxx�
Z t

0

_Gðt� sÞuxxðsÞds�
k
2

�
KðmÞ �m

�
x
¼ f ;

mtþm
jmj2�1

d
þkKðmÞux�mxx ¼ 0 ;

8
>><
>>:

ð4:1Þ

where 0\d 	 1, and m ¼ ðm1;m2Þ is the magneti-

zation vector, K is a linear operator defined by

KðmÞ ¼ ðm2;m1Þ, the scalar function u is the dis-

placement in the direction of m2 and k is a positive

parameter. Moreover f is an external force which also

includes the past history.

In [13] a weak existence and uniqueness result is

proved when the following initial and boundary

conditions are prescribed

uð�; 0Þ ¼ u0; utð�; 0Þ ¼ u1; mð�; 0Þ ¼ m0;

jm0j ¼ 1 in X ; ð4:2Þ

u ¼ 0;
om

om
¼ 0 on R ¼ oX� ð0; TÞ ; ð4:3Þ

where m is the outer unit normal at the boundary oX.
As stated in [13], under the further assumption

u0 2 H0
1ðXÞ; u1 2 L2ðXÞ;m0 2 H1ðXÞ;

f 2 L2ðX� ð0; TÞÞ;GðtÞ 2 C2ð0; TÞ;

(
ð4:4Þ

the following result holds.

Theorem 1 Given T [ 0 and e small enough (i.e.

e\k�2GðTÞ), there exists a unique solution to the

problem (4.1)–(4.3), s.t. u 2 C0ð½0; T�; H1
0ðXÞÞ \

C1ð½0; T�; L2ðXÞÞ and m 2 C0ð½0; T �;H1ðXÞÞ\
L2ð0; T;H2ðXÞÞ, mt 2 L2ð0; T ;L2ðXÞÞ.

4.2 Three-dimensional problem

In this subsection, the 3-dimensional problem consid-

ered in [14] is revised. In particular, in the framework

1 Details on the deduction of the integro-differential nonlinear

system (4.1) are refereed to [18, 19, 33, 40].
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of the magneto-viscoelasticity model in the previous

section, the initial value problem

c�1 _m�m�ðaDm� _m�Lm�ruÞ¼ 0

q€u�div Gð0Þruþ
Z t

0

ð _Gðt� sÞruðsÞdsþ1

2
Lm�m

� �
¼ f

8<
:

ð4:5Þ

mð0Þ ¼ m0; jm0j ¼ 1; uð0Þ ¼ u0; _uð0Þ ¼ u1:

u ¼ 0;
om

om
¼ 0 on R ¼ oX� ð0; TÞ ;

ð4:6Þ

is studied where the parameters q; c; a 2 Rþ are given.

Again, to write the viscoelastic integro-differential

equation in Volterra form, f, given, takes also into

account also the material history.

Then, the following weak existence result [14]

holds.

Theorem 2 Given u0 2 H1
0ðX;R3Þ, u1 2 L2ðX;R3Þ,

m0 2 H1ðX;R3Þ with jm0j ¼ 1 a.e. in X and let

Q ¼ X� ½0; T �. Assume f 2 L2ðQ;R3Þ and GðsÞ 2
C2½0; T� verifying the assumptions (3.6), then there

exists a weak solution ðm; uÞ to the problem (4.4),

(4.5) in the sense that:

• m 2 H1ðQ;R3Þ with jmj ¼ 1 a.e. in Q
u 2 L2ð0; T;H1

0ðX;R3ÞÞ and _u 2 L2ðQ;R3Þ
• for each couple ðp; gÞ such that g 2 H1

0ðQ;R3Þ and
p 2 H1;1ðQ;R3Þ vanishing at t ¼ 0 and t ¼ T ,

one has

Z

Q
c�1 _m � pþ aðm�rmÞ � rpþm
	

� _mþ Lm� p � ruÞð � dXdt ¼ 0

ð4:7Þ

Z

Q
½�q _u � gt þ ðGð0Þruþ 1

2
Lm�mÞ � rg � dXdt

þ
Z

Q

Z t

0

_Gðt � sÞruðsÞ � rgðsÞds
� �

dXdt

�
Z

Q
f � gdXdt ¼ 0:

ð4:8Þ

4.3 A comparison between 1 and 3 dimensional

results

Notably, the existence result obtained in the 3-dimen-

sional problem in [14] does not represent a trivial

generalization of the previous 1-dimensional one in [13].

