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Abstract During the on-orbit service of an deploy-

able antenna, the resonance of the antenna will affect

the accuracy of direction. The nonlinear dynamics of a

rigid-flexible space antenna is studied under the

conditions of two-to-one or three-to-one internal

resonance analytically and experimentally. The non-

linear dynamic equations for the planar vibration of

the antenna structure with two degrees of freedom are

derived via the assumed modes method. Then, the

resonance parameter planes are obtained according to

the length ratio, the mass ratio and the stiffness of the

torsional spring in the antenna system. Afterwards, the

method of multiple scales is utilized to obtain the

approximate solutions under two-to-one or three-to-

one internal resonance. Furthermore, the bifurcation

characteristics of the nonlinear normal modes of the

antenna system are investigated as well. The results

show that more than one nonlinear normal mode exist

over a wide range of the detuning parameter. To

validate the accuracy of the approximate solution, a

numerical solution and an experimental investigation

are presented, respectively. The results show that both

the numerical and the experimental results agree well

with the analytical one.

Keywords Space antenna � Internal resonance �
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1 Introduction

Large space structures usually carry one or several

antenna subsystems for different space missions.

During the deployment and the on-orbit service of

space structures, the attitude of the antenna subsystem

need to be adjusted according to different space

missions. The application of manipulator to the

attitude adjustment and the vibration suppression of

the antenna is an important issue. In this study, the

antenna system is simplified as a rigid-flexible system

including a rigid arm and a flexible beam with a

torsional spring at the joint and only the in-plane

vibration of the antenna system is taken into consid-

eration. Such a rigid-flexible system is usually named

as the L-shaped beam in many previous researches.

Recent years have witnessed numerous studies on

the dynamic characteristics of the rigid-flexible multi-

body systems [1–4]. Researchers [5–8] have paid

attention to the study on the nonlinear dynamic
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behavior or the vibration suppression of a flexible

beam carrying an attached mass. A lot of researches

have focused on more complex beam structures as

well. For example, Ashworth and Barr [9] analyzed

the nonlinear resonant behaviors of both L-shaped and

T-shaped beam structures due to parametric excitation

theoretically. Balachandran and Nayfeh [10] obtained

the analytic solutions of the principal parametric

resonance and the 2:1 internal resonance for the in-

plane vibration of an L-shaped beam structures.

Nayfeh et al. [11] studied the three-mode interaction

resonant response of a system of three degrees of

freedom with quadratic nonlinearities. Apiwat-

tanalunggarn et al. [12] proposed a nonlinear compo-

nent mode synthesis method and studied the dynamic

characteristics of the composite structures. Erturk

et al. [13] established a distributed parameter model to

analyze the coupled electromechanical behavior of the

piezoelectric energy harvester on a basis of the

L-shaped beam-mass structure. Furthermore, Vyas

and Bajaj [14] introduced a T-beam micro-resonator

design due to the 2:1 internal resonance and illustrated

the nonlinear frequency-amplitude response of the

system. Wang and Bajaj [15] studied the forced

nonlinear response of a three-beam structure with

attached mass undergoing three-mode interactions.

They revealed that the amplitude response may

undergo a pitchfork bifurcation or a saddle-node

bifurcation, or a Hopf bifurcation. Onozato et al. [16]

investigated the chaotic vibrations of a post-buckled

L-shaped beamwith an axial constraint. Very recently,

Harne et al. [17] analyzed the nonlinear internal

resonance and saturation phenomena of an L-shaped

vibration energy harvester.

In the available literature, the theoretical researches

of the nonlinear dynamics of serial systems have

received much attention. As experimental investiga-

tion is another essential tool to understand the

nonlinear dynamics responses of the beam structures,

many researchers have made efforts to study the

nonlinear dynamics of the flexible beam systems

experimentally as well. For instance, Haddow et al.

[18] studied the nonlinear resonances of a flexible

L-shaped beam-mass structure analytically and exper-

imentally, and demonstrated the jumping and satura-

tion phenomena of the structure. Then Nayfeh and

Balachandran [19] investigated the nonlinear

responses of the similar structure subjected to primary

resonance excitations experimentally. They reported

that there existed the periodic and chaotic solutions,

Hopf and saddle-node bifurcations and saturation

phenomena. Nayfeh et al. [20] analyzed the linear and

nonlinear responses of two light-weight beams in a

T-shape configuration under a harmonic excitation

experimentally and obtained some phenomena pre-

dicted by theoretical method. Warminski et al. [21]

analytically and experimentally studied the modal

interaction of an L-shaped auto-parametric beam with

different flexibilities in two orthogonal directions. Cao

et al. [22] focused on the theoretical and experimental

investigation of planar nonlinear vibrations and

chaotic dynamics of an L-shaped beam structure

subjected to harmonic excitation. Recently, Wang

et al. [23] dealt with the experimental and numerical

investigations of the characteristics of particle damper

attached to the top free end of an L-shaped cantilever

beam.

