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Abstract In the formulation of mechanical theories,

physicists usually neglect complementary energy,

while rational mechanicians and engineers widely

use it, especially in continuum physics and structural

mechanics. Indeed, in many cases the solutions of

elastic problems are found in a simpler way by

resorting to complementary, rather than potential,

energy. Moseley and Cotterill in England, Menabrea

and Castigliano in Italy were among the first to

introduce complementary energy in their papers,

though implicitly; a more explicit formulation is in

Crotti’s papers; and Engesser extended it to non-linear

elasticity. In this work we run through the history of

complementary energy and search for its possible

mechanical meaning.

Keywords Complementary energy � Structural
mechanics � Castigliano’s theorem � History of

mechanics

1 Introduction

Elastic problems can be tackled by approaches in

terms of the so-called generalised displacements or

forces [2, 18, 25, 29, 31]. In both cases, two strategies

to obtain the governing equations for the fields of

interest may be adopted. The first one yields differ-

ential equations directly, calling for principles of

conservation (of mass, quantity of motion, living

force). By the second strategy, the relevant field

equations are derived by suitable conditions of

stationarity of certain functionals that may be inter-

preted as general energies and are supposed to depend

on some measurable data. The stationarity of these

energies expresses their invariance for suitable varia-

tions of (some of) the measurable physical data on

which they depend in certain functional spaces. In a

generalised displacements approach, the scalar quan-

tity on which it is possible to operate, at least for

conservative problems, is usually called potential

energy and is widely used by physicists, rational

mechanicians, engineers. In a generalised forces

approach, the relevant scalar quantity is usually called

complementary energy and in practice is used only by

applied mechanicians and engineers, especially deal-

ing with the resolution of redundant structures

[16, 17, 26, 34, 38, 39]. Indeed, even though comple-

mentary energy was historically introduced almost at

the same time as potential energy, under the name of

force function, or work function, its use soon became
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restricted to the above quoted scientific community,

and physicists prefer to use (generalised) potential

functions.

Literature often dealt with this: [1, 4, 28, 30, 33,

41, 46–49] are monographs representing an appar-

ently incomplete list of published works. A detailed

historical account, together with the relevant com-

parisons with a contemporary point of view is

missing, despite some relevant contributions [3]; the

present work is thus intended to fill this gap. The

paper is organized as follows. In Sect. 2 we introduce

the potential and complementary energies from a

contemporary point of view, and their reciprocity

properties in terms of the Legendre transform, limited

to the geometric linear case (a.k.a. ‘‘infinitesimal’’ or

‘‘small’’ displacements and strain).We present the use

of both energies in elementary applications of linear

elasticity; we stress how in structural mechanics the

use of complementary energy immediately leads to

technical solutions. In Sect. 3 we run through the

historical birth and development of elastic comple-

mentary energy, with the discussions that arose in the

scientific community of the time about the correct

statement of its conditions of stationarity. Along with

this critical presentation, we search for a possible

mechanical interpretation of elastic complementary

energy. Section 4 deals with the analysis of constitu-

tively non-linear elastic systems. A final discussion is

given in Sect. 5. Before listing the bibliography, two

attachments complete the paper: ‘‘Appendix 1’’

contains the original sources from literature; ‘‘Ap-

pendix 2’’ presents a comprehensive list of the

symbols adopted in Sect. 2.

2 A contemporary point of view

Let B be a continuous body; its boundary oB is

supposed to be regular and composed of two comple-

mentary disjoint portions o1B; o2B : o1B [ o2B ¼ oB,
o1B \ o2B ¼ ;, see Fig. 1. The body is supposed to be
subjected to the following external data:

(1) an assigned displacement uo over o1B;
(2) a load system f ¼ ðso; boÞ; so is the surface

density over o2B, and bo the volume density

over B.

The elastic problem looks for the triplet S ¼
fu;E; Sg of displacement, strain, and stress

characterizing the state of the body; the traction s is

then determined by Cauchy’s theorem s ¼ Sn, with n

the outward unit normal to oB. Let us define the real

spaces:

1. K of kinematically admissible displacement and

strain:

K :¼ fðu;EÞ 2
�
C1ðBÞ \C0ð �BÞ

�

�C0ð �BÞjD½u� ¼ E inB;Bo½u� ¼ uo ino1Bg;

2. S of statically admissible stresses:

S :¼ fS 2 C1ðBÞ \ C0ð �BÞ jS½S�
¼ �bo inB;B1½S� ¼ so in o2Bg:

The operators introduced so far act as follows: D

ensures kinematical compatibility,S equilibrium,

Bo;B1 the fulfillment of boundary conditions. In

linear elasticity, we have

symðruÞ ¼ E inB; u¼ uo ino1B;
S2Sym in �B; DivS¼�bo inB; Sn¼ so ino2B:

ð1Þ
The bilinear form of the external work spent by the

loads f on the displacement u makes f and u dual:

We :¼
Z

B
bo � uþ

Z

o2B
so � u; ð2Þ

the bilinear form of the internal work spent by the

stresses S on strains E makes S and E dual:

W i :¼
Z

B
S � E: ð3Þ

The principle of virtual work states thatWe ¼ W i and

expresses the physical requirement that the work spent

by the external actions in the considered process

cannot be lost; it puts in duality S and D, in the sense

so
bo

uo

B B∂1

B∂2

Fig. 1 A body B, with applied loads and imposed displacement
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that S ¼ D�, the adjoint of D. Synthetically, we may

infer the following relations:

f ¼ u�; S ¼ E�; S ¼ D�; S ¼ K�; ð4Þ

where ð�Þ� denotes the dual of ð�Þ in the sense stated by
(2) and (3).

The constitutive operator relates strain and stress at

any point of the body according to:

C : E7!S ¼ CE ; ð5Þ

we remark that C is not necessarily linear. In the so-

called hyper-elastic materials, the constitutive relation

expressed by (5) derives from a volume density of

potential energy, here assumed to be convex, so that:

S ¼ oE CðEÞ � Eð Þ:

Thus, the potential energy turns out to be

UðEÞ :¼
Z

B
CðEÞ � E: ð6Þ

Formally, the complementary energy1 U�ðE�Þ is

defined as the Legendre transform2 of the potential

energy (6):

U�ðE�Þ :¼ sup
E
fE � E� � UðEÞg: ð7Þ

A simple geometric interpretation of the definitions in

(6), (7) can be provided in a one-dimensional setting.

Let r; e; u; f denote stress, strain, displacement, and

loads, respectively. Then, according to (6), UðeÞ
provides the area under the graph of Ce (Fig. 2).

