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Abstract The present work is concerned with the

prediction of the crack pattern produced by given

kinematical data (settlements/distortions) in masonry

constructions. By adopting the simplified model of

Heyman, extending it to masonry structures treated as

continuous bodies, we restrict the analysis to the

search of displacement fields which are piecewise

rigid. Restricting to small strains and displacements

we look for the solution of the kinematical problem by

minimizing the potential energy of the structure. A

variational approximation of the minimum problem is

obtained by considering a fixed finite element subdi-

vision of the structure into rigid blocks. Two case

studies are presented to illustrate the way in which a

particular fracture pattern can be identified as the one

associated to the minimum of the energy in this

restricted class of piecewise rigid displacements.

Keywords Masonry � Unilateral materials �
Settlements � Cracks

1 Introduction

In this work, considering plane masonry structures in

equilibrium under the action of known loads, we

propose a method for predicting the effect, in terms of

fractures, of given settlements.

Fractures and cracks in masonry are physiological,

and rather than the result of over-loading, are most

likely the direct product of small changes of the

boundary conditions. However, geometry and loads

play a role in the specific fracture pattern that actually

nucleates into the structure. In other words, the

specific way in which a certain fracture pattern opens

up and evolves, even if usually not directly due to an

excess of loading (and more likely the direct effect of

settlements of the foundation or of internal distor-

tions), is in a strong relation with the geometry of the

structure and of the loads themselves.
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A simple mathematical model allowing for the

prediction of this peculiar behaviour is the unilateral

masonry-like material of Heyman (see [1]); a very

crude but genial model for masonry, for which the two

theorems of limit analysis, created for analysing

ductile structures, are still valid.

We refer to the works by Kooharian [2], Livesley

[3], Como [4], Angelillo [5], Brandonisio et al. [6–8],

Gesualdo et al. [9], Angelillo et al. [10] and Fortunato

et al. [11, 12] for discussion and the application of

limit analysis to masonry-like structures.

It is a fact that the key issue in the peculiar response

of masonry structures, is represented by their essen-

tially unilateral behaviour. While a standard structure

under bilateral constraints, will usually respond to

comparatively small settlements and eigenstrains with

elastic deformations, and then with a substantial

modification of the internal forces, a unilateral struc-

ture, even if heavily over-constrained, can exhibit zero

energy modes, and then may compensate the effect of

small settlements, without any increase of the internal

forces, through mechanisms requiring essentially

vanishing energy dissipation.

We call the search for a kinematically admissible

displacement, that is for the solution of the boundary

value problem (bvp) for the displacement u under

Heyman’s restrictions: kinematical problem, as

opposed to the equilibrium problem, that is the search

of a statically admissible stress field under Heyman’s

restrictions. For masonry-like materials these two

problems are essentially independent, and can be dealt

with separately.

When trying to solve the kinematical problem, the

problem arises of selecting, among the possibly many

kinematically admissible displacement fields respond-

ing to the given kinematical data (settlements and

eigenstrains), the ones that guarantee also the equilib-

rium of the loads imposed on the structure.

For elastic, and even for some elastic-brittle

materials, these states, that we can call solutions of

the boundary value problem, can be found by search-

ing for the minimum of some, suitably defined, form of

energy. For elastic-brittle materials this energy is the

sum of the potential energy of the loads, of the elastic

energy and of the interface energy necessary to

activate a crack on an internal surface (see [13–15]).

For elastic materials is the sum of the potential energy

of the loads and of the elastic energy. For Heyman’s

materials is just the potential energy of the loads.

Then we may search a displacement field which is

the solution of the boundary value problem, by

minimizing the potential energy } of the loads over

a convenient function set K for the displacements. A

possible simple choice for the set K� approximating

this setK for a continuum made of Heyman’s material

is to consider that the strain is zero a.e. inside the

domain, namely that K� is the set of piecewise rigid

displacements. This is actually the case if the structure

is composed of monolithic blocks which are not likely

to break at their inside (see De Serio et al. [16])

We must point out that piecewise rigid displace-

ments, which are the most frequent and evident

manifestation of masonry deformation in real masonry

constructions, are not at all simple displacement fields

for a continuum, and are usually ruled out in the

standard numerical codes for fluids and solids which

are employed to handle the complex boundary value

problems of continuum mechanics. A usual setting for

problems in which finite jumps of the displacement are

admitted is the space SBV. The main difficulty with

displacements that belong to the space SBV, besides,

for deformable materials, the managing of the singu-

larity of strain at the tip of the crack, is the fact that the

location of the support of the singularity (that is of the

jump set) is not known in advance, and that the shape

and the topology of the parts over which the displace-

ment is regular, can be, in principle, rather wild.

Actually, a recent piecewise rigidity result by

Chambolle et al. (see [17]) generalizing the classical

Liouville result for smooth functions now states that

an SBV function y satisfying the constraint ry 2
SO 2ð Þ a.e., is a collection of an at most countable fam-

ily of rigid deformations, i.e. the body may be divided

into different components each of which is subject to a

different rigid motion.

