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Abstract In this work we present a novel method for

the solution of gear contact problems in flexible multi-

body. These problems are characterized by significant

variation in the location and size of the contact area,

typically requiring a high number of degrees of

freedom to correctly capture deformation and stress

fields. Therefore fully dynamic simulation is compu-

tationally prohibitive. To overcome these limitations,

we exploit a combined analytic-numerical contact

model within a parametric model order reduction

(PMOR) scheme. The reduction space consists of a

truncated set of eigenvectors augmented with a

parameter dependent set of residual static shape

vectors. Each static shape is computed by interpolating

among a set of displacement modes of the interacting

bodies, obtained from a series of precomputed static

contact analyses. During the contact analyses, an

analytic model based on the Hertz theory describes the

teeth local deformation. We implement the proposed

method in an in-house code and we apply it to spur and

helical gears dynamic contact analyses. We compare

the results with classical PMOR schemes highlighting

how the combined use of the semi-analytic contact

model allows to decrease further the model complex-

ity as well as the computational burden, for both static

and dynamic cases. Finally, we validate the method-

ology by means of a comparison with experimental

data found in literature, showing that the numerical

method is able to capture quantitatively the static

transmission error measurements in case of both

helical and spur geared transmission for different

torque levels.

Keywords Gear contact � Computational contact

mechanics � Experimental validation � Model order

reduction � Flexible multibody

1 Introduction

The use of gears is widespread in mechanical industry

since they allow high efficiency and high power

density for a wide range of speeds and torques and

their applications span from everyday life to very

dedicated solutions. In spite of the long track of gears

application and usage, the complex phenomena in

which gears are involved in the meshing process still

constitute an active research topic.

1.1 Analytical models for gear contact problems

First attempts to tackle gear contact problems have

been done using analytical models, which offer a high

computational speed yet require the need of a priori

assumptions to simplify meshing condition and system
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complexity [4, 9, 14, 16]. Most of these formulations

are derived by a series of numerical or experimental

results in order to extrapolate stiffness relationships in

function of basic manufacturing gear parameters.

However due to weight and mounting restrictions as

well as more stringent functional requirements, mod-

ern gear transmission designs correspond less to the

situations for which these modelling techniques were

designed and the underlying assumptions become

questionable [25].

1.2 Finite element-based models for gear contact

problems

On the other hand, the finite element (FE) method is

the most powerful general numerical method to

simulate gear contact problem. However the need for

highly refined mesh near the contact zone implies

large number of degrees of freedom (DOFs). The

contact width is typically one order of magnitude

smaller than the other gear characteristic dimensions

and its location varies in three directions during the

gear meshing. Therefore the large number of DOFs,

together with the relatively high cost of imposing the

non-penetrability condition, yields a feasible compu-

tational time only for static simulations. Its very high

computational cost makes it impractical to treat

dynamic problems, especially when a long time-

stable simulation is requested. Evaluating quantities

such as tooth deflections, gear meshing stiffness or

stress distribution in dynamic conditions is still too

time expensive with the FE method.

In order to reduce the computational cost of

standard FE simulations for gear contact problems,

many authors [1, 5, 26] have proposed semi-analytic

contact models, where the tooth deformation is

calculated by combining a numerical (FE) and an

analytic solution. As shown in Fig. 1, this approach

splits the total gear deformation into a local and a

global contribution, described respectively by an

analytic and a numerical solution. The former

describes the local displacement field close to the

contact point, while the latter captures the remaining

deformation defined as global.

This approach assumes that the gear teeth flank is

subjected to a load distribution for which a corre-

sponding analytic expression of the deformation field

is available (for example the Hertz’s pressure distri-

bution [10, Chapter 6.3] or a combination of Boussi-

nesq’s point loads [12, Chapter 2.1]). Moreover semi-

analytic approaches make it possible to use a relatively

coarse mesh to compute the numerical displacement

field since the FE model does not capture the local

deformation. This aspect means a consequent consis-

tent gain in memory storage and computational time.

Although these approaches reduce significantly the

size of the model as compared to traditional FE based

contact simulations, the procedure of matching the

analytic and the FE solutions at a certain depth below

the contact surface is computationally involved and it

does not ensure a continuous displacement and stress

field within the gear tooth. This fact is not discussed in

the literature.

In this context, it is relevant to mention the work of

Andersson–Vedmar [1], who introduced a method to

calculate the tooth deformation under a known load

applied on the gear teeth flanks: synthesized in Fig. 2,

their approach exploits a finite element model in the

pre-processing phase to extrapolate a stiffness func-

tion of the gear flank. This FE-based stiffness is

combined with an analytic stiffness derived by the

formula of Weber and Banaschek [27]. More

Global Deformation
(numerical solution)

noitamrofeDlacoLnoitamrofedlatoT
(analytic solution)

Fig. 1 Semi-analytic gear contact model
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conspicuously, in order to obtain the global (numer-

ical) deformation field of Fig. 1 (and from that to

derive the global stiffness), Andersson and Vedmar

propose to perform two FE static analyses at each

possible contact node. Both FE analyses are carried

out under a unitary point load acting on the same FE

model with different boundary conditions (BC). The

two cases are shown on the right-hand side of Fig. 2,

where the second element represents the partial model

used to eliminate the local deformation from the total

model (first element). Such partial model is obtained

by clamping a tooth section located at a distance

h underneath the tooth flank.

A similar approach has been proposed by Chang

[5], who combines a global linear deformation (cap-

tured by a FE model) with a non linear local contact

deformation described by means of an analytic

formula for finite length line contact (proposed by

Ding and Zhang [7]). The main difference with respect

to the method [1] lays in the boundary conditions of

the partial FE model used to correct for the local

deformation. As shown in Fig. 3, the surfaces in

orange are clamped while the load is applied on the

right tooth flank. The dependency of the local

deformation from mesh size and partial model

boundary conditions remain an unsolved issue in

[1, 5].

Differently from [1] or [5], Vijayakar [26] proposes

a method where the FE solution and the analytic

contact model are solved simultaneously at each time

step. Numerical and analytic solutions are matched at

the matching surface by solving a least-squares

problem. Between the matching surface and the force

location, Vijayakar uses the Boussinesq’s analytic

solution for point load to describe the displacement

field, while the numerical solution is considered to be

valid in the remaining part of the gear.

1.3 Flexible multibody models for gear contact

problems

Other authors modelled gears as flexible bodies in a

multibody environment, where the use of conventional

FE to represent flexible bodies can be rendered

practical with the aid of model order reduction

(MOR) techniques. Using the floating frame of

reference formulation [20, Chapter 5.6], the linear

elastic deformation of a flexible body is separated

from the gross non-linear motion of its body reference,

thus allowing linear MOR techniques to be applied for

Computed using a coarse FE model

Distributed load act-
ing on the gear

Concentrated load
acting on the gear
(globally correct, but
locally wrong solution:
principle of Saint-
Venant

Computed using
an analytical solu-
tion (Weber and
Banaschek)

Concentrated load
acting in the opposite
direction on a slice of
the gear (to remove
the locally incorrect
solution)

Distributed load act-
ing on a slice of the
gear (locally correct
solution)

Fig. 2 The approach of Andersson and Vedmar
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reducing the number of elastic DOFs of the body.

However, these methods cannot readily be applied to

general contact problems to yield computationally

efficient reduced-order models (ROM): contact prob-

lems in multibody dynamics are characterized by

significant variations in the location and size of the

contact area and for a flexible body discretized using

FE, this implies a multitude of possibly although not

necessarily simultaneously loaded DOFs. Further-

more, as contact interactions generally involve steep

stress gradients and relatively small volumes of

stressed material, highly refined meshes are manda-

tory to capture correctly these stress fields. The

multiple input–multiple output (MIMO) behaviour of

the multibody-contact problem poses considerable

difficulties to classical model reduction techniques,

such as the traditional CMS [6].