Furthermore, in order to obtain the periodic solu-

tions of a nonlinear differential equation of high

dimensions, Rosenberg [24] proposed the concept of

nonlinear normal modes first. Then, Shaw and Pierre

[25] presented the invariant manifold method to derive

nonlinear normal modes. Afterwards, Nayfeh [26, 27]

developed the method of multiple scales to construct

the nonlinear normal modes of continuous systems

with internal resonance. Many researchers [28–33]

used the method of multiple scales to study the

nonlinear normal modes of various systems. Very

recently, Renson et al. [34] reviewed the recent

advances in computational methods both for

undamped and damped nonlinear normal modes.

The free vibration of a space antenna system is an

important issue since there is no persistent external

excitation during on-orbit service of the antenna. This

study deals with the analytical and experimental

studies on the nonlinear resonance of a space antenna

system of two degrees of freedom with the consider-

ation of the coupling between the motion of the rigid

arm and the deformation of the flexible beam. The

traditional method of multiple scales [35] is not

suitable for the rigid-flexible system since the mass

matrix here is not a constant matrix. In this study, a

multiple scales method in matrix form is developed for

the rigid-flexible system, in which the interaction of
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twomodes is considered, based on the research in [36].

The remainder of the paper is organized as follows. In

Sect. 2, the nonlinear dynamic equations of in-plane

vibration of the antenna system are derived by using

the Lagrange equation. In Sect. 3, the nonlinear

resonance is analyzed by using the method of multiple

scales. Afterwards, the approximate solutions are

determined and their stabilities are discussed. In

Sect. 4, the numerical results are presented to validate

the approximate solutions of nonlinear resonance

analysis. In Sect. 5, the experimental setup and

experimental scheme are illustrated, and the results

of the nonlinear vibration experiments are shown.

Finally, some conclusions are drawn in Sect. 6.

2 Model of a rigid-flexible antenna system

As shown in Fig. 1, the study focuses on the in-plane

vibration of an antenna system, which consists of a

rigid arm and a flexible beam. The arm is hinged to the

main body of the satellite via a torsional spring and the

beam is fixed at the free tip of the arm. The main body

of the satellite is usually much heavier than the

antenna system. Thus, the motion of the antenna

system is assumed to have a little influence on the

main body of the satellite. That is, the main body of the

satellite can be considered as fixed in an inertial frame

of reference in the study. In addition, it is assumed that

the slender beam has a uniform cross-section and is

made of an isotropic material such that it can be

modeled as an Euler–Bernoulli beam when the

deformation of the beam is small, and the rotation

speed of the antenna system is slow.

An inertial frame OXY of reference and a body

frame oxy of reference are established as shown in

Fig. 1, where the motions of the rigid arm is described

by rotation angle h, and the deformation of the beam is

represented by wðx; tÞ in the body frame. Thus, the

kinetic energy and the potential energy of the antenna

system are given as

T ¼ 1

2
m _rT1 _r1 þ

1

2
J _h2 þ 1

2

Z L

0

qA _rTp _rpdx ð1Þ

V ¼ 1

2
k1h

2 þ 1

2

Z L

0

EI
o2w

ox2

� �2

dx ð2Þ

wherem, l, J and r1 are the mass, the length, the inertia

moment and the position vector of the mass center of

the arm, respectively. q, A, L and EI are the density of

beam material, the cross section area of beam, the

length of beam, and the bending stiffness of beam,

respectively. rp is the position vector of an arbitrary

point on the beam. k1 is the stiffness of the torsional

spring.

Base on the assumed modes method, the dynamic

deformation of the flexible beam can be described by

the modal shape function and the modal coordinate of

a cantilever beam [37–39]. In this study, only the first-

order frequency vibration is taken into consideration.

Hence, the dynamic deformation wðx; tÞ of beam can

be approximately given as wðx; tÞ ¼ uðxÞqðtÞ. Here,
uðxÞ is the first normalized modal shape function of a

cantilever beam.