Some issues connected with the managing of rigid

deformations with unknown interfaces is discussed,

with the aid of some simple examples, in the

forthcoming paper (by some of the present authors)

[18].

Here we consider a numerical approximation of the

minimum problem, based on a finite element subdi-

vision of the structure (a Caccioppoli partition) into

parts behaving as rigid blocks. The interfaces we are

talking about, that is the potential fracture lines, are the

common boundaries among the blocks. In the plane

case, these interfaces must be made of straight pieces.

To obtain an approximation of the minimizer (that is
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of the mechanism minimizing the energy) we can

proceed into two ways: (1) Fix a mesh geometry and

iterate the minimization with respect to the rigid body

displacements, by refining the mesh until a satisfying

picture of the interfaces is obtained. (2) Fix the

topology of the mesh and minimize both with respect

to the geometry of the mesh in the reference config-

uration and to the rigid body displacements.

The first method produces a sequence of linear

programming problems, the second one a single

constrained non-linear minimization problem.

The application of the second method is explored in

[18], by applying it to some benchmark problems.

In the present paper we apply the first method, by

considering piecewise rigid displacements over a

partition of the structures that is fixed in advance and

whose geometry is not a part of the sought solution. A

minimal energy criterion, based on the described

discretization of the structure into rigid blocks, is

proposed to select the mechanism of the structure

responding to given boundary displacements. For any

given partition of the structure into rigid blocks, this

simple criterion can easily detect, at least in principle,

the position of the articulations of the blocks (hinges)

and find the corresponding field of piecewise rigid

displacement.

Two case studies, concerning two real ancient

masonry structures, are analysed to illustrate the

method.

2 The masonry-like material

A 2d masonry structure S is modelled as a continuum

occupying a domain X of the 2d Euclidean space E2.

The stress inside X is denoted T and the displacement

of material points x belonging to X is denoted u. We

restrict to the case of small strains and displacements

and adopt the infinitesimal strain E as the strain

measure.

We call masonry-like material a continuum that is

Normal Rigid No-Tension (see [5]) in the sense

defined by the following restrictions

T 2 Sym�; E 2 Symþ; T � E ¼ 0; ð1Þ

Sym�; Symþ being the convex cones of negative

semidefinite and positive semidefinite symmetric

tensors.

Under these restrictions, the material satisfies a law

of normality with respect to the cone Sym� of the

feasible stresses, in the sense that restrictions (1) are

equivalent to the normality assumptions:

T 2 Sym�; T � T�ð Þ � E� 0; 8 T� 2 Sym�;

ð2Þ

and to the dual normality assumptions

E 2 Symþ; E� E�ð Þ � T � 0; 8E� 2 Symþ: ð3Þ

In particular the normality assumptions represent

the essential ingredients for proving the validity of the

theorems of Limit Analysis (see [5, 10, 19]).

We observe that the restrictions (1) essentially

translate into mathematical terms the Heyman’s

assumptions on masonry behaviour (see [1]), namely:

1. Stone has no tensile strength;

2. The compressive strength of stone is effectively

infinite;

3. Sliding of one stone upon another cannot occur.

Remark 1 Though Heyman analysis is not concerned

with a continuum, condition (1)1 appears as a natural

extension of assumptions (1), (2). The presence of

elastic deformations in compression, even if is not

explicitly excluded, is never considered by Heyman.

For what concerns the law of normality, Heyman

formulates it for characteristics rather than for stresses.

Consequently, the role of and the restrictions on the

latent strain, that is the deformation associated to the

unilateral constraint on stress, are not defined. In the

context of the continuum model, assumption (3), that

is the no-sliding assumption, is implied by normality,

but the no-sliding assumption, by itself, is not

sufficient to prove normality in this broader context.

3 Regularity of stress and strain: singular fields

3.1 Concentrated strain and stress

For NRNT materials, it is possible to admit that strain

and stress are bounded measures. Bounded measures

can be decomposed into the sum of two parts

1 The superscript ‘‘n’’ to the formula (m) represents the nth item

in the formula (m).
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E ¼ Er þ Es; T ¼ Tr þ Ts; ð4Þ

where ð:Þr
is the part that is absolutely continuous with

respect to the area measure (that is ð:Þr
is a density per

unit area) and ð:Þs
is the singular part.

On admitting singular strains and stresses, it is

possible to admit that both the displacement u and

the stress vector s be discontinuous. The stress vector

is the contact force transmitted across a surface of

unit normal n, and, in Cauchy’s sense, is related to

the regular part of the stress through the relation

s ¼ Trn.