In this respect, some authors have proposed new

procedures for the analysis of dynamic contact prob-

lems: the first successful attempt has been done with

the static modes switching (SMS) method [11] where a

discontinuous reduction space has been used to

achieve accurate contact forces with a limited com-

putational burden. Such method has been applied to

the gear contact problems by Tamarozzi et al. [24]

showing the applicability to examples of industrial

relevance but posing some questions regarding the

discontinuous behaviour of the reduction space. Par-

ticularly suitable to deal with loads moving across

model boundaries are parametric model order reduc-

tion (PMOR) techniques, where the location of the

contact force is parametrized in the full-order model

and the parameter dependency is preserved throughout

the reduction process. Relevant is the work of

Blockmans et al. [3], where a PMOR scheme is

developed and applied to gear contact problems. [3]

uses a reduction space that consists of a truncated set

of eigenvectors augmented with a parameter depen-

dent set of static shape vectors. The static shape is

computed by interpolating among a set of displace-

ment modes of the interacting bodies obtained from a

series of static contact analyses. The interpolation of

these displacement modes is based on the parame-

ter(s) describing the rigid-body configuration of the

multibody system. In the field of bearing analysis,

Fiszer et al. [8] proposes to combine the aforemen-

tioned PMOR technique with a semi-analytic contact

model similar to the one described in [1]. The total

deformation is separated in the global deformation of

the rings and their support, represented by a paramet-

rically reduced order model, and the non-linear local

Hertzian deflections at the contact zone.

1.4 Contribution and structure

This work proposes a parametric model order reduc-

tion technique combined with a semi-analytic contact

model. The combination of these two methods allows

to overcome the main limitations of a standard penalty

approach for describing the contact condition. First,

we can describe the bodies’ deformation using a much

lower number of DOFs since the local contact

deformation is described by means of an analytic

formulation. This allows to assemble particularly light

reduced order models, with a significant gain in

computational speed. Second, the dynamic contact

problem using a semi-analytic model is characterised

by a lower numerical stiffness as compared to standard

Computed using a coarse FEM Computed using
the analytic so-
lution of Ding and
Zhang [7] (finite
length - line contact)

Fig. 3 The approach of Chang
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non-linear FE with penalty formulation. As conse-

quence, we can use a larger simulation time step while

maintaining the same level of accuracy. Since in

literature a systematic study on the assumptions which

lay as foundations of semi-analytic contact model is

not present and several key-issues remain not

answered, in this paper we propose a novel approach

that respects the physic of the contact problems. We

compare the methodology with the semi-analytic

methods often applied to gear contact problems,

questioning their assumptions. We also implement a

semi-analytic contact model inMUTANT (MUltibody

Transient ANalysis of Transmissions—a code for gear

dynamic problems) [13] and we apply it to spur and

helical gears simulations. We validate static results

against experimental data available in the literature,

showing an excellent capability of capturing quanti-

tative relevant behaviour such as static transmission

error for different torque levels. Finally, we compare

the obtained dynamic results with numerical results of

the same parametric reduction scheme combined with

standard penalty approach. The method used as

reference in this case has been already presented and

validated in [3].

The remainder of this paper is structured as follows.

In Sect. 2, we describe the semi-analytic contact

model: we discuss in detail how to combine analytic

and numerical solution, comparing the proposed

method with the models available in literature. In

Sect. 3, we present the PMOR scheme, focusing on the

definition of the reduction space and the interpolation

of the static vectors. Sect. 4 deals with the integration

of the semi-analytic contact model in the PMOR

technique and Sect. 5 with its numerical implementa-

tion strategy. Finally, in Sect. 6, we propose the results

of the novel methodology validated by means of

comparison with both numerical and experimental

data.

2 Semi-analytic contact model

In this section we discuss the combination of an

analytic formula with a numerical model for describ-

ing the contact condition. The section is divided in two

parts as follows. The first part presents a novel

theoretical method for combining analytic and numer-

ical models: such a solution not only respects the

boundary conditions of the given structural problem

but also ensures continuity with respect to stresses and

displacements. The second part addresses the method

implemented in this work for combining analytic and

numerical model. The method is compared against the

novel theoretical approach as well as other solutions

proposed in literature in order to analyse its physical

limitations and accuracy.

2.1 Theoretical method for combining analytic

and numerical model

The basic idea of combined numerical-analytic meth-

ods [1, 5, 26] consists in describing the solution of a

given structural problem as combination of a numer-

ical and an analytic solution allowing to obtain

continuous displacement and stress fields which

respect the boundary conditions of the original prob-

lem. The example shown in Fig. 4 can be taken as

reference study case to illustrate the procedure: the

actual problem on the left-hand side of the Fig. 4,

shows the reference body, subjected to a contact force

on the left face and essential boundary conditions on

the bottom surface. The consequent deformation can

be modelled as sum of a numerical and an analytic

displacement field (Fig. 4—right side). This approach

is shared by several authors [1, 5] and differs mainly

for the spatial region extension where the analytic

solution domain is considered valid (i.e. how far from

the contact force location the analytic solution is still

valid). Indeed one key-issue of the method consists in

avoiding that the numerical solution describes the

same deformation effect captured by the analytic

model and that the sum of numerical and analytic

solutions correctly represent the initial deformation

field.

Closed form expressions of displacement and stress

fields under an applied load are available in the

literature (analytic models), but they are mathemati-

cally derived assuming that the body is of infinite

extension. When such analytic expressions have to be

combined with a numerical model of finite dimension,

their domain has to be relegated to a finite region as

well. It may be noticed that, when a finite (analytic)

sub-region is cut out from the initial infinite (analytic)

domain (Fig. 4 right), the analytic stress and displace-

ment functions do not respect the new domain

boundaries any more: for example stresses or
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displacements are identified also on surfaces respec-

tively free or clamped in the actual problem.

The aim of the proposed method, inspired by

acoustic applications, is to allow combining numerical

and analytic models (Fig. 4—right side) while

respecting the (physical) initial problem boundary

conditions and to ensure continuity of displacement

and stress fields.

2.1.1 Steps for implementing a combined numerical-

analytic contact model.

1. Identify and isolate the two bodies in contact. The

element shown in Fig. 4 (left side) represents

schematically one of the two bodies in contact, i.e.

one of the two gears, where the ‘‘physical’’

boundary conditions are applied (see point 4).

2. Choose the analytic formula to describe contact

load and deformation field. In a semi-analytic

contact model, one assumption consists in the a

priori known load distribution on the body during

contact. The analytic formula that describes the

applied force and the consequent body deforma-

tion field must be known, but the process steps

remain the same regardless the chosen specific

formula.

3. Create the FE model. The body of Fig. 4 is

discretized by means of FE mesh: the total

displacement field of the actual problem is

evaluated at the FE nodes locations and it is

identified by the vector u. It can be calculated as

follows:

u ¼ ufe þ uan ð1Þ

where the vector ufe represents the nodal

displacements of the FEmodel, while uan describe

the analytic displacement field uanðxÞ, function of
the spatial coordinate x, evaluated at the FE nodes

location. Similar to the calculation of the dis-

placement field, the stress field can be calculated

as following:

r ¼ rfe þ ran ð2Þ

4. Impose the bodies boundary conditions. The

boundary conditions for a body subjected to

contact forces can be represented by the example

of Fig. 5: here the element boundary domain X
has been divided in three regions as follows:

Analyzed by
analytic solution

Distributed load
acting on the gear

Finite model with
applied load cut out

from an infinite region

Discretized by Fi-
nite Element Model

Finite model with-
out applied load

FF

u = 0 u = uan

+σan

u = −uan

−σan−σan

Fig. 4 Combined analytic-numerical model
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• C, where the essential boundary conditions on
displacements are applied ;

• P, where the natural boundary conditions on

loads are applied;

• H, identified as X� ðC [PÞ.