Specifically, first of all the two different model systems

are different in theway the condition jmj ¼ 1 is imposed

on the magnetization vector. Note that, in (4.1) a

penalization term appears, while in the three dimen-

sional system (4.4), in [14], the condition m is a unit

vector needs to be explicitly imposed. Furthermore, in

the 1-dimensional problem an existence and unique-

ness result is proved [13], while, when the 3-dimen-

sional extension is considered an existence result is

established in [14], but no uniqueness is stated. A brief

outline of the different techniques adopted to prove the

obtained results follows. The details are provided,

referring to the two different cases, in [13, 14].

Key tool turns out to be the the free viscoelastic

energy which allows to establish an apriori estimate

which holds for the coupled system. Thus, two

Lemmas are proved, the latter of which provides a

uniform a priori estimate. Finally, on application of a

fixed point theorem, the existence and uniqueness

proof of Theorem 1 is completed, [13].

When the three dimensional problem is studied, the

constraint on the unit length of the magnetization vector

is imposed on introduction of a suitable sequence of

approximated penalty problems, which, on introduction

of a small positive parameter, and of approximated

i.b.v. problem in Q, on application of the related

Faedo-Galerkin approximation, after the relative proof

of convergence, allow to establish the weak existence

result in Theorem 2, according to the details in [14].

5 Singular memory kernel

This section is devoted to an overview on the

generalised problem, studied in [16]: the generalisa-

tion concerns the viscoelastic behaviour of the body

under investigation while the magnetic effects are

modelled as in the previous section.

5.1 Singular viscoelastic model

In this subsection, the attention is focussed on the

relaxed functional requirements in the 1-dimensional
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Viscoelastic model. Specifically, in the regular case, in

Sect. 2, the relaxation modulus G is assumed to satisfy

the functional requirements (2.4) and, in addition, (3.6)

(for further details, see, for instance [28, 29]):

GðtÞ[ 0; _GðtÞ 6 0; €GðtÞ > 0; t 2 ð0;1Þ;
ð5:1Þ

and

G 2 L1ð0;TÞ \ C2ð0;TÞ; 8T 2 R: ð5:2Þ

Now, the requirement _G 2 L1ð0; TÞ is removed so that,

according to (5.1) and (5.2), the relaxation function

G(t) is not required to be finite at t ¼ 0, but

lim
t!0þ

GðtÞ ¼ þ1. As a consequence, Eq. (4.1)1 loses

its meaning. In [11], an ad hoc sequence of approx-

imated regular problems is introduced, then, the corre-

sponding solutions sequence is proved to converge to the

solution of the original singular problem. Uniqueness is

proved by contradiction. Here the idea of the approxi-

mation strategy, devised in [11], is briefly outlined.

• Introduce the following approximated problems

problems 0\e\1;Geð�Þ :¼ Gðeþ �Þ

uett ¼ Geð0Þ uexx þ
Z t

0

_Geðt � sÞ uexxðsÞ dsþ f ;

ð5:3Þ

with associated initial and boundary conditions

uejt¼0 ¼ 0; uet jt¼0 ¼ u1ðxÞ;
uejoX�ð0;TÞ ¼ 0; t\T :

ð5:4Þ

• construct the integral formulation of the problems

ueðtÞ ¼
Z t

0

Keðt � sÞuexxðsÞdsþ u1t þ u0

þ
Z t

0

ds
Z s

0

f ðnÞdn ;
ð5:5Þ

where KðnÞ :¼
Z n

0

GðsÞds is well defined since

G 2 L1ð0; TÞ; 8T 2 R:

• consider the integral problem Pe

Pe : ueðtÞ ¼
Z t

0

Keðt � sÞuexxðsÞdsþ u1t þ u0

þ
Z t

0

ds
Z s

0

f ðnÞdn ; ð5:6Þ

• then, introduce the test functions u 2 H1ðX�
ð0; TÞÞ s.t. u ¼ 0 on oX, and apply Lebesque’s

Theorem.

Then, [11], it follows

Theorem 3 Given ue solution to the integral prob-

lem Pe

Pe : ueðtÞ ¼
Z t

0

Keðt � sÞuexxðsÞdsþ u1t þ u0

þ
Z t

0

ds
Z s

0

f ðnÞdn ;
ð5:7Þ

9 uðtÞ ¼ lim
e!0

ueðtÞ in L2ðQÞ; Q ¼ X� ð0; TÞ: ð5:8Þ

• Finally, the obtained weak solution is proved to be

unique, by contradiction.