3.2 Displacement jumps

If the displacement vector exhibits a jump disconti-

nuity across a regular curve C, on such a curve the

strain is concentrated, namely is a line Dirac delta

whose amplitude coincides with the value of the jump

of u across C. Denoting t; n the unit tangent and the

unit normal to C, and calling X�; Xþ the two parts on

the two sides of C;Xþ being the part toward which n

points, the jump of u across C can be denoted as

follows

u½ � ¼ uþ � u�; ð5Þ

and decomposed into tangential and normal

components:

u½ � ¼ wtþ vn; w ¼ u½ � � t; v ¼ u½ � � n: ð6Þ

Denoting d Cð Þ the unit line Dirac delta with support
on C, the concentrated strain on C, taking into account
the relation defining the infinitesimal strain in terms of

the displacement: E ¼ 1
2
ruþruTð Þ, and the mate-

rial restrictions on strains for NRNT materials, takes

the form

E ¼ vd Cð Þn� n; v� 0; ð7Þ

since, taking into account the restriction E 2 Symþ, it
must be

w ¼ 0; ð8Þ

That is, the two parts X�; Xþ may separate but cannot

penetrate each other, and the sliding w alongCmust be

zero.

3.3 Stress vector jumps

If the stress vector exhibits a jump discontinuity across

a regular curve C, on such a curve the stress is

concentrated, namely is a line Dirac delta whose

amplitude P is related to the jump of s across C.
Recalling the definition introduced above for t; n, on

adopting the previous notation, the jump of s across C
can be denoted as follows

s½ � ¼ sþ � s�; ð9Þ

and decomposed into normal and tangential

components

s½ � ¼ ptþ qn; p ¼ s½ � � t; q ¼ s½ � � n: ð10Þ

Denoting d Cð Þ the unit line Dirac delta with support
on C, the stress concentrated on C, taking into account
the balance equations divT þ b ¼ 0, and the material

restrictions for NRNT materials, takes the form

T ¼ Pd Cð Þt � t; P0 þ p ¼ 0; Pqþ q ¼ 0;
P� 0;

ð11Þ

where q is the curvature of the line C and P0 is the

derivative of P with respect to its argument, namely

the arc length along C. The amplitude P of the

concentrated stress represents a concentrated axial

contact force acting along the 1d substructure C. The
last relation in (11) says that such a force must be

compressive.

4 The boundary value problem for masonry like

materials

We consider a masonry structure X, composed of

NRNT masonry-like material in equilibrium under the

action of body loads and given surface loads and

surface settlements, prescribed on a fixed partition of

its boundary oXN [ oXD ¼ oX. The boundary value

problem (bvp) for such a structure can be formulated

as follows:

‘‘Find a displacement field u and the allied strainE,

and a stress field T such that

E ¼ 1

2
ruþruT
� �

; E 2 Symþ; u ¼ �u on oXD;

ð12Þ
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divT þ b ¼ 0; T 2 Sym�; Tm ¼ �s on oXN ;

ð13Þ

T � E ¼ 0; ð14Þ

m being the unit outward normal to oX’’.
We introduce the sets of kinematically admissible

displacements K, and of statically admissible stresses

H, defined as follows:

K¼ u2 S=E¼ 1

2
ruþruT
� �

2 Symþ&u¼ �uonoXD

� �
;

ð15Þ

H ¼ T 2 S0=divT þ b ¼ 0; T 2 Sym�;f
Tm ¼ �s on oXNg;

ð16Þ

S; S0 being two suitable function spaces. A solution of

the bvp for masonry-like structures is a triplet

u;E uð Þ;Tð Þ such that u 2 K; T 2 H; and

T � E uð Þ ¼ 0.

Remark 2 On admitting discontinuous displace-

ments and singular stresses, the differential equations

in (12), (13) must be interpreted in a weak sense.

Besides, the boundary condition in (12) makes sense

only if we consider that the domain is closed on oXD,

that is, that the displacement must actually take the

given value on this part of the boundary, and

considering the possible mismatch of the displacement

between the outside and the inside of the domain as a

strain concentrated along the boundary. Finally, in the

boundary condition in (13), the trace of T at the

boundary, that is the emerging stress vector s Tð Þ on
oXN , is not of the Cauchy form s Tð Þ ¼ Tm, unless T is

regular. If T is a line Dirac delta of the form T ¼
Pd Cð Þt� t and C crosses the boundary at a point X 2
C at an angle, that is t �m 6¼ 0, then s Tð Þ ¼ Pd Xð Þt.
The special case in which the line C is tangent to oXN ,

deserves a special attention. In such a case, there is not

any stress vector s Tð Þ emerging at the boundary due to

the singular stress, but still the boundary condition

Tm ¼ �s must be modified, since the given tractions �s

can be balanced, wholly or in part, by the singular

stress concentrated on C. Therefore, there is not any

local restriction on the sign of the normal component

of the tractions given along the boundary: purely

tangential tractions and even tensile loads may be

applied if the boundary is locally concave. In the

particular case in which the interface is straight,

equilibrium and material restrictions can be enforced

if and only if �s �m� 0, but still there is no restriction

on �s � k, k being the unit tangent vector to oX.

5 The kinematical problem, the equilibrium

problem and the coupling of stress and strain

The bvp for masonry-like materials can be split into

two parts: the search of a displacement field belonging

to K, and the search for a stress field belonging to H.