The natural boundary conditions on the loaded

surfaces are imposed by the chosen contact

formula (see point 2.), while the essential bound-

ary conditions are dictated by the physics of the

problem. Regardless of the particular analytic

contact formulation, the following system of

equations describes the developed approach and

its solution provides a continuous displacement

and stress field:

Model
u ¼ ufe þ uan

r ¼ rfe þ ran

�

B:C:

uC ¼ buimposed

imposeddisp:ðessentialB:C:Þ
rP ¼ brimposed

imposedloadsðnaturalB:C:Þ
rnH ¼ 0

normalstressesnullon

externalðfreeÞsurfaces

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

5. Derive the numerical boundary conditions. In this

example the numerical model is a linear FE

model, characterized by constant mass Mfe and

stiffnessKfe matrices. Since the analytic displace-

ment and stress fields (uan and ran, respectively)

are known from the chosen contact formula, the

unknown ufe is calculated solving the equations

system 3 as following:

Modelfe
ufe ¼ u� uan

rfe ¼ r� ran

�

B:C:fe

ufeC ¼ uC � uanC
rfeP ¼ rP � ranP

rfenH ¼ 0� rannH

8><
>:

ð4Þ

Without loss of generality and for sake of

exposition, we can assume that the initial model

of Fig. 5 is clamped at C, so uC ¼ buimposed ¼ 0:

ufeC ¼ uC � uanC ¼ �uanC ð5Þ

In this way, the numerical model boundary

conditions ufeC , once combined with the analytic

displacement field calculated on C, respect the
original model boundary conditions uC. The same

concept is applied to the natural boundary condi-

tions and since the load in the original model

coincides with the analytic forces distributions

(rP ¼ ranP ), the load on the numerical model rfeP
is:

rfeP ¼ rP � ranP ¼ 0 ð6Þ

Finally, the numerical stress field on the free

surfaces H can be calculated from the last

equation of system 4. The numerical stress field

is necessary to balance the analytic stress field on

the analytic domain boundaries and will cause the

FE model to deform (see Fig. 4). As result, the

initial model physical condition of null normal

stress on the free surfaces are satisfied.

rfenH ¼ �rannH ð7Þ

By integrating rnfeH on the surface we can

calculate the nodal forces Ffe
H of the numerical

model. With these forces and the boundary

conditions of Eq. (5) we can solve the numerical

model and obtain as a solution the part of the

deformation of the initial problem (Fig. 4) not

captured by the analytic model.

6. Solve the numerical displacements field. From

Eqs. (5), (6) and (7), the following set of Eq. (8)

can be derived:

Fig. 5 Boundary conditions

scheme of the actual

problem
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KCC KCP KCH

KPC KPP KPH

KHC KHP KHH

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kfe

ufeC
ufeP
ufeH

8><
>:

9>=
>;

|fflfflfflffl{zfflfflfflffl}
ufe

¼
Ffe
C

Ffe
P

Ffe
H

8><
>:

9>=
>;

ð8Þ

where the unknown displacement vector ufe and

the matrixKfe have been partitioned following the

surfaces definition above. The vector ufeC is

directly solved by using Eq. (5) while the forces

vector ½FfeT
P FfeT

H �T of system 8 is computed from

Eqs. (6) and (7) by integrating on the FE surfaces.

The unknown part of ufe (½ufeTP ufeTH �T) can be

computed by:

ufeP
ufeH

( )
¼

KPP KPH

KHP KHH

� ��1
Ffe
P

Ffe
H

( )

�
�KPC

KHC

� �
ufeC

� � ð9Þ

The displacements vector ufe ¼ ½ufeTC ufeTP ufeTH �T
is computed from Eqs. (5) and (9). Such vector,

combined with the analytic displacement vector

uan, respects the initial problem boundary condi-

tions ensuring continuous displacement and

stresses fields (see Eqs. 1, 2) and is such that u ¼
ufe þ uan as requested.

In the case of dynamic gear contact problems, the

presented method implies the numerical integration of

the stress field of Eq. (7) on a geometrically complex

domain where the force distribution changes in time.

This makes the computational cost particularly high.

Moreover the contact forces and hence the surface

stresses that need to be integrated (Eq. 7) depend on

the actual position and deformation of the body in

space, which in turn depend on the inertia and

damping forces [not included in Eq. (8), see

Eq. (25)]. However the method remains suitable for

problems where the body domain is regular and it is

the only method that assures a continuous stress and

displacement field.

2.2 Global attachment modes set

An attachment mode is defined by Craig [6] as the

displacement vector obtained by applying a unit load

to a selected degree of freedom. In this work, we define

as Global Attachment Mode the deformation patter

obtained by applying a unit load to a certain degree of

freedom and discarding the local deformation that

occurs in proximity of the force location. In order to

extract only the global displacement field, the method

proposed by Chang [5] has been used in this work and

further developed within the MOR technique (see

Sect. 4.3). Therefore the global displacement vector

ufe of Eq. (1) is calculated as

ufe ¼ ufetotal þ ufepartial ð10Þ

Looking back at the system of Eq. (3), it is already

clear that this approach does not ensure a continuous

stress field. The two displacement fields ufetotal and

ufepartial are calculated using the FE model shown in

Fig. 6, which has the base clamped in the total model

and a clamped vertical section in the plane YZ in the

partial model, perpendicular to the force direction and

located at a distance h from the force application point.

When the two FE deformation fields, total and local,

are summed together, the displacement gradient

present in the local model nearby the clamped section,

introduces a stress field in the global model that has no

physical meaning. The global model should indeed

capture stress and deformation due to the body

bending and no residual of the local deformation

should be present. However, by moving the clamped

section further from the force location, the stresses

introduced in proximity of the clamped surface have a

lower magnitude than in the other cases. It is indeed

one of the goal of this article to evaluate quantitatively

the influence of the clamped section in the partial

model. Nevertheless also by varying the position of the

clamped section, the method does not respect the

condition of Eq. (3) necessary for obtaining a contin-

uous stress field. By means of model shown in Fig. 6

we evaluate the influence of the distance h between the

force location and the clamped section in the partial

model. The position of the clamped surface determines

indeed the main difference between the methods

proposed by Chang and Andersson–Vedmar.

Figures 7 and 8 illustrate the effects on the stress

field of the position of the clamped section used in the

partial model. In particular we propose three cases

where the clamped section is gradually moved further

from the force location and we plot the stresses in the

same direction of the applied force as well as the von
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Mises stresses. In each plot we can observe the the

stress field of the globally deformed body that

should have a component only in proximity of the

body base (due to the bending). However, the use of

a sub-model to eliminate the local deformation

component implies the presence of a residual stress

in proximity of the vertical clamped section. The

magnitude of such induced stress becomes less

relevant compared to the bending stress value by

increasing the distance h between the clamped

section and the force location.

It can be concluded that the accuracy of the method

on a stress level depends on the distance of the

clamped section from the force application point and

from the mesh size. Neither the solution proposed by

Vijayakar [26] ensures a continuous stress field and its

computational time, although less expensive than

high-fidelity FE models, is much higher than the

approaches proposed by Andersson [1] or Chang [5].

In term of accuracy on the stress field, the limitations

of the method proposed by Chang [5] are overtaken by

the numerical advantages in the gear application case.

Moreover, the level of introduced von Mises stress in

correspondence of the clamped surfaces is less than

5% of the stress level at the tooth root (due to the

bending). This makes the former negligible even if

non-physical. Finally, von Mises stress analysis is

generally used in gear applications for evaluating

durability and failure prediction during a post-pro-

cessing phase. However, in the final part of this work,

we assess the accuracy of the combination of semi-

analytic contact model with MOR technique through

the analysis of Transmission Error. This quantity is

influenced mainly by the accuracy on a displacement

level of the contacting tooth. In this respect, we show

in Sect. 6 that Eq. (10) provides a sufficient level of

accuracy.

3 Paramentric model order reduction technique

The PMOR technique considered in this section has

been developed by Blockmans et al. [3], starting from

the work of [23], as an adaptation of the traditional

CMS approach. The method exploits a reduction space

consisting of a truncated set of eigenvectors aug-

mented with a parameter-dependent set of static shape

vectors. Such static vectors are obtained by interpo-

lating among a set of global contact shapes, which

represent the displacement modes of the interacting

bodies obtained from a series of static contact

analyses.

Fig. 6 Total and partial

model used to compute the

global displacement field of

Eq. (10)
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Fig. 7 Stress field in the globally deformed body calculated in

x-direction varying the position of the clamped vertical section
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3.1 Reduction space

The PMOR scheme adopted here belongs to the class of

projection-based methods. In general, the aim of MOR

techniques is to reduce the number of DOFs of the full-

ordermodel. In this case, the number n of nodalDOFs of

the Full OrderModel (FOM) of the gears, discretized by

means of the Finite ElementMethod, can easily reach up

to n � 105�6, far too high to be integrated dynamically

in an efficient manner. In order to alleviate the

computational cost, the nodal displacements vector

of the ith gear, indicate by uif 2 Rn�1, is approximated

by a vector of lower dimension as follows:

uif � Vigi ð11Þ

where Vi 2 Rn�ng is the model reduction space and

gi 2 Rng�1 is the generalized elastic coordinates

vector. The reduction space Vi, used to reduce the

model, is composed by two components:

Vi ¼ ½Ui Wi� ð12Þ

where Ui indicates a set of eigenvectors, truncated in

order to capture the dominant physic of the problem,

while the computation and interpolation (based on the

rigid-body configuration of the multibody system) of

the parameter-dependent set of static shape vectorsWi

are explained in the next paragraph.