The curve e� ¼ Ce can be also seen as e ¼ C�1e�,
according to which independent variable is consid-

ered. The area U�ðe�Þ provides complementary

energy. At any point ðe; e�Þ of the curve, the sum of

the two areas U;U� provides the area of the rectangle
with sides e; e�:

UðeÞ þ U�ðe�Þ ¼ ee�: ð8Þ

Figure 2 shows that, at a point that does not lie on the

curve Ce,

UðeÞ þ U�ðe�Þ� ee�: ð9Þ

For any e�, by (8), (9) the difference ee� � UðeÞ is

largest on the curve, and equals U�ðe�Þ. Thus, the
explicit relation between UðeÞ and U�ðe�Þ is

U�ðe�Þ :¼ sup
e
fee� � UðeÞg;

which is nothing but the one-dimensional version of

(7).

By convex analysis [42], it is known that the

following statements are equivalent:

E� 2oUðEÞ; E ¼ oU�ðE�Þ; W i ¼ UðEÞþU�ðE�Þ;
ð10Þ

where oUðEÞ is the subdifferential of UðEÞ:

oUðEÞ ¼ fE� 2 K� j hE� E0;E
�i �UðEÞ

� UðE0Þ; 8E0 2 Kg:

If UðEÞ is smooth, by (4) the conditions (10) become

S¼ oEUðEÞ; E¼ oSVðSÞ;
Z

B
S �E¼ UðEÞ þVðSÞ;

where we set V ¼ U� for the complementary energy.

Let us introduce:

1. the load potential functional

FðuÞ :¼ �
Z

B
bo � uþ

Z

o2B
so � u

� �
¼ �We;

ð11Þ

2. the displacement potential functional

GðsÞ :¼ �
Z

o1B
s � uo; s ¼ Sn; ð12Þ

i.e., the opposite of the work spent by the traction

s on the displacement of o1B. To a structural

mechanician, used to constrained structures, G is

the work spent by the reactive forces maintaining

the constraints on the displacement they

impose.

1 This term (better, complementary work, Ergänzungsarbeit),

but not its definition and possible physical interpretations, is due

to Friedrich Engesser (1848–1931), see [26]. Details are in

Sect. 4.
2 Adrien-Marie Legendre (1752–1833) introduced his trans-

form in a memoir on differential equations [32], on pp. 346–347;

the conjugated quantity is defined as E� ¼ oEUðEÞ. The first to
use a Legendre transform in dynamics to turn ‘Lagrange’s

characteristic function’ into what we now call action was

William Rowan Hamilton (1805–1865) in his On a general

method in dynamics, Phil. Trans. of the R. Society, part II for

1834, 247–308.
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The total external potential is the opposite of the

work spent by the body and surface actions [28, 41]:

Lðu; sÞ :¼�
Z

B
bo � uþ

Z

oB
Sn � u

� �

¼�
Z

B
bo � uþ

Z

o2B
so � uþ

Z

o1B
s � uo

� �
:

ð13Þ

The definitions (11)–(13) imply at once that G and

F are related through Legendre transform:

GðsÞ ¼ sup
u
fLðu; sÞ � FðuÞg:

Then, the total potential energy U and the total

complementary energy W

Uðu;EÞ ¼ UðEÞ þ FðuÞ; WðS; sÞ ¼ VðSÞ þ GðsÞ;

are Legendre conjugated as well.

It is also easy to prove the two minimum theorems

(see [28, 41] for a modern proof):

(i) Let Kbe the set of all kinematically admis-

sible states and UðE; uÞ the functional on K

defined by

UfE; ug ¼ UðEÞ þ FðuÞ; 8 fu;Eg 2 K:

Further, if u is a solution of (1), (5), then

UfE; ug�Uf �E; �ug; 8 f�u; �Eg 2 K;

the equality holds only if f�u; �Eg 	 fu;Eg,
modulo a rigid displacement. That is, the total

potential energy attains a global minimum at

the solution of the elastic problem.

(ii) Let S be the set of all statically admissible

stress fields and WfS; sg the functional on S

defined by

WfS; sg ¼ VðSÞ þ GðsÞ; 8 fS; sg 2 S:

Further, if fS; sg is the solution of (1),(5), then

WfS; sg�Wf�S; �sg; 8 f�S; �sg 2 K;

the equality holds only if f�S; �sg 	 fS; sg. That
is, the total complementary energy attains a

global minimum at the solution of the elastic

problem.

2.1 Linearly elastic systems

For the linear elastic spring in Fig. 3a, the strain is

e ¼ uB � uA, with u the axial displacement; r is the

stress and Po the load applied at B. If j is the stiffness

of the spring, it is r ¼ je. The stored energy, load

potential, and total potential energy are

UðeÞ¼ 1

2
je2; FðuBÞ¼�PouB; Uðe;uBÞ¼

1

2
je2�PouB:

The minimum for U has to be sought in the space of

compatible strains, i.e., fe : e¼ uB�uA; uA ¼ 0g. Thus,

Uðe; uBÞ ¼ bUðuBÞ ¼
1

2
ju2B � Po uB;

whence the minimum of bU provides the unknown uB:

ouB
bUðuBÞ ¼ 0 ) uB ¼ Po

j
:

Here, the control variable (the datum) is the force Po

applied at the boundary o2B 	 fBg, with the same role

as so in (11). In the dual problem, the control variable

(the datum) is the imposed displacement uo at o1B 	
fAg [ fBg (Fig. 3b), and P has the same role as s in

ε

ε *

U(ε)

U (ε )* *

Fig. 2 1-D elasticity: potential and complementary energy

P

u

(a)

(b)

o

o

Fig. 3 A linearly elastic spring
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(12). An interesting and thorough discussion on the

role of Legendre transform in physics with reference

to the variables controlling the observed phenomena is

in [50].

The complementary stored energy, load potential,

and total complementary energy are

VðrÞ ¼ 1

2

r2

j
; GðPÞ ¼ �Puo; Wðr;PÞ ¼ 1

2

r2

j
�Puo:

The minimum for W has to be sought in the space of

balanced stresses, i.e., fr : r ¼ Pg. Thus,

W ¼ bWðPÞ ¼ 1

2

P2

j
� Puo;

whence the requirement that bW be a minimum

provides the unknown P:

oP bWðPÞ ¼ 0 ) P ¼ juo:

In structural mechanics, this approach is expedient to

find the elastic state of a structure, be it statically

determined or not. A simple example is the redundant

truss in Fig. 4, subjected to the load Po and the

displacement uo. Let the axial stiffnesses of the bars be

j1 ¼ E1A1 for BD and j2 ¼ E2A2 for AD, CD, with Ei

(i ¼ 1; 2) Young’s modulus and Ai the cross-section

area of the i-th bar. The stored energy is then

Uðe1; e2Þ ¼
1

2
j1e

2
1 L1 þ 2� 1

2
j2e

2
2 L2;

with ei the axial strain and Li the length of the bars. The
load potential and total potential energy are then