We call the first problem ‘‘the Kinematical Problem

(KP) for ML structures’’, and the second problem ‘‘the

Equilibrium Problem (EP) for ML structures’’. These

two problems are essentially uncoupled but for

condition (14), and can be taken up separately.

First of all, we observe that either of the two

problems can be incompatible, in the sense that the

sets K, H can both be void. In particular, the

compatibility of the EP is the key issue of the two

theorems of Limit Analysis, which deal with the

possibility of collapse of the structure.

In what follows we will assume that both K and H
are not empty, that is that the kinematical and the

equilibrium problem are both compatible (that is, in

particular, there is no possibility of collapse) and study

the case in which both K and H have infinitely many

elements.

Remark 3 A trivial case of compatibility occurs if the

data are homogeneous. If the displacement data are

zero, the KP is homogeneous and admits the solution

u ¼ 0. If the load data are zero, the EP is homoge-

neous and admits the solution T ¼ 0.

In what follows we will study thoroughly the KP in

the case in which the displacement data (the settle-

ments) are not zero, and also the load applied on X are

not zero.

6 The non-homogeneous KP: an energy criterion

When trying to solve the non-homogeneous kinemat-

ical problem, that is the boundary value problem for

the displacement u under restrictions (1), the problem

arises of selecting, among the possibly many kine-

matically admissible displacement fields, the ones that

guarantee also the equilibrium of the loads imposed on

the structure.
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For elastic, and even for some elastic-brittle

materials, these states, that we can call solutions of

the boundary value problem, can be found by search-

ing for the minimum of some, suitably defined, form of

energy. For NRNT materials such an energy is just the

potential energy of the loads.

Then a displacement field which is the solution of

the boundary value problem, can be searched by

minimizing the potential energy } of the loads. Such

minimum problem is formulated as follows:

‘‘Find a displacement field u	 2 K, such that

} u	ð Þ ¼ min
u2K

} uð Þ; ð17Þ

where

} uð Þ ¼ �
Z

oXN

�s � uds �
Z

X
b � uda; ð18Þ

is the potential energy of the given loads’’.

7 Minimum of } and equilibrium

The proof of the existence of the minimizer u	 of } uð Þ
for u 2 K, is a complex mathematical question and is

beyond the scopes of the present paper. The interested

reader can refer to the papers [20, 21], where the

existence of the minimum is discussed, with the direct

method of the calculus of variation, for the parent

problem concerning Elastic Normal No-Tension

materials. In those papers the existence of the mini-

mizer u	 of the total potential energy, is proved under

some restrictions on the given loads (among which the

so-called safe load condition) for u 2 BD Xð Þ, in the

case either of pure traction problems or pure displace-

ments problems: the case of mixed problem is not

considered.

On assuming that the KP is compatible (that is

K 6¼ ;Þ, what we can easily show is that:

a. If the load is compatible (that isH 6¼ ;) the linear
functional } uð Þ is bounded from below.

b. If the triplet u	;E u	ð Þ;T	ð Þ is a solution of the

bvp, it corresponds to a weak minimum of the

functional } uð Þ.

Proofs

a. If the load is compatible then there exists a stress

field T 2 H, through which the functional } uð Þ

defined on K, for any u 2 K, can be rewritten as

follows

} uð Þ ¼ �
Z

oXN

�s � u ds �
Z

X
b � u da

¼
Z

oXD

s Tð Þ � �u ds �
Z

X
T � E uð Þ da; ð19Þ

s Tð Þ being the trace of T at the boundary (see

Remark 2). Assuming that the displacement data

are sufficiently regular (say continuous), being

s Tð Þ a bounded measure (see Remark 2), the

integral
R
oXD

sðTÞ�u dr is finite; then, since T 2
Sym� and E 2 Symþ, the volume integral is non

negative, and } uð Þ is bounded from below.

b. If u	;E u	ð Þ;T	ð Þ is a solution of the bvp, then, for
any u 2 K, we can write

} uð Þ � } u	ð Þ ¼ �
Z

oXN

�s � u ds

�
Z

X
b � u� u	ð Þ da

¼ � r
X
T	 � E uð Þ � E u	ð Þð Þ da:

ð20Þ

The result } uð Þ � } u	ð Þ� 0; 8u 2 K, follows form

dual normality [see (3)].

The physical interpretation of the above result is the

following. Since the displacement field solving the

bvp corresponds to a state of weal minimum for the

energy, then it is a neutrally stable equilibrium state, in

the sense that the transition to a different state requires

a non-negative supply of energy.

Remark 4 Based on the minimum principle, if the EP

is compatible and the KP is homogeneous, u ¼ 0 is a

minimum solution. Indeed, in such a case

} uð Þ ¼ �
Z

oXN

�s � uds �
Z

X
b � uda

¼ �
Z

X
T � E uð Þda; ð21Þ

T being any element ofH. Since the right hand side of

(18) is non negative, } 0ð Þ ¼ 0 is the minimum of }

and u ¼ 0 is a minimizer of the potential energy.