3.2 Global contact shape calculation

A global contact shape Si is defined as the displace-

ment mode of the ith meshing gear obtained from a

static contact analysis of the gear pair, locked at a

certain configuration and experiencing a defined

external torque. At each angular position and applied

torque will correspond a certain global contact shape.

In order to calculate a global contact shape, the

following non-linear system has to be solved:

0 0 0

K1
FE 0

sym: K2
FE

2
64

3
75

h1
u1f

u2f

8><
>:

9>=
>; ¼

T1

0T

0T

8><
>:

9>=
>;þ QC

ð13Þ

where S1 ¼ u1f and S2 ¼ u2f , QC represent the contact

force vectors and it is calculated by means of a penalty

contact formulation. Finally KFE identifies the FE

stiffness matrix of the ith gear. The solution of the

system of Eq. (13) corresponds to the static equilib-

rium of the two gears in contact with each other, given

their angular positions (in cinematic condition) and the

applied external torque (T1). The unknowns h1, u1f and

u2f correspond respectively to the angle of the gear 1

(driving gear) and the displacement modes of gear 1

and 2 at static equilibrium. When the static equilib-

rium is reached, the unknown h1, due to the gears

deformation, is different from the cinematic angle of

gear 1; the angle h2 of gear 2 (driven gear) is instead

held fixed.

By evaluating the system of Eq. (13) for different

angular positions nh of the gear pair and different

torques nt applied to the driven gear, the set of static

shape vectors Si is assembled. Multiple levels of

torque ensure that the non-linear relationship between

applied torque and resulting nodal displacements is

properly captured. The result is a set of ns ¼ nh � nt
global contact shapes. For more details about the

choice of nh and nt we refer the interested reader to [3].

Finally, in order to obtain dynamic decoupling

between the elastic coordinates corresponding to Si

and Ui, the global contact shapes obtained from the

system of Eq. (13) must be made residual with respect

to the vectorsUi. In such case it can be shown [24] that

the resulting global contact shapes satisfy the follow-

ing relations:

Ui TMi
FES

i ¼ 0 ; Ui TKi
FES

i ¼ 0 ð14Þ

where MFE represents the FE mass of the ith gear.

3.2.1 Interpolation of the global contact shapes

The static shape vectors Wi are obtained by interpo-

lating among the set of global contact shapes Si, based

on the current configuration of the gear pair.

The PMOR method is not restricted to a specific

interpolation scheme. In this work a linear interpola-

tion scheme has been used to construct the static shape

vectors. Denoting the global contact shapes corre-

sponding to hi ¼ his by Sis and the ones corresponding

to hi ¼ hisþ1 by S
i
sþ1, the matrix of static shape vectors

bFig. 8 Stress field in the globally deformed body calculated at

the element centres (von Mises) varying the position of the

clamped vertical section
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Wi at an intermediate angle �hi can be defined by using

the following linear interpolation formula:

Wi ¼ ð1� pÞSis þ pSisþ1 2 Rn�nt ð15Þ

where p is a parameter depending only on the angular

position hi of the gear. The relation between p and �hi is
linear and can be written explicitly as

p ¼
�hi � his

hisþ1 � his
¼

�hi � his
Dhi

ð16Þ

where the angular increment Mhi is defined as

Dhi ¼ hisþ1 � his. Hence, the parametric reduction

space Vi that underlies the presented PMOR technique

is composed of a constant set of eigenvectorsUi and a

configuration -dependent set of interpolated global

contact shapes wiðhiÞ:

ViðhiÞ ¼ Ui WiðhiÞ
� 	

¼ Ui ð1� pðhiÞÞSis þ pðhiÞSisþ1

� 	 ð17Þ

4 Semi-analytic contact model in a parametric

model order reduction scheme

This section illustrates the procedure for combining

the semi-analytic contact model together with the

PMOR technique presented in the previous section. In

the first part, an overview on the calculation of the

standard global contact shapes by means of a ROM is

given; such ROM problem is modified in the second

part in order to separate the local contact deformation

from the gear total deformation. Finally, the ROM is

combined with a Hertzian contact model for calculat-

ing the contact forces and a new basis for the PMOR

scheme is assembled.

4.1 The ROM for calculating the global contact

shapes

In the standard PMOR technique, the system of non-

linear equations (Eq. 13) necessary for calculating the

set of global contact shapes is solved by means of a

statically complete ROM in order to limit the overall

cost of the computation [23]. The reduction of the

FOM is performed with a standard CMS method,

where the reduction space wi
CMS 2 Rn�nc contains one

static attachment mode for each nodal degree of

freedom j ðj ¼ 1. . .ncÞ that can be possibly loaded

during the computation of the shapes (hence all the

nodes on the gears flanks that can go in contact). Each

attachment mode represents the displacement vector

calculated when the corresponding degree of freedom

is loaded.

The matrix wi
CMS is used to transform Eq. (13) to an

equivalent system of reduced dimension as follow:

0 0 0

K1
CMS 0

sym: K2
CMS

2
64

3
75

h1
u1CMS

u2CMS

8><
>:

9>=
>; ¼

T1

0T

0T

8><
>:

9>=
>;þ ~Qpen

ð18Þ

where

Ki
CMS ¼ wiT

CMSK
i
FEw

i
CMS 2 Rnc�nc ð19Þ

and the vector uiCMS represents the modal participation

factors of the reduction space wCMS. The projected

contact forces ~Qpen are calculated by projecting the

physical contact forces on the reduced space; the

physical forces are calculated by means of a standard

penalty formulation, so by multiplying the penetration

gap between the teeth in contact by a chosen penalty

factor. Indications about how to choose the penalty

factor are given in [24], that generally should be 2

order of magnitude stiffer than the bodies involved

into contact. Finally the linear combination of the

modal participation factors uiCMS, calculated by solv-

ing the system of Eq. (18) at a certain angular position

and torque level, is used to compute one displacement

mode Sis ¼ wi
CMSu

i
CMS.

4.2 The new reduction space for the ROM

problem

In the proposed method, the calculation of contact

forces and reduction space of the ROM are modified

with respect to the scheme illustrated previously. The

procedure to calculate the new reduction space of the

ROM consists in the following steps:

1. Calculate wi
glob, the global attachment modes set.

A global attachment mode is defined as the static

displacement vector of the system when a certain

DOF is subjected to a unit load but excluding the

local deformation close to the load application

60 Meccanica (2018) 53:49–75

123



point. The procedure to extract the local defor-

mation is explained in Sect. 2.2. Then the new set

includes one mode for each nodal DOF that can

possibly be loaded during the computation of the

shapes (for each gear). The result is a mode set

that describes the tooth bending and shearing for

each possible force input location.

2. Calculate the new reduction space wi
sv of the

ROM. The matrix wi
glob contains all the global

attachment modes but, in this case, the displace-

ment vectors represented by such modes describe

‘‘almost’’ the same physical phenomena. There-

fore a singular values decomposition (SVD) is

performed in order to avoid having badly condi-

tioned reduced matrices. The result is the matrix

wi
sv 2 Rn�nsv , whose dimensions are significantly

lower with respect to the above -mentioned

standard wi
CMS 2 Rn�nc , reducing drastically the

numerical complexity of solving Eq. (18). The

procedure to assemble the new reduction space

wi
sv is illustrated in Table 1.

The number nsv of retained SVs is selected by means

of an energy-based criterion (as explained in Table 1)

in order to conserve a user-defined percentage pen of

the system deformation energy.

The new projection matrix wi
sv is used to reduce the

FOM problem, obtaining an equivalent system of

reduced dimension shown in Eq. (23). By solving such

system, the unknown modal participation factors uisv
can be calculated for a certain angular position and

torque level. Finally they will be used to construct a

new displacement modes set as Sis;sv ¼ wi
svu

i
sv and the

new global contact shape is calculated by interpolating

within the displacement modes set.

4.3 Contact force calculation

As first step of the implemented semi-analytic contact

model within the PMOR technique, the local contact

deformation has been separated from the numerical

solution. Hence, the new global contact shape, calcu-

lated from Eq. (23), describes the gear body deforma-

tion as well as the teeth bending and shearing, without

taking into consideration the local deformation in

correspondence of the contact points. This part of the

deformation is described by the contact model and

used to calculate contact forces and local stress field.