FðuDÞ ¼ �PouD; Uðe1; e2; uDÞ ¼ Uðe1; e2Þ þ FðuDÞ:

The minimum of U has to be sought in the space of

compatible strains, i.e.

e1 ¼
uD þ uo

L1
; e2 ¼

uD

L2
cos a;

whence

U ¼ bUðuDÞ ¼
1

2

j1
L1

ðuD þ uoÞ2 þ
j2
L2

cos2 a u2D � PouD:

On requiring that bU be a minimum, we get:

ouD
bUðuDÞ ¼ 0 )

uD ¼ Po �
j1
L1

uo

� �
j1
L1

þ 2
j2
L2

cos2 a

� ��1

:

If Ni is the normal force in the ith bar, the

complementary stored energy, load potential, and

total complementary energy are:

VðN1;N2Þ ¼
1

2

L1

j1
N2
1 þ 2� 1

2

L2

j2
N2
2 ;

GðPÞ ¼ �Puo; WðN1;N2;PÞ ¼ VðN1;N2Þ þ GðPÞ;

where P is the value of the normal force at the

boundary point B, which turns out to be P ¼ N1, since

the normal force is constant on the bar; then

WðN1;N2;PÞ ¼ eWðN1;N2Þ:

The minimum for W has to be sought in the space of

balanced stresses, i.e., of all Ni assuring balance at D:

N1 þ 2N2 cos a ¼ Po:

Thus, we get:

eWðN1;N2Þ¼ bWðN1Þ¼
1

2

L1

j1
N2
1 þ

L2

j2

Po�N1

2cosa

� �2

�N1uo;

whence the requirement that bW be minimum yields:

N1 ¼
j1
L1

Po þ 2
j2
L2

cos2 auo

� �
j1
L1

þ 2
j2
L2

cos2 a

� ��1

:

3 The Italian school of the nineteenth century

Potential energy and the relevant stationarity theorem

date back at least to the end of the eighteenth century.

We find their rather defined form in Lagrange’s

Mécanique analytique (1788), and even before.

A B C

D

P

L

L L

1

2 2

o

uo

α α

Fig. 4 A linearly elastic reticular system

Meccanica (2018) 53:77–93 81

123



Complementary energy and the relevant stationarity

theorem date back to the twentieth century, at least for

a complete formulation. However, in the historical

development of structural mechanics this latter theo-

rem was the first used, with no clear idea of the

procedures being applied.

Indeed, the pioneers in applying energetic

approaches for solving structural problems soon

realised that the elastic energy U is independent of

the external load f , which is a fundamental datum of

the problem; thus, U seems useless and, moreover, the

expression of Uðu;EÞ may be quite complex. On the

contrary, the complementary energy WðS; sÞ easily

incorporates such information, since tractions and

stresses shall balance the loads f . Thus, minimizing

WðS; sÞ quite likely seemed most natural for the

structural engineers of the nineteenth century, who did

exactly the opposite of what is done nowadays.

Indeed, the total elastic potential energy seemed to

be devoid of any mechanical meaning, contrary to the

total elastic complementary energy, which lets a

theorem of minimum be naturally formulated. On

the contrary, nowadays U, and consequently U, is
attributed a precise mechanical meaning, while the

same is not for V and W, at least in those theoretical

formulations for which the mechanical meaning of the

terms is important.

The best known contributions in structural mechan-

ics about complementary energy are by the Italian

engineers and scientists Luigi Federico Menabrea and

Carlo Alberto Castigliano, who stated theorems still

called by their names; later on, Valentino Cerruti

(1850–1909), Francesco Crotti (1839–1896), Silvio

Canevazzi (1852–1918), Luigi Donati (1846–1932),

Gustavo Colonnetti (1886–1968) joined the precur-

sors. These contributions were not isolated in Europe,

though: Augustin Cournot (1801–1877), Henry Mose-

ley (1801–1872), James Henry Cotterill (1836–1922)

in the first half of the eighteenth century studied

structural mechanics by a work function depending on

inner or outer actions; the German school made

fundamental studies in the second half of the century.

The contribution of the Italian school seems in any

case the most relevant and lasting, and for this reason

we will focus on it, with its main papers on prototype

linear elastic truss structures [7, § 4.3.1].

In a series of papers [34–37], Menabrea considered

a system of hinged elastic bars undergoing very small

displacements as representative of a linear elastic

body, for which he stated the following ‘energy based’

theorem (hereinafter: Menabrea’s theorem):

When an elastic system is equilibrated under the

action of external forces, the work spent by the

tensions, or compressions, of the links joining

the various points of the system is a minimum.3

With Menabrea’s symbols, the (internal) work spent

by the axial forces T (tensions) of all the bars is:

1

2

X 1

�
T2

where � is the coefficient of elasticity (with the

contemporary standard symbols of Sect. 2.1,

� ¼ EA=L).

Menabrea solved the problem of minimum as a

conditioned problem, supplementing it with equilib-

rium equations and using Lagrange multipliers. Sub-

sequently, the standard approach was to solve an

unconditioned minimum problem, where the forces in

the bars are expressed in terms of the unknown

reactions of the redundant bars (see [7], § 4.4, [26]).

Menabrea’s theorem, which he called ‘principle of

elasticity’, is that of minimum elastic complementary

energy stated in Sect. 2 for the particular case of fixed

constraints, whence GðsÞ ¼ 0 in the expression of

UðS; sÞ. Menabrea’s theorem is, thus, correct in itself;

its proof, however, was based on the principle of

virtual work and was all but impeccable, leading to

vivacious discussions (see [44] and [7], pp. 195–197).

Indeed, it is not clear whether one shall operate in the

spaces of kinematically admissible displacements or

of balanced forces.

In spite of its unclear proof, there was at least an

immediate application ofMenabrea’s theorem to a real

steel structure, the truss roof of the railway station in

Arezzo, Tuscany [20, 40]. This truss was poorly

designed, even according to the standards of the time:

the number of bars was insufficient to make the

structure statically determined. The truss exhibited

settlements, but remained standing; to explain the fact

Giovanni Sacheri, professor of drawing at the School

of engineering application of Turin, in 1872 admitted

that the bars provide shearing forces N (normal to the

axis) as well as axial forces T (tangent to the axis:

remark the opposite terminology with respect to the

present one). In this way, the truss became redundant,

3 Menabrea [34], p. 1056; source in ‘‘Appendix 1’’.
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and Sacheri decided to tackle the structural calcula-

tions by Menabrea’s theorem, generalising it to shear

forces and bending moments. To this purpose, the

internal work, which he called molecular action, was

written as

1

2

X 1

s
T2 þ 1

2

X 1

m
N2

where s ¼ Ex=l is the coefficient of axial elasticity,x
being the section of the bar, and m ¼ 3EI=l3 is the

coefficient of transverse elasticity; the other symbols

are usual [45, pp. 99, 103]. Remark that Sacheri

introduced the internal work in bending before

Castigliano; however, Moseley and Cotterill had

already proposed the same approach [7, pp. 54–55].