Notice that, in this case, any T 2 H is a possible

solution in terms of stress, since T � E 0ð Þ ¼ 0 for any

T.
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8 Approximation of the KP with piecewise rigid

displacements: rigid blocks

We consider the approximate solution of the minimum

problem (17) obtained by restricting the search of the

minimum in the restricted class Kpr of piecewise rigid

displacements. This infinite dimensional space is

discretized by considering a finite partition

Xið Þi2 1;2;...;Mf g; ð22Þ

of X into a number M of rigid pieces, such that

XM

i¼1

P Xið Þ\1; ð23Þ

P Xið Þ being the perimeter of Xi. In particular,

restricting to convex polygonal elements, the bound-

ary oXi of the n-polygone Xi, is composed of n

segmentsC, of length ‘, whose extremities are denoted

generically 0,1.

We call interfaces the segments C that are, either

the common boundaries between adjacent elements, or

part of the constrained boundary (that is those C
representing interfaces with the soil).

We call the finite dimensional approximation of

Kpr generated by this partition: KM
pr, and consider the

minimum problem

} ûð Þ ¼ min
u2KM

pr

} uð Þ: ð24Þ

To represent a generic piecewise rigid displacement

u 2 KM
pr we may use the vector U of 3M components

represented by the 3M rigid body parameters of

translation and rotation of the elements. These

parameters are restricted by the assumption that the

strain must be positive semidefinite. For piecewise

rigid displacements the strain is concentrated along the

interfaces among blocks (that is, in the present case,

along the segments C), and recalling (11), takes the

form:

E ¼ vd Cð Þn� n; ð25Þ

where

v ¼ u½ � � n� 0: ð26Þ

Then, on each segment C, besides the unilateral

restriction (26), we also have the equation

w ¼ u½ � � t ¼ 0: ð27Þ

Notice that conditions (26), (27), derived from the

assumption of normality, represent a condition of

unilateral contact with no-sliding among blocks.

The static counterpart of these constraints concerns

the stress vector s applied alongC. Such a stress vector
represents, along the interfaces (that is the internal

interfaces and the external interfaces with the soil), the

reaction associated to the constraints (26), (27). It

coincides with the given applied tractions �s where the
boundary of the blocks coincides with the loaded part

of the boundary. By calling

r ¼ s � n; s ¼ s � t; ð28Þ

the normal and tangential stress along C, the condition
on s is

r� 0: ð29Þ

Notice that the tangential component of s is not

constrained and can be applied along the straight

interface C, even if r ¼ 0 (see Remark 2).

By calling N the number of the interfaces C, and
v 0ð Þ; v 1ð Þ;w 0ð Þ;w 1ð Þ the normal and tangential com-

ponents of the relative displacements of the ends 0, 1

of the segment C, the restrictions (26), (27) are

equivalent to the 2N inequalities

v 0ð Þ� 0; v 1ð Þ� 0; ð30Þ

and the 2N equalities

w 0ð Þ ¼ 0;w 1ð Þ ¼ 0: ð31Þ

The restrictions (30), (31) can be easily expressed

in terms of Û, rewriting them in the matrix forms

AÛ� 0; ð32Þ

BÛ ¼ 0: ð33Þ

Finally, the minimum problem (24) which approxi-

mates the minimum problem (17) can be transformed

into

} Û0
� �

¼ min
Û2KM

} Û
� �

; ð34Þ

KM being the set

KM ¼ Û 2 R3M=AÛ� 0; BÛ ¼ 0
� �

: ð35Þ

Remark 5 The minimization problem (34) that we

propose for approximating the minimization problem
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(17), transforms the original minimization problem for

a continuum, into a minimization problem for a

structure composed of rigid parts, acted on by given

loads and given settlements and subject to unilateral

contact conditions along the interfaces. Problem (34)

is a standard linear finite dimensional minimization

problem, since the function } Û
� �

is a linear function

of the 3 M-vector Û and the constraints are linear. The

existence of the solution of this approximate problem

is trivially guaranteed if the original problem is

bounded from below (see Sect. 9). For a small number

of variables it can be solved exactly with the simplex

method (see [22]), and for large problems there exist a

number of well-known, and efficient, approximate

alternatives (see [23, 24]).

9 Some examples

The examples we present here are developed with the

program Mathematica� [25]. The analysis proceeds

into the following steps:

1. Definition of the structural geometry and of its

discretization;

2. Discretization of the displacement field;

3. Definition of the potential energy as a linear

functional of the rigid displacement parameters;

4. Definition of the internal and external boundary

conditions;

5. Numerical solution of the problem with a linear

programming routine;

6. Post-processing (evaluation of the displacement

corresponding to the solution).