In this case the contact forces cannot be calculated

by imposing a non-penetration condition for the teeth

flanks, like in the classical penalty approach for

contact problem (by using for example the Signorini’s

condition [28, Chapter 5.1]). If so, the two gears

would be able neither to penetrate each other nor

locally deform, resulting in an overestimation of the

total contact stiffness. Therefore the contact model has

to allow a certain penetration between the teeth flanks:

such penetration gap has to match the local deforma-

tions of the teeth flanks that are not captured by the

numerical ROM (and represented by the red area on

the right-hand side of Fig. 9).

The output contact forces are calculated starting

from the penetration gap between the teeth flanks. The

contact model uses a formula (Eq. 20) derived from

the Hertz theory by Harris and Kotzalas [10, Chap-

ter 6.3] in case of parallel axes cylinders in contact

with each others (with ideal line contact)1 :

Table 1 SVD process Algorithm 1 Procedure for selecting the SVs and assembling wi
sv

Input: set of global attachment modes wi
glob 2 Rn�nc

Output: reduction space wi
sv 2 Rn�nsv

1. Compute Ki
r ¼ wiT

globK
i
FEw

i
glob, where Ki

r 2 Rnc�nc

2. Compute Ui; Ri 2 Rnc�nc where Ki
r ¼ UiRiVi� is the singular values decomposition of Ki

r

3.
Find nsv, such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiPnsv

i
r2
i

p
ffiffiffiffiffiffiffiffiffiffiffiffiPnc

i
r2
i

p \ pen
100

, where r ¼ diagðRiÞ and i ¼ 1; . . .; nsv; . . .; nc

4. Define ~Ui 2 Rnc�nsv by extracting the first nsv column vectors of Ui

5. Compute wi
sv ¼ wi

glob
~Ui 2 Rn�nsv

1 In the remainder of this paper we will refer to a and P of

Eq. (20) respectively as Hertz-penetration gap and Hertz-

contact force.
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a ¼ 2P

pl

� 1� m21
E1

þ 1� m22
E2

�
�

ln
h pl2
P

� 1

R1

þ 1

R2

�� 1� m21
E1

þ 1� m22
E2

��1i

ð20Þ

where a represents the amount of penetration due to

the force P, R1andR2 the curvature radii of the

cylinders at the contact location, l the contact length

while ðm1;E1Þandðm2;E2Þ identify respectively the

Poisson’s ratio and the Young’s modulus of the two

cylinders materials (Fig 10).

Moreover it has to be underlined that the method

proposed in this paper is not restricted to the analytic

formula described by Eq. (20) to represent the local

contact deformations. The latter has however been

selected due to its rather limited number of assumptions,

hence it can be used for different gearmeshing scenarios.

In the implemented method, the Eq. (20) is numerically

inverted in order to find from the penetration gap a the

output force P. The amount of penetration gap is

computed by a contact detection algorithm that is

illustrated in Sect. 5.1. Moreover the teeth axial width

is divided in sections according to the axial sections of

the finite elements model and the contact forces are

calculated on all the sections where the contact occurs.

Therefore in this model there is no coupling between

the slices in the local effect, which is a fair assumption

due to the exponential decay of the local deformation

from the location of the applied force [12, Chap-

ter 2.1]. Finally the contact force distribution can be

calculated according to the Hertz hypothesis:

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P

pl
1� m21
E1

þ 1� m22
E2


 ��1
1

R1

þ 1

R2


 �s
ð21Þ

The distribution p is integrated in the numerical model

along a rectangular domain of size l� 2b, where l is

the half-section length and b is the semi-width of the

contact surface. The latter is calculated from [10,

Chapter 6.3] as following:

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P

pl
1� m21
E1

þ 1� m22
E2


 �
1

R1

þ 1

R2


 ��1
s

ð22Þ

In such manner there are no a-priori assumptions of

constant pressure distribution along the whole tooth

flank, but only within each axial slice in contact. The

result is a set of nodal physical contact forces. As final

remark, the variables of the contact Eq. (20), such as

radii of curvature and contact length that depends on

the current contact location, are evaluated considering

the geometry of the globally deformed bodies.

4.4 New reduction space

The new global contact shape can be calculated by

solving the ROM problem of Eq. (23).

0 0 0

K1
sv 0

sym: Ksv
2

2
64

3
75

h1
u1sv

u2sv

8><
>:

9>=
>; ¼

T1

0T

0T

8><
>:

9>=
>;þ ~Qhertzian

ð23Þ

The system has been reduced with the matrix wsv, that

together withKi
sv and u

i
sv, is presented in Sect. 4.2. The

projected contact forces are calculated as
~Qhertzian ¼ wT

svQhertzian, where the computation of the

physical contact forces Qhertzian is illustrated in

Sect. 4.3. The results is a new set of displacement

modes, each calculated as Sis;sv ¼ wi
svu

i
sv, varying

angular position and torque level. As in Eq. (12), the

Fig. 9 Classic penalty approach (left) and semi-analytic contact

method (right)

Fig. 10 Contact between two cylinders with parallel axes [18]
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reduction space can be written as by interpolating

among the displacement modes set Sisv:

~Vi ¼ ½Ui Wi
svðsÞ� ð24Þ

The number of DOFs of ~Vi is the same as Vi of the

PMOR scheme presented initially (Eq. 12), but there

are consistent computational advantages in both

assembling (pre-processing) and using (processing)

the new proposed reduction matrix that will be

illustrated in the next section.

5 Computer implementation

The implementation of the PMOR technique com-

bined with a semi-analytic contact model is discussed.

The main features of the method are illustrated in this

section, and applied to two gear pairs in Sects. 6.1 and

6.2. In order to perform a dynamic simulation using

such scheme, a phase of pre-processing, processing

and post-processing is required. During pre-process-

ing phase the basis matrices ~Vi of Eq. (24) are

computed and, making use of such matrices, the

equation of motions are reduced and solved in the

subsequent processing phase.

5.1 Pre-processing phase: computing the basis

matrices

In the pre-processing phase the basis matrices ~Vi of

Eq. (24) are assembled after calculating eigenvectors

and global contact shapes of the two gears. The

required steps to their computation are illustrated in

the flowchart of Fig. 11. The inputs to this phase are

the FE mass and stiffness matrices (Mi
FE and Ki

FE) and

the corresponding vectors of the undeformed nodal

coordinates (ui0), while the inner bores of the two gears

are constrained to the center points by means of rigid

multipoint constraints. The eigenvectors Ui 2 Rn�nk

of the two gears correspond to the nk lowest eigenfre-

quency retaining their center point fixed. The global

contact shape Si is defined as the gear static deforma-

tion for a fixed angular configuration and under an

applied torque: each combination of Ti and Hi

represents a sampling point of the parametric model

order reduction scheme. In the present work, the

global contact shapes are computed for a set of

external torques, typically 2 or 3, while the angular

sampling points are selected equidistantly along one

angular pitch of the driving gear, taking advantage of

the symmetry of the gears. The set of global contact

shape is computed using a ROM model and a semi-

analytic contact model (see Sect. 4.2). Due to the use

of the modified CMS approach proposed in this work,

the local deformation is separated by the rest of the

deformation of the ROM (and captured by the analytic

contact model), further reducing the computational

effort of solving the FOM. Eq. (23), that corresponds

to the ROM problem, is solved iteratively for a

particular combination of Ti and hi. Within each

iteration a sub-loop is necessary to compute the

contact forces due to the non-linear nature of the

analytic contact model. The loop starts from the

position of the non-locally deformed gears for eval-

uating the local contact parameters characteristic of

Eq. (20), such as curvature radii and length of contact.

Then, using Eqs. (20) and (22), the contact pressure

distribution is calculated and integrated on the FE

model to obtain the nodal contact forces of the FOM.

Such forces are projected on the ROM space and

Eq. (23) can be solved.

Once the global contact shapes have been com-

puted, a mass orthonormalization procedure is per-

formed to make these vectors residual with respect to

the set of kept eigenvectors,Ui, in order to allow faster

inversions of the reduced matrices in the processing

phase. A detailed description of this procedure can be

found in [3], as well as the procedure to calculate the

mass and stiffness invariants of the gears. These data,

along with the eigenvectors and global contact shapes

of the gears, are sent to the processing phase of the

simulation.