In 1876 Giovanni Battista Rombaux, a professional

engineer, reconnected to the roof of the railway station

in Arezzo to propose a thorough discussion on the

‘principle of elasticity’, and account for the internal

work in bending in a more systematic way than

Sacheri [6, 7, 43]. A more precise and correct proof of

Menabrea’s statement is in Castigliano’s works

[6–13]. In his graduation thesis [8], Castigliano

adopted the same truss model as Menabrea, and stated

that

If I determine the tensions Tpq so that they make

the expression T2
pq=�pq a minimum, by supposing

that those tensions satisfy [the balance equa-

tions], in which, however, all the external forces

Xp; Yp; Zp and all the angles apq; bpq; cpq are

considered constant, the values of the tensions so

obtained coincide with those obtained by the

method of displacements.4

Here �pq; Tpq are the stiffnesses and the axial forces of

the bars. Once Castigliano verified that the minimum

of what he called molecular work T2
pq=�pq provides the

same balance equations as the usual, well-established,

non-problematic method of displacements (or defor-

mation), the proof is found that such a minimum yields

the (unique) solution of the linear elastic problem. He

went further, formulating what are now called

Castigliano’s second and first theorem, respectively:

First Part [second theorem] - If we express the

strain work of an articulated system as a function

of the relative displacements of the external

forces applied to its vertexes, we obtain a

formula, the derivatives of which with respect

to such displacements provide the values of the

corresponding forces.

Second Part [first theorem] - If, on the other

hand, we express the strain work of an articu-

lated system as a function of the external forces,

we obtain a formula, the derivatives of which

with respect to such forces, provide the relative

displacements of their points of application.5

By Castigliano’s symbols, these statements lead to

dL

drp
¼ Rp;

dL

dRp

¼ rp

where L is the molecular work, and rp;Rp are the

components of displacements and forces, respectively.

Castigliano extended this result to systems with beams

in bending, shearing, and torsion. Basing on his

theorems on the derivatives of the molecular work,

especially the first one with respect to forces,

Castigliano provedMenabrea’s statement in a rigorous

way, by an approach different from that of 1873.

3.1 Complementary energy in historic literature

Section 2 follows a contemporary axiomatic-deduc-

tive formal approach: the physical interpretation of the

terms entering the theory is reduced to a minimum,

thus aiming to ignore their ontological status, leaving

the problem to the philosophers of science. From this

point of view, the total potential energy U is merely a

function of some parameters, the displacements. As a

consequence of the axioms of mechanics, and under a

series of assumptions, this function satisfies some

theorems. One of these states that a mechanical state

called equilibrium corresponds to stationary U when

the parameters vary in a suitably defined space of

admissible displacements. By this ‘aseptic’ approach,

the total complementary energy W has an ontological

state similar to that of total potential energy. By

following the same axioms of mechanics other theo-

rems hold, and one of these states that a mechanical

state called of compatible displacements corresponds

to a stationaryWwhen its parameters vary in a suitably

defined space of balanced forces.

4 Castigliano [8], p. 14; source in ‘‘Appendix 1’’. 5 Castigliano [12], p. 26; source in ‘‘Appendix 1’’.
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In less formal approaches to mechanics, like that of

nineteenth century engineers and mathematicians, we

find a different situation: the energies were provided

with a physical meaning, but the procedure was not

fully consistent, in that there was no difference

between potential and complementary energy. Indeed,

a modern scholar of structural mechanics remarks the

absence of a clear distinction between compatibility

(of displacements and strain) and balance (of external

actions and internal stresses) in Castigliano and

Menabrea’s works. This leads, at least to our eyes, to

true errors (Menabrea’s first proof of his principle), or

to lexical ambiguities (Castigliano). A modern reader,

indeed, would find difficulties in Castigliano’s proof

of the theorem of least work of 1873, due to an

ambiguous use of strain work.

In linear elasticity, engineers of the second half of

the nineteenth century dealt with VðSÞ;UðEÞ indif-

ferently, in that the two functions are interchangeable

via the simple constitutive relation. So, they seemed

the same quantity, called molecular work, internal

work, work function according to the jargon of the age.

Their variations as well, the one with respect to

balanced forces, the other with respect to compatible

displacements, were seen as variations of energy of a

unique structural system.

For instance, Cerruti [14] reduced Menabrea’s

principle to Green’s theorem of elastic forces [14, p.

571]. Adopting the usual paradigmatic truss, he

assumed as a ‘potential’ V (his term) the quantity

V ¼ � 1

2

XZ
s2

e
xdr

where r is the length, e the elastic modulus,x the area,

and s the stress in each bar. Leaving details aside, we

read that ‘‘In order to have equilibrium, it must be

dV ¼ 0 ð14Þ

in accord with the equations imposed at the boundary’’

([14], p. 572: those balance outer forces and inner

elastic stresses at the nodes). Then, it was not difficult

for Cerruti to interpret Eq. (14) as Menabrea’s

theorem.

Cerruti’s considering V a potential energy of a

system is a conceptual error, however: if V depends on

balanced forces and stresses, in general displacements

are not compatible with strains. Thus, since potential

energy is a function of admissible (compatible) states

of the system, one cannot say that V is a form of its

potential energy. The total potential energy is actually

stationary with respect to variations of compatible

displacements and strains, but no proof exists that

stationarity remains with respect to variations of inner

stresses balanced with outer forces: there are hypothe-

ses assuring stationarity, but Cerruti’s proof is

inconsistent.

A similar error was done in 1889 by Silvio

Canevazzi, professor of structural mechanics, bridges

and hydraulic structures in Bologna, in a paper on

strength of materials [5]. He introduced the strain work

(potential energy of inner forces) L and the potential

energy J of the active forces R for a linearly elastic

structure, and admitted that the stationarity condition

dðLþ JÞ ¼ 0 ð15Þ

assures balance. In (15) the variation is with respect to

the admissible displacements of the nodes subjected to

the active forces, which induce strains in bars and

provide the relevant stresses [5, p. 108]. Denoting K
the expression of the strain work in terms of R,

Canevazzi wrote the balance condition as [5, p. 108]

dðKþ JÞ ¼ 0 ð16Þ

However, this is incorrect: indeed, K is a function of

nodal displacements, and can be easily written in

terms of all external forces, which determine the strain

state and the displacements of the nodes accounted for

in (15). On the other hand, J depends only on active

forces (supposed ‘dead’), thus the variation in (15),

(16) cannot be operated with respect to the same

quantities.