1. Let us denote X� the domain representing the

structural geometry in E2; consider the minimum

rectangular domain X� containing X�. The whole

domain X� is partitioned into N rectangular basic units

Xi, we call them subdomains. The set p� ¼
Xið Þi2 1;...;Nf g constitutes a partition of X�, that is:

[N

i¼1

Xi ¼ X� andXi \ Xj ¼ ;;

8 i; j 2 1; . . .;Nf g=i 6¼ j:

ð36Þ

To take into account the presence of voids in the

domain X� is necessary to perform an appropriate

elimination of some elements belonging to p�. To this
purpose, we consider the set

pM ¼ Xi 2 p�=Xi

\
X� 6¼ ;

n o
ð37Þ

where M is the cardinality of pM . Defining X ¼
S

Xj2pM

Xj from (37) it follows:

X 
 X�: ð38Þ

Therefore pM is a particular cover of the real

structural domain X�: it is the minimum cover of X�
(with respect to the cardinality) and at the same time it

constitutes a finite partition of X, which becomes our

structural model domain. Finally, it is to be noticed

that pM is a countable set of subdomains having finite

perimeter, therefore, is a Caccioppoli partition of X in

the sense of Chambolle et al. [17].

2. The displacement field u ¼ u xð Þ, defined in X, is
approximated as piecewise rigid. We use pM to

introduce this approximation, namely:

u : x 2 X !

u1; if x 2 X1;

..

.

uj; if x 2 Xj;

..

.

uM ; if x 2 XM;

8
>>>>>><

>>>>>>:

ð39Þ

where uj ¼ ujXj
8j 2 1; . . .;Mf g is an infinitesimal

rigid displacement. In 2d problems, uj is a function of

three Lagrangian parameters assumed as the two

translations of the centroid Gj of Xj and the rotation

about Gj:

uj ¼ vj þUj x� x0j

� 	
; ð40Þ

where x0j is the position vector of Gj, and

Uj 2 Skw; ð41Þ

and then

Symruj ¼ 0; ð42Þ

In (40) vj ¼ Uj;Vj

� �
is a vector collecting the two

translation components in a fixed global Cartesian

reference, and:

Uj ¼
0 �Uj

Uj 0


 �
ð43Þ
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is the infinitesimal rotation matrix in the same

reference.

Therefore, the displacement field u ¼ u xð Þ depends
on 3M unknown Lagrangian parameters:

ðUj;Vj;UjÞj2f1;...;Mg: ð44Þ

The 3M independent parameters can be collected in

the single vector:

Û ¼ U1;V1;U1; . . .;Uj; Vj;Uj; . . .;UM ;VM;UM

� �
;

Û 2 R3M:

ð45Þ

3. Since in our theory, both fracture energy and

elastic energy are neglected, the potential energy E

coincides with the potential energy of the external

forces only, and can be expressed in terms of the

components of Û. E is the opposite of the scalar

product of the applied forces times the displacements

of their points of application, and is a linear function of

3M unknown Lagrangian parameters, that can be

symbolically expressed as follows:

E ¼ E Û
� �

; Û 2 R3M: ð46Þ

The problem can be formulated [as already

described in (34), see Sect. 10] as a linear program-

ming one, in the form:

min
Û2KM

EðÛÞ; ð47Þ

KM being the subset of R3M defined by the unilateral

and bilateral constraints associated to the contact and

fixing conditions. It remains to define explicitly the

subset KM � R3M , taking into account Heyman’s

masonry-like restrictions (1) defining NRNT materi-

als. The kinematical consequence of Heyman’s

assumptions are summarized in Sect. 4 and condensed

in the conditions (9), (10). In the subsequent point such

restrictions are rewritten as contact conditions along

the element interfaces, in terms of relative displace-

ments, taking into account the analysis presented in

Sect. 10 [see conditions (26), (27) and (30), (31)].

4. To fix ideas, let Xi and Xj be two contiguous

subdomains, with the l A;Bð Þ side in common (see

Fig. 1). Let n and t be the normal and tangential unit

vectors to l A;Bð Þ (see Fig. 1b), and uj Pð Þ the nodal

displacement of a material point P belonging to the Xj

subdomain.

The kinematical conditions between Xi and Xj

along l A;Bð Þ can be expressed [recalling (26), (27)] as
follows:

uj Pð Þ � ui Pð Þ
� �

� n� 0 8 P 2 l A;Bð Þ; ð48Þ

uj Pð Þ � ui Pð Þ
� �

� t ¼ 0 8P 2 l A;Bð Þ: ð49Þ

Xj being the subdomain toward which the unit normal

n points. Taking into account the linearity of uk

8k 2 1; . . .;Mf g, the first of the previous conditions is
equivalent to two inequalities [see (30)]:

uj Að Þ � ui Að Þ
� �

� n� 0 ð50Þ

uj Bð Þ � ui Bð Þ
� �

� n� 0: ð51Þ

Similarly, the no-sliding condition can be expressed

(in a redundant way) through the two equations (see

(31)):

uj Að Þ � ui Að Þ
� �

� t ¼ 0 ð52Þ

uj Bð Þ � ui Bð Þ
� �

� t ¼ 0; ð53Þ

that, due to the rigidity, can be rewritten into one of the

two equivalent forms:

uj Að Þ � ui Bð Þ
� �

� t ¼ 0 , uj Bð Þ � ui Að Þ
� �

� t ¼ 0:

ð54Þ

Fig. 1 Example of the

partition of the domain with

a grid of squares (a). Close
up of two adjacent elements

Xi and Xj and showing the

common interface l A;Bð Þ
(b)
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Finally, the Heyman conditions (9), (10) relative to

l A;Bð Þ are synthesized into three relations:

uj Að Þ � ui Að Þ
� �

� n� 0; ð55Þ

uj Bð Þ � ui Bð Þ
� �

� n� 0; ð56Þ

uj Að Þ � ui Bð Þ
� �

� t ¼ 0; ð57Þ

which can be easily expressed in terms of the 6

Lagrangian parameters Uk;Vk;Ukð Þk2 i;jf g: If n denotes

the number of internal sides, the internal boundary

conditions consist of 2n linear inequalities and n linear

equalities; with some easy transformations, the exter-

nal boundary conditions can be implemented as

fictitious internal contact conditions. If the constraints

are perfect, then the corresponding equalities and

inequalities are homogeneous. The given settlements

(or eigenstrains) are the known terms of the non-

homogeneous conditions. All together the constraints

define a domain KM � R3M , in which the optimal

solution has to be found; such domain is a convex

polytope of the R3M space.

5. With the above approximation the structural

problem is formulated as a minimum problem:

‘‘find a piecewise rigid displacement Û0 which

minimizes the potential energy E in KM’’:

E Û
	� 	

¼ min
Û2KM

E Û
� �

: ð58Þ

This linear programming problem is solved with the

simplex method, or with the interior point method if

the number of unknowns is large.

6. Once the minimizer Û0 has been obtained it is an

easy task to construct the deformed shape of the

structure. The moving part of the structure represents a

one degree of freedom mechanism controlled by the

form of the given settlements, i.e. it is statically

determined. The relative displacements among the

blocks play the part of fractures, and hopefully give an

approximation of the real fracture pattern produced by

known settlements.

Remark 6 Usually, the problem to be solved for real

structures presents itself in a different way, since

cracks are detectable and the settlements producing

them are usually unknown. Therefore, to adopt our

scheme in practical applications, a sort of inverse

identification procedure must be implemented.

10 Numerical examples

As an illustration of the method two examples are

carried out.

10.1 Example 1: XVIII century building in Torre

Annunziata (Naples)

The first example we present concerns the analysis of

the façade of a XVIII century historical buildings,

made of local tuff stone, located in via Nazionale,

Torre Annunziata. In Fig. 2 the front of the building

with the drawing of the cracks (obtained through a

photographic image reconstruction), and its second

floor plan are shown.

With reference to Fig. 3a, we observe that the

parapet inside the dashed rectangle is a non-structural

element and then is not considered in the analysis. The

masonry structure in the dot-dashed rectangle is a

semi-detached construction and therefore is not con-

sidered in the analysis either. In the model we

construct (see Fig. 3b), we use 490 identical square

elements of side 0.80 m, for which the corresponding

number of unknowns of problem (56) is 1470. As

external load we consider the self-weight only, on

assuming a masonry density of 1600 kg/m3.

We consider as data of the problem both foundation

settlements and given eigenstrains concentrated along

the two light grey strips, located above two of the

ground floor masonry panels. The eigenstrains simu-

late a widespread crushing of such wall panels, caused

by the enlargement of the adjacent openings (see

Fig. 3b). Both settlements and eigenstrains represent

the known terms of some of the inequalities consid-

ered as constraints in the LP program. The total

number of restrictions, both equalities and inequalities

(including internal and external boundary conditions)

is 5244.

Since the exact distribution and the relative ampli-

tude of the set of settlements and distortions which

caused the cracks were not known exactly, we

considered simple forms of such settlements and

performed some qualitative parametric analysis to

identify the relative values giving the better descrip-

tion of the detected crack pattern. The foundation

settlement and eigenstrains shape which better reflect

the real crack pattern are shown in Fig. 4. We used the

interior point routine implemented in the program
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Mathematica � to solve the related LP problem; the

solution, corresponding to the optimal choice of the

parameters is shown, in term of displacement, in

Fig. 4.

10.2 Example 2: XVII centuries Church (Naples)

The second example concerns the analysis of ‘‘Chiesa

di Santa Maria Incoronatella della Pietà dei Turchini’’,

22.5
1.150.660.74

12
.8
3

0.
75

0.
65

0.
75

NR

NR

NR

(a) (b)

Fig. 2 Front view of a XVIII century building in Torre Annunziata (Naples) (a). In a the crack pattern, traced through digital image

reconstruction from the photo, is also reported. Plan of the second floor of the building b some parts of the plan are not shown

(a) (b)

Fig. 3 Front view of the building (a) and rigid block

discretization (b). The zone of crushing is highlighted with

two light grey strips. Notice that the drawing in a was obtained

by photo reconstruction and that the two openings at the ground

floor are not visible being covered by shop windows
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a XVII century church located in via Monteoliveto in

Naples. In Fig. 5a, b, the plan and a lateral section

view of the structure are reported. The typical

structure of a Church of Latin plan is rather vulnerable

to seismic effects and has been the object of several

studies (among which we recall [8, 26], and references

therein).