Notably, an existence and uniqueness result in the

general three dimensional case, is obtained in [12] on

the basis of the analogy between the two models of

isothermal viscoelasticity and of rigid thermodynam-

ics with memory, as pointed out for instance in [15].

5.2 Singular magneto-viscoelasticity problems

The coupling between the magnetic and the vis-

coelastic effects when the singularity at t ¼ 0 is

considered, since (4.1) loses validity, according to

[16], can be modelled by the nonlinear integro-

differential system

utðtÞ�
Z t

0

Gðt� sÞuxxðsÞds�u1�
Z t

0

k
2
ðKðmÞ �mÞxds ¼

Z t

0

f ðsÞds

mtþm
jmj2�1

d
þkKðmÞux�mxx ¼ 0;

inQ

8>><
>>:

ð5:9Þ

where X ¼ ð0; 1Þ,Q :¼ X� ð0; TÞ; in addition, when
the quantities of interest are written in R3, let

M 
 ð0;mÞ, so that m ¼ ðm1;m2Þ, denotes the mag-

netization vector, which is orthogonal to the conductor

and, hence, u 
 ðu; 0; 0Þ; m indicates the outer unit

normal at the boundary oX, K is a linear operator

defined by KðmÞ ¼ ðm2;m1Þ, u represents the unique

non trivial component of the displacement (parallel to

the 1-dimensional conductor), here identified with the

x-axis and k is a positive parameter. In addition, as in
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(4.1), the term f represents an external force which also

includes the deformation history.

Under the further assumptions:

u1 2 L2ðXÞ; m0 2 H1ðXÞ; f 2 L2ðQÞ: ð5:10Þ

the problem (5.9) subject to the following initial and

boundary conditions

uð�; 0Þ ¼ u0 ¼ 0; mð�; 0Þ ¼ m0; jm0j ¼ 1 in X;

ð5:11Þ

u ¼ 0;
om

o
m ¼ 0 on R ¼ oX� ð0; TÞ ;

ð5:12Þ

admits a weak solution. Specifically, as proved in [16],

the following theorem holds.

Theorem 4 For all T [ 0, there exists a weak

solution ðu;mÞ to the problem (5.9)–(5.11)–(5.12),

that is a vector function ðu;mÞ s.t.

• u 2 L1ð0; T ;H1
0ðXÞÞ;

• ut 2 L1ð0; T ; L2ðXÞÞ;
• m 2 L1ð0; T;H1ðXÞÞ;
• mt 2 L2ðQÞ.

which satisfies

�
Z

Q
/tu

eðtÞdxdt þ
Z

Q

Z t

0

Geðt � sÞuexðsÞ/xdsdxdt

þ
Z

Q

Z t

0

k
2
KðmeÞ �me/xds dxdt

�
Z

Q
u1 þ

Z t

0

f ðsÞds

 �

/dxdt þ
Z

Q
wt �medxdt

þ
Z

Q
m0 � wð�; 0Þdxdt þ

Z

Q

jmej2 � 1

d

 !
w �medxdt

�
Z

Q
k uex KðmeÞ � wdxdt �

Z

Q
me

x � wxdxdt ¼ 0:

ð5:13Þ

8/ smooth s.t. /ð0; tÞ ¼ /ð1; tÞ ¼ 0;/ð�; TÞ ¼ 0, and

8w 
 ðw1;w2Þ s.t. wðx; TÞ ¼ 0.

6 Conclusions and perspectives

The problem of the analysis of the existence of

solutions in the generic case of a magneto-viscoelastic

three dimensional body which is modelled via a

singular kernel viscoelastic behaviour at t ¼ 0,

remains open. Indeed, we expect that, under the

technical viewpoint, the method to apply to obtain the

result should, in analogy to what happened in the

magneto-viscoelastic regular problems [13, 14], in one

or three dimensions would be quite different from each

other. On the other hand, the connection between

singular viscoelastic problems and their modelling via

the introduction of kernel which are expressed via

fractional derivative deserves to be investigated to

understand if it might be promising in the case of

singular magneto-viscoelasticity problems.
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