For a constrained system, Canevazzi denoted the

relevant reactions by R0: they are unknown outer

forces that spend no work in the usual cases of fixed

constraints, thus do not enter the expression for J. On

the other hand, K is a function of R0 as well, since both
constraint reactions and active forces determine the

stresses, hence the strains, in the bars. By admitting

that (16) still holds, Canevazzi wrote balance as

ðdKþ JÞ
dR0 ¼ 0 ð17Þ

Such equation makes sense only if the considered

structure is redundant, since then the R0 may vary

freely in the given admissible configuration, still

assuring balance. If the R0 are considered as
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independent variables, then (15) does not imply (16),

since forK to represent the actual potential energy of a

system, its configurations shall be admissible: but a

generic free variation of the R0 cannot assure compat-

ibility, hence the considered object is not a structural

system in the physical sense. For fixed constraints, J

does not depend on R0, the active forces are ‘dead’,

thus (17) implies

ðdKÞ
dR0 ¼ 0

i.e., Menabrea’s theorem. Canevazzi remarked

We could not get to this result if the constraints

imposed to the system were movable, or the

relevant reactions expended work, exactly as it

could happen if some points were forced to

remain over surfaces exhibiting a frictional

resistance to their movement.6

In the cases of movable constraints he added

If the unknown reactions are such that an

external work is spent [...] then Menabrea’s

theorem holds no more, and in order to deter-

mine the unknown [inner] forces and constraint

reactions one must resort to the methods of the

derivatives of work, or of deformations, which

we presented in the previous chapter.7

thus admitting the impossibility to derive a minimum

property for complementary energy in a general case.

Castigliano also had doubts on the derivation of

Menabrea’s theorem from energetic considerations. In

his graduation thesis of 1873 [8] he proved that, by

searching the minimum of the work function L

proposed by Menabrea, one obtains equations that

must be added to those of balance of force andmoment

in order to solve the linear elastic problem; these

equations are the same that would be obtained by the

method of displacements, and vice versa, thus

Menabrea’s theorem was proved. In his famous

monograph of 1879 [12] Castigliano came to Menab-

rea’s theorem starting from one of his theorems on the

derivatives of elastic work (the first theorem bringing

his name):

dl

dR0
p

¼ rp ð18Þ

where R0
p is the unknown redundant reaction and rp the

displacement of the pth simple constraint. In the case

of fixed constraints, rp ¼ 0, thus by (18) L is stationary

and Menabrea’s theorem holds.

Luigi Donati, professor of mathematical physics in

Bologna, took a different approach in a series of

papers from 1888 to 1894 [22–24]. In his paper dated

1888, Sul lavoro di deformazione dei sistemi elastici,

Donati quoted Menabrea, Castigliano, Cerruti, and

Canevazzi [22, p. 345]; however, he did not quote

Cotterill, to which his investigation seems to be

somehow inspired. Even though understanding this

paper is not easy for a contemporary, it is apparent that

Donati makes it clear, also from the point of view of

the precision of terms, that one should talk of strain

work, or energy, only when the strains of the single

particles of a body obey certain differential relations,

in order to be compatible as a deformation of the

whole body. When strains are not so, like in the case

examined by Menabrea, he stated that:

Then, however, one cannot anymore talk of

displacements of the body as a whole, nor the

strain work can be seen as a function of

displacements and local stress fluxes, but simply

as the sum, or integral
R
Uða; b; . . .Þds, of the

work relative to the body elements taken

separately.8

Donati developed this thesis in his following papers

of 1889 and 1894; in particular, in the last one he

thoroughly presented the various statements of sta-

tionarity of various energetic expressions, as remarked

also in the known historical monograph by Benvenuto

[3, vol. 2, p. 508]. In addition, Donati proved

Menabrea’s theorem rigorously and in an elegant

way, with no necessity to resort to energetic consid-

erations, and put into clear evidence the ambiguities

present in its original statement. He pointed out that

Menabrea always referred, either explicitly or implic-

itly, to structural systems composed of simple assem-

blies of bars and beams, for each of which the inner

compatibility of displacement and strain is granted. On

the other hand, nothing is said about more general

6 Canevazzi [5], p. 109; source in ‘‘Appendix 1’’.
7 Canevazzi [5], p. 378; source in ‘‘Appendix 1’’. 8 Donati [22], p. 363; source in ‘‘Appendix 1’’.
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systems, for which this inner compatibility is not

assured in general:

The fact that the expression of [strain] work P,

due to the constitution of articulated systems,

spontaneously appears as the sum of terms

relevant to the single composing parts taken

separately, explains why, even though applica-

tions were possible, the true sense of the

statement [of Menabrea’s theorem], which has

at its basis the consideration that the strain of the

parts may be regarded as independent, was

generally not felt, or misunderstood.

Actually, it is useful to stress, without this the

statement [of Menabrea’s theorem] loses its

meaning. Indeed, if we consider the system in its

constitution as a whole continuum, its state for

given stress fluxes (or its equilibrium state under

the action of given external forces) is fully

determined and unique, and thus no variation of

its elements is compatible anymore, and one

cannot talk of minimum work with respect to the

given values of stress fluxes (or external forces)

anymore.9

The ambiguity in dealing with complementary

energy was fully eliminated by Gustavo Colonnetti, an

important figure of the Italian school of elasticity

applied to constructions of the first half of twentieth

century. He graduated in engineering and mathematics

in Turin, where he taught Mechanics applied to

constructions, Rational and superior mechanics,

Strength of materials. He also was director of the

Polytechnic of Turin, of the local Laboratory of

strength of materials and of the Institute of Italian

dynamic measurements (Istituto dinamometrico ital-

iano). He is known for the formulation of a reciprocity

theorem in elasticity (similar to Betti’s) and for

investigations on elastic co-actions and elastic–plastic

equilibrium. In his monograph of 1912 [15], he quoted

people involved in the solution of elastic system by

means of elastic energies, Donati included. After

having presented enlightening considerations on the

difference between potential and complementary

energy, Colonnetti concluded stating that the latter

can be given only a very weak mechanical meaning:

In this proposition, stated first by Menabrea at

the R. Academy of Sciences of Turin in 1857

under the name of principle of elasticity, or of

minimum work, we kept the name of strain work

for the quantity U, even though, when we are not
dealing with a real deformation of the body, the

same U has no physical meaning, nor can be

considered as a real increment of energy due to

strain.

In that case we shall then attribute to the

expression strain work only an abstract meaning

of ideal sum of the elastic energies of the body

single elements, considered as independent.