5.2 The processing phase: solving the equations

of motion

The steps for efficiently solve this system have been

illustrated by Blockmans et al. [3], hence only the new

implemented contact model will be explained in this

section. The equations of motion of the gear pair have

the form of a system of non-linear second-order

ordinary differential equations and they can be written

in the following form:
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MiðqÞ€qi þ Kiqi ¼ Qi
eðq; tÞ þ Qi

cðqÞ þ Qi
vðq; _qÞ

ð25Þ

where qi represents the vector of generalized coordi-

nates of the ith gear, defined as:

qi
T ¼ fhi giTg 2 R1�nq ð26Þ

The vectorsQi
e; Qi

c represent respectively the external

and the contact forces2, while the quadratic velocity

vector, which contains the gyroscopic and Coriolis

force components, is defined as

Start

Compute Global at-
tachment modes

Compute Singular Value
Decompostion, as in Tab.1

Loop over all
sampling points

Compute the static
vectors using Eq. 23

All sampling
points evaluated?

Compute eigenvectors

Orthonormalize
global contact shapes

End

Evaluate local con-
tact parameters

Evaluate the penetration
gap between the gear teeth

Calculate the contact forces
and the load distribution

Compute the physical
forces by integrating
the load distribution

M i
FE , Ki

FE

Si
sv ∈ R

n×ns

ψi
sv ∈ R

n×nsv

θi, T i

Si
s,sv ∈ R

n×1

No

ψi
glob ∈ R

n×ncΦi ∈ R
n×nk

V i

Qi
hertzian

Ri, li

αi

Fi, βi, pi

Fig. 11 Flowchart for the offline calculation of the reduction basis Vi

2 In the remaining of this paper the q-dependence of the

matrices and vectors in Eq. (25) are implied for notational

convenience.
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Qi
v ¼ � _Mi _qi þ 1

2

o

oqi
_qi

T

Mi _qi
� �� �T

ð27Þ

The inputs to this phase consist of the initial conditions

qið0Þ and _qið0Þ, the external loads Qi
eðtÞ and the data

computed during the pre-processing phase, that is the

mass invariants and basis vectors [20, Chapter 5.6]. In

order to solve system of Eq. (25) by means of an

explicit fourth-order Runge–Kutta solver [2, Chap-

ter 4.2], the previous equations are converted into a

first-order system as following:

_yi ¼
_qi

€qi

� �
¼

_qi

Mi�1fQi
e þ Qi

c þ Qi
v � Kiqig

( )

2 R2nq�1

ð28Þ

where the state vector yi is twice the size of the vector

of generalized coordinates qi.

During the processing phase, the rigid-body param-

eters needed for interpolating among the set of pre-

computed global contact shapes are calculated. By

means of those parameters the reduction basis V of

Eq. (11) is interpolated. Next, the right-hand side of

Eq. (28) is constructed. The contact forces Qi
c are

computed by using the contact model presented in

Sect. 4.3. The presented method requires the inversion

of a non-linear equation to find from the penetration

gaps the corresponding distributed contact forces. As

consequence, the computational cost for solving each

time-step is higher with respect to a standard penalty-

based contact algorithm. Despite this, the numerical

stiffness of the problem, the ratio between contact

force and penetration gap in the new contact model is

much lower (at least two orders of magnitude) than the

penalty factor generally used in a standard penalty

approach. The ratio between contact force and pene-

tration gap could be defined as a new penalty factor,

that is in this case based on the physic of the problem

and derived by the Hertz theory and it is not a

numerical expedient to approximate the Signorini’s

conditions. The lower magnitude of the physic-based

penalty factor allows the use of an higher time step for

the solver with a consequent consistent gain in the

computational time required in dynamic simulations.

An example is shown in Sect. 6.2, where the proposed

approach is compared with the method developed by

Blockmans et al. [3] and already validated by means of

numerical comparison against full order FE simula-

tions. In both cases, the dimensions of the dynamic

problem are dictated by the reduction basis V of

Eq. (11), so they do not depend on the chosen method

(standard-penalty approach or Hertz based penalty

formulation) but on the selected number of global

contact shapes and retained normal modes (as

explained in Sect. 3.1).

6 Numerical results

In this section the proposed PMOR technique

combined with a semi-analytic contact model (com-

bined PMOR-Hertz) is applied to several gear

contact examples. Results are analyzed with respect

to accuracy and computational time, providing both

experimental and numerical comparisons. The com-

bined PMOR-Hertz strategy is implemented in the

KU Leuven code MUTANT (MUltibody Transient

ANalysis of Transmissions—a code for gear

dynamic problems) [13]. MUTANT has been

already used by Blockmans et al. [3] to numerically

validate the PMOR technique presented in Sect. 3

(and referred to as PMOR-standard). Concerning

validations, the experimental data obtained by a

single flank gear-testing machine developed by

Kurokawa in [15] are used to compare Static

Transmission Error (STE) results. Both spur and

helical gears are analyzed providing a very valuable

experimental validation of both the PMOR tech-

niques analyzed. The two proposed methods are

briefly compared in Table 2.

6.1 Static results

Example 1 The first example case concerns a series

of static simulations of a spur gear pair. Manufacturing

parameters and operating conditions of the studied

gears are taken by the work of Kurokawa [15] and

displayed respectively in Tables 3 and 4. For this gear

pair Kurokawa measured the STE in function of the

rotational angle of the driven gear, varying the applied

load. In particular, the specific load varies from 22 N/

mm until 392 N/mm and it identifies the applied load

per unit of length at the operating pitch point in a

normal direction with respect to the tooth involute.
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The conditions detailed in Tables 3 and 4 have been

reproduced numerically using both the PMOR stan-

dard and the combined PMOR-Hertz. A series of

static simulations for different angular configurations

of the gears has been performed covering the full

length of the path of contact for each loading

condition. Practically the series of static analyses is

obtained by locking gear 2 at discrete angular

configurations and applying the desired torque to gear

1 (see Table 4). The equilibrium solution is obtained

thanks to a relatively standard Newton based non-

linear solver.

Figures 12 and 13 show the FE mesh of the driving

gear and a detail of the FEmesh of the driven gear. For

sake of memory requirement and without any loss of

generality, only the teeth involved in the contact

during the prescribed rotation are finely meshed while

the rest of the teeth and the gear blank are coarsely

meshed but correctly represent the stiffness distribu-

tion of the gear. As far as the transition between the

fine and the coarse mesh is concerned, we use a

surface-based constraint. The latter ties the active

DOFs on the slave surface to the active DOFs of the

Table 2 Numerical codes characteristics

PMOR standard Combined PMOR-Hertz

Implementation Floating frame of reference FMBS Floating frame of reference FMBS

Contact formulation Penalty Hertz-based contact model

Contact search Node-to-surface (only on teeth flanks) Max penetration gap on each axial section of teeth

flanks

Contact force

detection

Master-slave double pass Hertz-based pressure distrubution integrated on FE

model

Static solver Force equilibrium through modified Newton-

Rapson

Force equilibrium through modified Newton-Rapson

Dynamic solver Runge–Kutta order 4 (RK4) Runge–Kutta order 4 (RK4)

Element type Bilinear 8-nodes hexahedral Bilinear 8-nodes hexahedral

Table 3 Gears manufacturing parameters

Gear 1 Gear 2

Manufacturing parameters

Norm. module 6.0 6.0

Pressure angle (deg) 20 20

Number of teeth 21 31

Facewidth (mm) 15 15

Material parameters

Young’s modulus (GPa) 200 200

Density (kg/m3) 7700 7700

Poisson’s ratio 0.3 0.3

Table 4 Performed static analyses

Spec. load (N/mm) Torque (N mm)

Simulation

1 22 20790

2 65 61709

3 131 123417

4 196 185126

5 262 246834

6 327 308543

7 392 370251

Fig. 12 Finite element model of the driver generated in Matlab
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master surface through the use of position-based

interpolation formula that derives from the element’s

shape functions.