In particular we study, as a plane case, the left wall

of the central nave, the big arch of the transept and the

left lateral wall of the apse. The discretized plane

model we construct, is constituted by 3183 square

blocks of side 0.52 m (see Fig. 5c). As external loads,

in addition to the self-weight of the structure

(q = 1800 kg/m3), uniformly distributed tractions

(applied as shown in Fig. 5c) representing the action

of the secondary structures, and whose values are also

reported in Fig. 5c, are also considered. The total

unknowns of the problem are 9549 and the number of

restrictions, both equalities and inequalities, is 36,256.

In the lateral section view of Fig. 5b, the existing

crack pattern, detected and drawn before the restora-

tion works had taken place, is reported. The disarray

that was visible consisted essentially in a rigid body

mechanism of a number of macro-blocks of the

structure, separated by manifest cracks, and presum-

ably due to ground settlements. However the overall

size of such rigid body displacements, and the size of

the cracks, were everywhere small when compared to

the overall size of the structure, and not such to

compromise, in any way, the equilibrium of the

structure.

The aim of the present analysis is to obtain a

simulation of such crack pattern and macro-block

mechanism as close as possible to the real one.

Although the cause of the mechanism was pretty clear,

since the exact distribution and the relative amplitude

of the set of settlements which caused the cracks were

not known exactly, we considered simple forms of

such settlements and performed a number of qualita-

tive parametric analyses to identify the relative values
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Fig. 4 Two representations of the same solution u0 corresponding to the minimizer Û0 of the LP problem

cFig. 5 Plan (a) and section A–A0 (b) of the church and the rigid
block discretization (c). The crack pattern, reconstructed from a

photographic survey, is shown in a and b. The distributed

tractions due to the secondary structures are reported in c
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(a)

(b)

(c)

q4

q1

q2

q3

q1=96.1 kN/m q2=57.7 kN/m

q3=96.1 kN/m q4=57.7 kN/m
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of such data giving the better description of the

detected crack pattern. The foundation settlement

profile shown in Fig. 6, was identified as that giving

the best qualitative fit with the real crack pattern. The

results in terms of rigid body displacements of the

blocks are reported in Fig. 6.

An even better fit of the real partition into blocks

was obtained considering, besides the profile of

vertical settlements represented in Fig. 6, also the set

of horizontal displacements depicted in Fig. 7.

In Fig. 7, besides the silhouette of the deformed

configuration obtained through energy minimization,

also two comparisons between the real and simulated

crack patterns and macro-block mechanisms, are also

reported. In particular in the center picture, in order to

identify the rigid blocks, a colour map of the intensity

of the rotation is depicted. Macro-elements having the

same rotation have a uniform colour and are separated

among each other by cracks. In the bottom picture the

boundaries of the simulated macro-blocks are drawn

together with the real cracks.

We must say that, though a close correlation

between the size, the number and the location of the

blocks can be detected, the direction of real and

simulated cracks differ markedly, especially in the

case of slanted orientations.

11 Conclusions

In the present work, we propose and develop a

computer code for the prediction of fracture patterns

produced by a given set of kinematical data (settle-

ments/distortions).

In practical applications to real structures, the main

critical issue of a fracture survey is identifying the

particular form of foundation settlements producing

the detected crack pattern.

The computer program we develop here, represents

a deterministic tool enabling to find the mechanism

and the fracture pattern due to known kinematical

data, in a structure composed of rigid pieces in mutual

unilateral contact.

In this work, we apply the method to two real

examples. Based on the results we obtain for these two

examples of different complexity, we can say that the

method is able to reproduce satisfactorily the size, the

number and the location of the rigid macro-blocks in

which the structure decomposes when a mechanism

forms due to known settlements. A lesser degree of

correlation is detected concerning the crack path, in

particular when the orientations of the real cracks are

sensibly different from those of the element interfaces.

In these two examples, since the exact settlements

producing the mechanism are not known, we try to

identify manually a specific combination of simplified

settlements over a given set. A number of different

runs of the program were performed, by varying the

relative value of the settlements over a specified grid

of individual values, choosing the combination which

gave the ‘‘best fit’’.

It goes without saying that a rational identification

scheme, based on the code that we introduce in the

present paper, should be implemented to make the

method effective in practical applications. The devel-

opment of such a task is outside the scopes of the

present paper.

bFig. 6 Two representations of the same solution u0 corre-

sponding to the vertical foundation settlements
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identified by uniform colour, meaning uniform rotation; the real

crack pattern is also reported in transparency. In the bottom

figure the contours of the blocks are reported, together with the

real crack pattern, in transparency. (Color figure online)
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