At most, in the applications one can attribute a

more concrete physical meaning to the function

U, by imagining the system suitably divided into

a well determined number of parts, and consid-

ering variations corresponding to possible defor-

mations of each part separately; by this, it will

represent the sum of the strain energies of the

single parts seen as independent.10

In a footnote to this quotation, Colonnetti added that

It is sometimes possible to replace the ideal cuts

discussed here with suitable variations of the

constraint conditions. All in all, we do not

exclude by this other possible physical interpre-

tations of the function U. So for instance in the

case of trusses with redundant bars it has also

been interpreted as the strain work which could

actually be produced in the system once the

effects of variations of temperature different

from bar to bar were superposed to the action of

given external forces.11

and recalled the well known monograph by Mohr [38]

where such an approach, following Engesser’s sug-

gestion, was adopted. Colonnetti also remarked that

only in a balanced and compatible configuration the

work function U, or complementary work, or comple-

mentary energy, is actually a strain work in the

physical sense it is usually provided with. On this

purpose, he quoted the already discussed comprehen-

sive monograph by Canevazzi [5], which appeared at

the same time as Engesser’s [26] and came, more or

less, to the same conclusions.

9 Donati [24], p. 465; source in ‘‘Appendix 1’’.

10 Colonnetti [15], p. 14; source in ‘‘Appendix 1’’.
11 Colonnetti [15], p. 14; source in ‘‘Appendix 1’’.
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4 Non-linear elastic systems

In the case of non-linear elastic system, which began

to be investigated shortly after Castigliano’s works,

the attempts to obtain the theorem of minimum

complementary energy from energetic considerations

turned out to be ineffective. This still holds true even

when non linearities are related only to constitutive

assumptions, as in those considered at the end of

nineteenth century, and which we will consider in the

present section. This is due not so much to conceptual

difficulties in correctly dealing with balance and

compatibility conditions, but rather to the fact that

the stationarity condition of the considered energy

obtained by varying balanced forces does not lead to

correct results. Menabrea’s theorem, thus, cannot be at

once extended to non-linear elasticity, and the first

Castigliano’s theorem is not valid.

The first who extended Castigliano’s theorems to

non-linear elasticity was Castigliano’s friend Fran-

cesco Crotti. He stated that, according to him, the

mathematical aspects of Castigliano’s work, as well as

its extension to non-linear elasticity, were already

present in Legendre’s treatise on differential equa-

tions, where he introduced his transform [32]:

Let us stop for a while to consider what is, from

the scientific point of view, the novelty, the

scope, and the usefulness of this theorem of the

derivatives of work, and of the other, we may say

its twin, of minimum work. Well then, these

theorems, if considered from the point of view of

the general theory, do not constitute substantial

new statements. Legendre had already proved

that, given a function / of n variables x, one can

form by its partial derivatives a function w the

partial derivatives of which are equal to the

variables x, respectively. It had also been

recognized that, if / is quadratic, it turns out

that / ¼ w. Later on, the famous English

mathematician George Green was lead, by

considerations on the impossibility of perpetual

motion, to establish that the work of an elastic

system was represented by a potential of the

displacements, and this in the two illustrious

memoirs on light of 1839. The analytical back-

ground expressing the properties of the two

theorems of which I talk was, then, completely

known; I do not believe, however, that they have

been formally stated, maybe perhaps they did not

concur to the progress of the general theory,

which, by the considerations on the displace-

ments, comes to use the same formulas to which

those two theorems lead.12

Crotti used the term ‘work function’ to introduce the

elastic potential energy of both linear and non-linear

conservative systems, expressed in terms of either

displacements u1; u2; . . .; un [19, p. 60]

L ¼ /ðu1; u2; . . .; unÞ

or forces f1; f2; . . .; fn that produce these

displacements:

L ¼ wðf1; f2; . . .; fnÞ

Crotti actually dealt with a system of hinged bars (like

Menabrea and Castigliano) that in principle could

even be non-elastic; in such a system, compatibility is

understood, since the nodes common to various bars

cannot detach in any admissible configuration. Thus, it

seems that also Crotti did not realize the necessity to

distinguish between compatibility and balance. He

introduced elastic complementary energy without

giving it a name, but only denoting it by the symbol

k 13

k ¼ f1u1 þ f2u2 þ � � � þ fnun � L ð19Þ

and proved the extension of Castigliano’s first theorem

to non-linear cases

ok=of1 ¼ u1; ok=of2 ¼ u2; . . .; ok=ofn ¼ un

Crotti remarked that in linear elasticity k ¼ L and one

re-obtains Castigliano’s results [8–10, 19]. However,

in no place did he formulate a theorem of stationarity

of his new functional k; this was the task of the

German school of structural mechanics.

Interesting researches on the applications of ‘work

functions’ and the relevant theorems were indeed in

German-speaking countries, where between the end of

the nineteenth and the beginning of the twentieth

century we see them flourish in the works of Fränkel,

Engesser, Mohr, Müller-Breslau. Since the first to

12 Crotti [19], pp. 5–6; source in ‘‘Appendix 1’’.
13 Because of his quotation to [32], it is apparent that Crotti

should know that (19) actually represented the Legendre’s

transform of L, but in fact he did not explicitly stated this.
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introduce the adjective complementary for the ‘work

function’ was Engesser, we will focus on him. Engesser

was actually interested in solving statically redundant

systems under non-linear constitutive assumptions:

The following considerations apply to the

behaviour of statically undetermined beams

under any constitutive law; in addition, statically

undetermined trusses will be more easily dealt

with.

For the solution of the given task the theorem of

virtual displacements offers the most easy and

sure way, while the theorem of minimum strain

work appears inadequate, since its validity is

bound to given constitutive laws. In its place

enters the theorem of minimum ‘‘complemen-

tary work’’.14

In a truss with m redundant bars, by removing these it

is possible to obtain a statically determined auxiliary

truss. A simple application of the theorem of virtual

displacements, or velocities, in the case of smooth

constraints let Engesser write the m compatibility

conditions [26, col. 734]

0 ¼
X

j

1ijej ¼
X

j

oSj

oXi
ej ð20Þ

to solve the system. In Eq. (20) Xi; i ¼ 1; . . .;m are

the values of the forces in the m redundant bars; 1i are
the values of the forces in the bars of the auxiliary truss

is subjected to a unit action of the i-th redundant bar; Sj
is the actual force in the j-th bar of the auxiliary

system; and ej is its actual elongation, provided by a

constitutive law whatsoever, which Engesser provided

according to the sum of a non-linear elastic and a

linear thermal law. Engesser then introduced comple-

mentary work without caring of describing its possible

physical meaning:

The difference between the virtual work Av and

the real work A is called complementary work.15

For Engesser, the virtual work is that spent by the

actual force in a bar if it acted with its final value on the

corresponding elongation, while the actual work is the

area under the graph of the generally non-linear

constitutive law; the situation is the same as depicted

in Fig. 2, and Engesser obtained [26, eq. (10), col.