Static analyses are performed to create the reduc-

tion spaces needed to apply the combined PMOR-

Hertz and standard-PMOR. In order to speed up this

preparation phase each global contact shape (which is

by definition the solution of a static contact problem) is

solved by means of a reduced order model. One of the

benefits of the combined PMOR-Hertz strategy is

that it allows to have a much shorter computational

time and memory requirement during the computation

of the global contact shapes (see also Sect. 4.1). In

Example 1 if the standard PMOR approach is used, a

static shape (attachment mode) has to be computed for

each DOF that can possibly be loaded during the

meshing cycle. Therefore the reduction space adopted

to evaluate the global contact shapes (see wCMS in

Eq. 18) can remain very large. As shown in Table 5,

the ROM used to create the global contact shapes

maintains a very large dimensionality and includes

14850 shapes (as opposed to the 264762 DOFs of the

FOM). On the contrary by using the combined

PMOR-Hertz method, the dimension of the ROM

after SVD decreases to only 21 shapes (by choosing

pen of Table 1 equals to 99%). As consequence, the

time required to solve the static analysis decreases

significantly and so the memory requirements. The

gain in computational time for calculating each each

static analysis can be appreciated in Fig. 14, where the

computational time for the six levels of selected torque

(y-axis) is presented in logarithmic scale against the

static simulations along the sampled angular pitch (x-

axis). In case of spur gears, for each torque level, the

time required for calculating 41 static simulations is

1461 s (35.61 s for each simulation) with standard-

PMOR approach, while it decreases to 44.20 s

(1.078 s for each simulation) if the combined

PMOR-Hertz method is employed. Moreover

Fig. 14 shows the achieved speed-up, defined as the

ratio between the reference execution time (standard-

PMOR method) and the execution time of the

proposed approach. It is worth noting that the com-

plexity of the contact formulations is proportional to

the number of nodes in contact. In case of aligned spur

gears, the number of gear axial sections (and therefore

nodes) in contact is proportional to the number of

engaging tooth pairs. Therefore we normalize the

speed-up with respect to the number of tooth pairs in

contact and we obtain an average normalized speed-up

Fig. 13 Teeth mesh of the driven gear

Table 5 Characteristics of the FE models and reduced models

Finite element models parameters Gear 1 Gear 2

El. on tooth flanks 53 53

El. along axial direction 15 15

DOFs of FOM 127581 137181

DOFs that can possibly be loaded 7425 7425

DOFs of ROM (standard CMS—Eq. 18) 7425 7425

DOFs of ROM (new SVs—Eq. 23) 13 8
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Fig. 14 Preprocessing computational time and speed-up:

comparison between standard-PMOR and combined PMOR-

Hertz methods for spur gears

Meccanica (2018) 53:49–75 67

123



of 18.03 times. It has to be underlined that the amount

of global contact shapes needed in the processing

phase (see Sect. 6.2) remains the same for both the

methods presented.

Figure 15 compares the experimetal STE curves

measured by Kurokawa [15] against the results

obtained with the combined PMOR-Hertz approach.

The results are properly matching both along the line

of action and with respect to the varying torque. Shape

and peak-to-peak value present a very similar

behaviour both during the period of single tooth in

contact as well as during the period of two teeth in

contact.

As expected, the period of single tooth contact,

identified by the number 1 in Fig. 15, is shorter

according to the load increase. Conversely, the period

of double tooth contact, represented by the number 2

in Fig. 15, is longer due to the tip-involute-contact that

is induced by the tooth deformation. Finally the load

induced stiffening effect typical of gear contact

problems is properly matched by the numerical

strategy. Figure 16 shows a comparison between the

two modelling techniques. The degree of similarity is

satisfactory and the combined PMOR-Hertz

approach is able to closely match the performance of

the standard PMOR method. However a slight

worsening of the degree of similarity occurs with

increasing the input torque level. Indeed the STE

peak-to-peak value is slightly underestimated by the

combined PMOR-Hertz approach and this difference

increases with increasing load.

Example 2 Similarly to Example 1, this second

example proposes a series of static simulations of a

helical gear pair based on the work of Kurokawa [15].

As compared to spur gears, the main advantage of

helical gear transmission consists in a more gradual

and smoother engagement as well as a better capability

to carry high loads and a smoother pressure distribu-

tion over the teeth flanks. For this reason the

combined PMOR-Hertz method is expected to

perform to the best of its capacities since the

boundaries of validity of Hertz theory are usually not

approached. The analysis of the contact interactions

for helical gears is significantly more complicated than

for spur gears. During the engagement of a helical gear

pair, the contact starts at one end of the tooth root and

then gradually spreads over the complete tooth flank

throughout the rotation to finally gradually exit plane

of contact. In this situation the contact width of the

tooth flank is not constant and the corresponding

contact pressure present a more complex shape and

variation during the relative motion of the 2 gears.

From a modeling standpoint, such loading conditions

require an accurate description of the teeth and gear
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Fig. 15 Comparison with experimental data for spur gears [15]
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flexibility. In particular the tooth bending and torsion

during the partial loading of the teeth flanks is of

particular importance and requires a fine axial dis-

cretization of the FE model. This translated into a

larger number of DOFs included in the FOM as

compared to spur gears

The parameters and working conditions of the gear

pair examined [15] are presented in Tables 6 and 7.

The measurement data include STE values over path

of contact of the driven gear 1 for several operating

conditions ranging from 8 to 784 N/mm

Figure 17 shows a front 2-D view of the gear pair at

the start of engagement while Fig. 18 shows a view of

the FE model of the driven gear.

Other information about the modeling choices are

displayed in Table 8 while Fig. 20 underlines the

potential of the combined PMOR-Hertz in reducing

the pre-processing effort with respect to the standard

PMOR approach. As already shown for the case of

spur gear pair, also in case of helical gears the required

computational time for calculating each each static

contact analysis can be observed in Fig. 20: here the

computational time for the six levels of selected torque

(y-axis) is presented in logarithmic scale against the

static simulations along the sampled angular pitch (x-

axis). In case of helical gears, for each torque level, the

time required for calculating 31 static simulations is
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Fig. 16 STE comparison between the combined PMOR-Hertz approach and the standard PMOR method for different torque levels -

spur gears

Table 6 Gears manufacturing parameters

Gear 1 Gear 2

Manufacturing parameters

Norm. module 6.0 6.0

Pressure angle (deg) 20 20

Helix angle (deg) 20 20

Number of teeth 21 31

Facewidth (mm) 40 40

Material parameters

Young’s modulus (GPa) 200 200

Density (kg/m3) 7700 7700

Poisson’s ratio 0.3 0.3

Table 7 Performed static analyses

Spec. load (N/mm) Torque (N mm)

Simulation

1 8 21070

2 98 229433

3 147 344149

4 196 458866

5 392 917731

6 637 1491313

7 784 1835462
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5208 s (168.0 s for each simulation) with standard-

PMOR approach, while it decreases to 347.5 s

(11.21 s for each simulation) if the combined

PMOR-Hertz method is employed. Figure 20 illus-

trates also the speed-up of the proposed approach with

respect to the standard-PMOR method. The speed-

up is in this case 15.73 times as average along an

angular pitch.3

Figure 19 shows the comparison between numer-

ical and experimental STE at different torque levels

during three angular pitches. The numbers 2 and 3 at

the bottom of the figure identifies the period of double

and triple tooth contact respectively. The results

clearly show that the a very high degree of similarity

between the experimental and the numerical results.

As it can be noticed the behaviour of the STE curve

with respect to both angular rotation and torque is

strongly non-linear but despite this fact is correctly

captured by the proposed numerical approach. In

particular the delay in the transit from 3 to 2 teeth in

contact with increasing torque is well capture together

with a more prolonged period of triple tooth contact.

This phenomenon is particularly relevant in the

analysis of helical geared transmission and is usually

hard to capture numerically. Finally it can be noticed

that the two proposed methods present a higher degree

of similarity as compared to the Example 1 as

anticipated. Helical gears generally present a lower

peak-to-peak value for the STE even for higher

external torques. This is due to the generally higher

contact ratio that is characteristic of helical pairs. In

this specific case the contact ratio remains between 2

and 3 under any loading.

6.2 Dynamic results

In order to finalize the analysis regarding the potential

of the method, a highly transient dynamic simulation

of a spur gear pair is presented. The results of the

combined PMOR-Hertz method are compared

against the standard PMOR method that is taken as

reference.

Example 3 The gear pair starts to spin with an

initially zero velocity. During the time simulation an

external torque ramp-up is applied to the driving gear

and reaches a constant value of 185 Nm½ � after 5 ms.