739]

O ¼ oB

oXi

¼
X o

oXi

Z S

0

dS � e ¼
X oS

oXi

� e ð21Þ

where the left hand side vanishes since the right hand

side coincides with the compatibility conditions in

eq. (20). Thus, after some remarks on the generality on

the constitutive law expressing the actual value of the

elongations in Eq. (21), Engesser stated that

The redundant quantities X of a statically

undetermined truss assume those values that let

the complementary work of the whole construc-

tion [truss and ‘ground’] attain a minimum

value.16

This is a general theorem, and by this Engesser

managed to obtain Castigliano’s and Menabrea’s

results, as well as those reciprocity conditions usually

attributed to Maxwell and Betti [7]. It is apparent,

however, that Engesser was not interested in the

interpretation of the quantity he introduced: it was

simply pivotal for his aim. The same attitude was

shared by other German scientist of the theory of

elasticity later on, see for instance Mohr [38] and

Domke [21]. Thus, the question on whether comple-

mentary work-energy has a physical meaning was not

tackled by those who first explicitly introduced it, and

remained open.

5 Final remarks

A modern scholar of mechanics of continua and of

structures has no difficulties in employing both

potential (U) and complementary energy (W), since

each provides a means of posing and solving the

elastic problem for objects of interest in applications.

Indeed, many modern computer codes find numerical

solutions of the elastic problem by suitable variations

of the one energy or the other, depending simply on

computing costs and convergence criteria, and not

caring too much on the effective mechanical meaning

of the manipulated quantity. Thus, one may say that

from the point of view of the application, there is no

14 Engesser [26], col. 733; source in ‘‘Appendix 1’’.
15 Engesser [26], col. 738; source in ‘‘Appendix 1’’. 16 Engesser [26], col. 740; source in ‘‘Appendix 1’’.
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debate on the physical interpretation of complemen-

tary energy.

Things are different if we want a mechanical

interpretation forU andW, as in the nineteenth century

(when these quantities and their minimum theorems

were introduced), or if we take energy, not force, as the

fundamental magnitude of mechanics. Actually,U and

W, together with their relevant stationarity theorems,

are given by well-defined mathematical objects and

transformations: thus, from a purely logical point of

view they are equivalent. However, they are not liable

to the same mechanical interpretation: there is differ-

ence when considering the linear or non-linear elastic

cases, and the values of the two energies in a balanced

and kinematically admissible state or in another

situation.

The pioneers in applying energetic approaches for

solving statically undetermined structural problems

soon realized that the elastic energy U could not be

used for a minimum criterion, because the minimum in

the space of displacements compatible with the strains

constitutively linked with inner actions is always zero.

Indeed, U is independent of the external load f , which

is a fundamental datum of the problem; thus, U

seemed useless and, moreover, the expression of

Uðu;EÞ may be quite complex. On the contrary, the

complementary energy VðS; sÞ easily incorporates

such information, since stresses shall balance the

loads f . Thus, minimizing VðS; sÞ in the space of

stresses balanced with given external forces quite

likely seemed most natural for the structural engineers

of the nineteenth century, who did exactly the opposite

of what is done nowadays. The minimum was easily

carried out by assuming as unknowns the redundant

forces, usually ranging in a small set.

In the linear elastic case, treated first in the

mechanics of structures, for example by Menabrea

and Castigliano, potential and complementary elastic

energy are the same thing, at least in the balanced and

kinematically admissible configuration. This coinci-

dence was the origin of a series of misunderstandings

that led to the correct formulation of the theorem of

stationarity of total complementary energy by incon-

sistent reasonings. The misunderstandings arose

because of a not clear perception of the difference

when considering virtual variations of U and W.

Indeed, it was natural to assume for U the space of

admissible displacements and for W that of balanced

stresses. In general the two spaces are however

distinct, therefore also U and W, albeit formally

identical, are in fact different. One cannot then move

from the theorem of stationarity of U to that of W, so

naı̈vely as done by Cerruti and Canevazzi for example.

The variations of U with the admissible displace-

ments are still provided with the mechanical meaning

of a possible potential energy, and we can even

imagine of performing a real or ideal experiment in

which this potential energy is used to provide work.

On the other hand, it is not possible to give any

mechanical meaning to the variations of W with

balanced stresses: indeed, kinematical compatibility

can be violated in statically indeterminate systems,

therefore it is impossible to imagine any possible

geometry of the system, and consequently any exper-

iment, even ideal.

In the non-linear case there is a clear difference

between U and W. They are complementary in the

sense defined by Engesser: the introduction of a

quantity and a specific name appeared necessary since

there were difficulties to distinguish between balanced

and kinematically admissible configurations. We can

only use W to solve structural problems using stresses

as unknowns.

The physical meaning ofW is not clear, not even in

equilibrated and kinematically admissible configura-

tions, and in general it is not possible to give it one, at

least remaining in a purely mechanical context. To our

knowledge, the only attempts to provide complemen-

tary energy and its theorem of stationarity a mechan-

ical meaning are found in the paper of Donati and

Colonnetti, who concluded for no mechanical mean-

ing, and in the textbook of Vincenzo Franciosi

(1925–1989) [27]17 who, however, referred to a very

particular load situation-thus, his conclusions have no

general value.
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Appendix 1: Sources

1. Lorsqu’un système élastique se met en équili-

bre sous l’action de forces extérieures, le

travail développé par l’effet des tensions ou

des compressions des liens qui unissent les

divers points du système est un minimum.

2. Se determino le tensioni Tpq in modo che

rendano minima l’espressione
P

T2
pq=�pq,

supponendo che tra quelle tensioni debbano

aver luogo le equazioni [di bilancio mecca-

nico], nelle quali però si considerano costanti

tutte le forze esterne Xp; Yp, Zq, e tutti gli

angoli apq; bpq; cpq, i valori delle tensioni che

cosı̀ si ottengono, coincidono con quelli

ottenuti con il metodo degli spostamenti.

3. Première partie - Si l’on exprime le travail de

déformation d’un système articulé, en fonction

des déplacements relatifs des forces extér-

ieures appliquées à ses sommets, on obtient

une formule, dont les dérivées, par rapport à

ces déplacements, donnent la valeur des forces

correspondantes.

Seconde partie - Si l’on exprime, au contraire,

le travail de déformation d’un système articulé

en fonction des forces extérieures on obtient

une formule, dont les dérivées, par rapport à

ces forces, donnent les déplacements relatifs

de leurs points d’application.

4. A questo risultato non si sarebbe potuti

arrivare qualora i vincoli imposti al sistema

fossero variabili o le reazioni corrispondenti

producessero lavoro, come appunto potrebbe

accadere se alcuni punti fossero obbligati a

mantenersi sopra superfici presentanti una

resistenza d’attrito al loro movimento.

5. Se le reazioni incognite sono tali da dar luogo

a un lavoro esterno [...] allora il teorema di

Menabrea non ha più luogo e per determinare

le forze e le reazioni incognite bisogna ricor-

rere al metodo delle derivate del lavoro o a

quello delle deformazioni svolti nel capitolo

precedente.

6. Allora però non si può parlar più di sposta-

menti dei punti del corpo nel suo insieme, né il

lavoro di deformazione può più riguardarsi

come funzione degli spostamenti o degli

elateri, ma semplicemente come la somma o

integrale
R
Uða; b; . . .Þds dei lavori relativi

agli elementi del corpo considerati

partitamente.

7. La circostanza che l’espressione del lavoroP,

in grazia della costituzione dei sistemi con-

siderati, si presentava spontaneamente quale

somma di termini spettanti alle singole parti

costituenti distintamente prese, spiega perché,

pur facendone l’applicazione, il senso vero

della proposizione, che ha per base la consid-

erazione delle deformazioni delle parti riguar-

date come indipendenti, passasse

generalmente inavvertito o fosse frainteso.

Perché, giova insistervi, senza di ciò la

proposizione perde ogni significato. Infatti

considerato il sistema colla sua compagine

come un tutto continuo, il suo stato per dati

elateri (o lo stato di equilibrio sotto l’azione di

date forze esterne) è pienamente determinato

ed unico, e quindi nessuna variazione degli

elementi ad esso relativi è più compatibile, e

non si può perciò parlare di minimo dei lavoro

compatibilmente coi dati valori degli elateri (o

delle forze esterne).

8. In questa proposizione, annunciata per la

prima volta dal Menabrea alla R. Accademia

delle Scienze di Torino nel 1857, sotto il nome

di principio di elasticità o del minimo lavoro,

noi abbiamo conservato il nome di lavoro di

deformazione alla quantità U sebbene, quando

non si tratta di una vera e propria defor-

mazione del corpo, essa U non abbia più alcun

significato fisico, né possa riguardarsi come un

reale incremento di energia dovuto alla defor-

mazione.

All’espressione lavoro di deformazione dovrà

in tal caso attribuirsi soltanto un significato

astratto di somma ideale delle energie elas-

tiche dei singoli elementi del corpo considerati

come indipendenti.

Tutto al più si potrà attribuire, nelle appli-

cazioni, un significato fisico più concreto alla

funzione U immaginando il sistema conve-

nientemente diviso in un certo numero ben

determinato di parti, e considerando delle

variazioni corrispondenti a deformazioni pos-

sibili di ciascuna parte presa separatamente;

con ciò verrà a rappresentare la somma delle
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energie di deformazione possedute dalle sin-

gole parti riguardate come indipendenti.

9. Ai tagli ideali, a cui qui si allude, possono, a

volte, sostituirsi opportune variazioni nelle

condizioni di vincolo. Non si escludono del

resto con ciò altre eventuali interpretazioni

fisiche della funzione U. Cosı̀ per es.: nel caso
di travature reticolari ad aste sovrabbondanti

essa è stata anche interpretata come il lavoro di

deformazione che nel sistema potrebbe effet-

tivamente prodursi qualora all’azione delle

forze esterne date si sovrapponessero gli

effetti di variazioni di temperatura diverse da

asta ad asta.

10. Arrestiamoci alquanto a considerare quale sia

dal punto di vista scientifico, la novità, la

portata e la utilità di questo teorema delle

derivate del lavoro e dell’altro, che si può dire

gemello, del minimo lavoro. Or bene questi

teoremi se bene si considerano dal punto di

vista della teoria generale non costituiscono

enunciati essenzialmente nuovi. Già Legendre

aveva dimostrato che data una funzione / di n

variabili x, si può formare colle sue derivate

parziali una funzione w le di cui derivate

parziali sono rispettivamente eguali alle vari-

abili x. Era anche stato riconosciuto che se la/
è funzione quadratica, risulta / ¼ w. Più tardi
l’illustre matematico inglese Giorgio Green da

considerazioni sull’impossibilità del moto

perpetuo fu condotto a stabilire che il lavoro

di un sistema elastico era rappresentato da un

potenziale degli spostamenti, e ciò nelle due

celebri memorie sulla luce del 1839. Era

quindi completamente noto il substrato anali-

tico che esprime la proprietà dei due teoremi di

cui discorro; non credo però che sianomai stati

formalmente enunciati forse perché in fondo

non occorrevano al progresso della teoria

generale, la quale colle considerazioni degli

spostamenti viene a far uso delle stesse

formole a cui quei due teoremi conducono.

11. Die folgenden Betrachtungen beziehen sich

auf das Verhalten, statisch unbestimmter

Träger bei beliebigem Formänderungs-Ge-

setze; insbesondere werden statisch unbes-

timmte Fachwerkträger einer eingehenderen

Behandlung unterzogen.

Zur Lösung der gestellten Aufgabe bietet der

Satz der virtuellen Verschiebungen den

bequemsten und sichersten Weg, während

der Satz von der kleinsten Formänderungsar-

beit sich als unzulänglich erweist, da seine

Gültigkeit an bestimmte, Formänderungs-Ge-

setze gebunden ist. An seine Stelle tritt der

allgemeinere Satz von der kleinsten

‘‘Ergänzungsarbeit’’.

12. Der Unterschied zwischen virtuller Arbeit Av

und wirklicher Arbeit A werde Ergänzungsar-

beit genannt.

13. Die überzahligen Größen X eines statisch

unbestimmten Fachwerkes nehmen diejenigen

Werthe an, welche die Ergänzungsarbeit der

gesammten Konstruktion zu einem Kleinst-

werthe machen.

Appendix 2: Symbols used in Sect. 2

Symbol Name

bo Assigned volume load

f Load system

n Outward unit normal to oB
s Traction vector

so Assigned surface traction

u Displacement field

uo Assigned displacement

E Strain tensor

S Stress tensor

f One-dimensional external load

F Load potential

G Displacement potential

U Elastic potential energy

V Elastic complementary energy

B Continuous body

oB Boundary of B
L Total external potential

We External work

Wi Internal work

K Space of kinematically admissible displacement and

strains

S Space of statically admissible stresses

Bo, B1 Boundary operators

C Constitutive operator
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Symbol Name

D Compatibility operator

S Equilibrium operator

e One-dimensional strain measure

r One-dimensional stress measure

U Total potential energy

W Total complementary energy
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générales pour déterminer les tensions dans un système des
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