The driven gear reacts to the external load with a

viscous torque of 20 Nm s/rad such that a steady-state

angular velocity of about 13.63 (rad/s) is reached. The

duration of the simulation is 25 ms. More details about

the simulation can be found in Table 9. The
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Fig. 17 Engagement of the helical gear pair

Fig. 18 Mesh detail of the driven gear

Table 8 Characteristics of the FE models and reduced models

Finite element models parameters Gear 1 Gear 2

El. on tooth flanks 24 24

El. along axial direction 24 24

DOFs of FOM 165000 190620

DOFs that can possibly be loaded 7800 7800

DOFs of ROM (standard CMS—Eq. 18) 7800 7800

DOFs of ROM (new SVs—Eq. 23)

with pen of Table 1 equals to 99% 64 48

3 Differently from the spur gear example, in case of aligned

helical gears the complexity of the contact formulations does not

vary along the angular pitch just as the number of gear axial

sections in contact.
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manufacturing parameters of the spur gear pair used in

this simulation are the same of Example 1 and are

shown in Table 3; The FE mesh used presents a larger

amount of elements along the involute flank, 53,

leading to a total number of DOFs equals to 264762 for

the FOM of the two meshing gears. The projection

space, used to reduce Eq. (25), has been assembled

following the procedure explained in Sect. 5.1. The

number of precomputed global contact shapes is 40

along one angular pitch for each of the two precom-

puted torque levels, respectively 150 and 250 Nm.

During the dynamic simulation, the amount of DOFs

retained in the combined PMOR-Hertz and the

standard PMOR is the same and amount to 42

divided in 40 eigenmodes and 2 global contact shapes

(one for each level of torque) obtained by interpolation

as explained in Sect. 3.2.1.

The accuracy of the proposed method during

transient simulation is assessed by analysing the

dynamic transmission error (DTE). The standard

PMOR method is kept as a reference since already

validated in [3, 21, 22]. The DTE of a gear pair is
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fundamental in order to properly study the noise and

vibrations performances of geared transmissions. The

DTE is defined in literature as the difference between

the actual position of the driven gear and the

theoretical position it would occupy if the gears were

infinitely stiff and no micro-geometry modification

with respect to the ideal involute teeth profile were

present. Until recently, accurate DTE simulations

have not been achievable in reasonable computational

times due to the complexity of the this problem.

Despite this fact, a drive-train design based on the

study of dynamic transient simulations and DTE

would significantly improve its NVH and durability

performances.

Figure 21 illustrates a comparison of the DTE

results of the gear pair, computed using the standard

PMOR technique and the combined PMOR-Hertz

method. A steep transition in the DTE appears around

12.09 ms of simulation: This phenomena is noticeable

also in the static analysis of example 1 and is caused by

the varying number of teeth in contact during the

meshing. The proposed combined PMOR-Hertz

approach matches the reference simulation very

closely. In contrast, the computational cost of the

Table 9 Parameters of the dynamic simulation

Simulation data

Initial rotational speed (rad/s) 0

Torque applied to gear 1 (Nm) 190

Torque ramp-up time (s) 5� 10�3

Torque ramp-up function (s) Haversine

Viscous torque applied to gear 2 (Nm s/rad) 110

Print interval (s) 1� 10�6

Penalty factor (N/mm) 5� 105

Stiffness-proportional damping (% of crit. damp. of the lowest eigenfrequency) 1

Proportional damping global contact shapes (% of crit. damp. of the lowest eigenfrequency) 5

Solver Explicit four-stage Runge–Kutta

Number of degrees of freedom 42

Time [ms]
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Fig. 21 Dynamic

transmission error of spur
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two methods is substantially different, as Table 10

shows: such difference can be explained by analysing

how the dynamic problem is solved. In this example

but without loss of generality with respect to any

integrator adopted, the equations of motion are solved

by using an explicit four-stage Runge–Kutta solver

with constant time-step. The computational perfor-

mances scale linearly with respect to the selected time-

step. It is well known that, in contact problems in

general in particular for penalty based contact meth-

ods, the strictest condition for the stability of an

explicit integrator is dictated by contact stiffness. This

is to say that is the penalty factor could be reduced in

absolute value, the computational benefits would

significant since the region of stability of the integrator

would be significantly broadened. In shorter terms the

problem would become numerically less stiff. Gener-

ally, such penalty factor is selected to be around two

orders of magnitude higher than the physical stiffness

of the bodies in contact [24]. In this way the error

induced by the regularization of the Signorini condi-

tions can be reduced significantly at the expenses of a

more stiff numerical problem. If the penalty factor is

chosen properly, the residual and not physical pene-

tration between the contacting bodies can be brought

to negligible terms. The proposed combined PMOR-

Hertz approach can be seen as physic-based penalty

approach. In this respect the two contacting bodies are

meant to maintain a certain level of penetration that

correspond to the combined local deformation effects

of both bodies (and here described by Hertz theory).

To further expand this concept to the gear pair

example, it is possible to say that, when the force

equilibrium is reached, a penetration corresponding to

the teeth local deformation has to be present between

the gear teeth. By writing and deriving the dependency

of the applied force in Eq. (20) with respect to the

penetration, we can obtain the value for an ’equiva-

lent’ penalty factor to be compared with the numerical

penalty factor used in the standard PMOR approach.

The ratio between a numerical penalty factor and a

Hertz-based penalty factor is highly case dependent. In

Example 3 we obtained a ratio between the penalty

factor used for the standard PMOR approach and the

combined PMOR-Hertz approach of around 7. This

allowed to maintain a stable solution, for the latter

case, using a time step that is up to 6 times larger than

the standard method with a subsequent computational

gain without compromising in accuracy.

A few extra remarks are needed regarding the

computational performances. Firstly, it has to be said

that, despite the deceased numerical stiffness of the

problem obtained with the proposed approach, a small

time step is always required in contact problems due to

their impulsive nature: the relevant dynamic phenom-

ena happen at a small time-scale. Secondly, as it can be

seen in Table 10 the computational performances of

the new approach are only 4.5 times better as

compared to the standard method despite a 6 times

larger time step. The combined PMOR-Hertz

approach adopts a non-linear relationship between

penetration and contact force. This calls for a solution

of multiply scalar non-linear problems at each time-

step and causes a slight performance decrease as

compared to the theoretical one. It has to be noticed

that the relation between penetration and contact

forces in the Hertz model is load, geometry and

material dependent, with the consequence that also the

maximum allowed time steps and computational gain

is problem specific.

7 Conclusion and future work

Starting from a theoretical analysis of the existing and

most often used semi-analytic contact methods, we

originally highlight the most critical aspects of such

methodologies. In particular, our investigation clari-

fies why the model presented by Chang [5] outper-

forms the model proposed by Andersson and Vedmar

[1], by demonstrating that the error arising from the

non- physical underlying assumptions of the above-

mentioned methods is negligible.

Table 10 Dynamic

simulation results
Standard PMOR Combined PMOR-Hertz

Simulation time (s) 0.025 0.025

Max time step (s) 1:7� 10�7 1� 10�6

Total computational time (s) 4:6149� 103 1:0055� 103
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Strengthened by the gained theoretical insight, this

paper proposes an original method that combines an

advanced parametric model order reduction method

and a Hertz based contact model. As confirmed by our

results, the method can be applied to solve dynamic

gear contact problems more efficiently and without

sacrificing accuracy.

Static numerical simulations of both spur and

helical gear contact analyses showed very accurate

agreement with experimental data (Transmission

Error curves) measured by Kurokawa [15]. However

the STE comparison between the proposed Hertz-

based approach and penalty-based contact methods

showed a different peak-to-peak value at high input

torque levels. This emerges very clearly during the

period of single pair in contact which corresponds to

high local contact pressure applied to the teeth flanks.

Further investigations are needed to assess if this

effect is due to the limitations of the Hertz theory,

which assumes the area of contact to remain much

smaller than the characteristic dimensions of the

contacting bodies.

Dynamic simulations confirm that the paradigm

shift from penalty-based contact model towards the

proposed Hertz based allows to achieve a dramatic

reduction of the overall computational complexity:

lower pre- processing time and reduced memory usage

requirements due to smaller number of necessary

degrees of freedom and a faster execution due to a

lower penalty factor are considerable advantages of

the proposed method.

Taking advantage of the performance delivered by

the proposed methodology, upcoming research will

focus on the following aspects: (1) investigation of the

Hertz-based contact model accuracy for high specific

load as well as gears with micro-geometry modifica-

tions; (2) dynamic experimental validation of the

method will be carried out by using the set-up of [17]

for measuring dynamic Transmission Error curves; (3)

lubricated contact problems will be studied by taking

into account the lubricant properties within the semi-

analytic contact model and the results validated

against [19]; (4) more complex system level cases

will be investigated and the method will be integrated

in a 1D environment to efficiently capture geared

transmission torsional behaviour.
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