Now, the following dimensionless parameters are

introduced

s ¼ xrt; q ¼ q

L
; b ¼ l

L
; d ¼ m

qAL
; k ¼ k1

qAL3x2
r

;

j2 ¼
EI

qALx2
r

Z L

0

d2uðxÞ
dx2

� �2

dx

ð3Þ

where xr ¼ k2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðqAÞ

p
and kr ¼ 1:8751=L. The

generalized coordinate vector is chosen as

g ¼ g1 g2½ �T¼ hq½ �T. By substituting the kinetic

energy and the potential energy into the Lagrange

equation of the second kind, hence, the dynamic

1k
1θ

O
X

Y

w

y
o

1r
arm

pr

x

main body

beam

Fig. 1 The simplified model of a rigid-flexible L-shape antenna

system
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equation of the antenna system can be derived as

MðgÞgþ Kg� Pðg; _gÞ ¼ 0 ð4Þ

where

The dot in Eq. (4) is defined as the derivative with

respect to the dimensionless time s.

3 Nonlinear resonance analysis

In this section, the method of multiple scales is used to

analyze the nonlinear resonance of the coupled system

of two degrees of freedom governed by Eq. (4). Thus,

a third-order uniform approximate solution is assumed

for Eq. (4) as follows

g ¼ g0 þ eg1ðT0; T1; T2Þ þ e2g2ðT0; T1; T2Þ
þ e3g3ðT0; T1; T2Þ þ � � � ð6Þ

where Tr ¼ ert; r ¼ 0; 1; 2 � � �, and e is a small

bookkeeping parameter. By substituting Eq. (6) into

Eq. (4) and expanding all matrices and vectors,

equating the same power of e, one has

K0g0 � P0 ¼ 0 ð7Þ

M0D
2
0g1 þ R0g1 ¼ 0 ð8Þ

M0D
2
0g2 þ R0g2 ¼ �2M0D0D1g1 �M1ðg1ÞD2

0g1

� K2ðg1; g1Þg0 � K1ðg1Þg1
þ P12D1g1 þ P2ðg1;D0g1Þ

ð9Þ

M0D
2
0g3 þ R0g3 ¼ �2M0D0D2g1 � 2M0D0D1g2

�M0D
2
1g1 � 2M1ðg1ÞD0D1g1

�M1ðg1ÞD2
0g2 �M1ðg2ÞD2

0g1

�M2ðg1; g1ÞD2
0g1 � K1ðg1Þg2

� K1ðg2Þg1 � K2ðg1; g1Þg1
� 2K2ðg1; g2Þg0 � K3ðg1; g1; g1Þg0
þ P12ðD1g2 þ D2g1Þ
þ 2P21ðg1;D0g2 þ D1g1Þ
þ 2P21ðg2;D0g1Þ þ P3ðg1;D0g1Þ
þ P211ðg1; g2Þ þ P22ðD0g1;D1g1 þ D0g2Þ

ð10Þ

where Dr ¼ o=oTr represents the differential opera-

tors, and other matrices and vectors in Eqs. (7)–(10)

read

M0 ¼ Mðg0Þ;K0 ¼ Kðg0Þ;P0 ¼ Pðg0;D0g0Þ ð11Þ

M1ðxÞ ¼
oM

ogi
xi

� �
;K1ðxÞ ¼

oK

ogi
xi

� �
;P11 ¼ ½P11ij�

¼ oPi

ogj

" #
;P12 ¼ ½P12ij� ¼

oPi

o _gj

" #

ð12Þ

M2ðx; yÞ ¼
1

2

o2M

ogiogj
xiyj

" #
;

K2ðx; yÞ ¼
1

2

o2K

ogiogj
xiyj

" # ð13Þ

MðgÞ ¼

1

3
ðdb2 þ 1Þ þ b2 þ 1

L
�q �q

Z L

0

u2ðxÞdx� 2b

Z L

0

uðxÞdx
� �

1

L2

Z L

0

xuðxÞdx

1

L2

Z L

0

xuðxÞdx 1

L

Z L

0

u2ðxÞdx

2
6664

3
7775

K ¼
k

j2

� �
;Pðg; _gÞ ¼

� 2

L
_�q _h �q

Z L

0

u2ðxÞdx� b

Z L

0

uðxÞdx
� �

1

L
_h2 �q

Z L

0

u2ðxÞdx� b

Z L

0

uðxÞdx
� �

2
6664

3
7775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ
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P2ðx; yÞ ¼ P2kðx; yÞf g ¼ 1

2

oPk

ogi
xi þ

oPk

o _gj
yj

 !2
8<
:

9=
;

P21ðx; yÞ ¼ P21kðx; yÞf g ¼ 1

2

o2Pk

ogio _gj
xiyj

( )

P211ðx; yÞ ¼ P211kðx; yÞf g ¼ 1

2

o2Pk

ogiogj
xiyj

( )

P22ðx; yÞ ¼ P22kðx; yÞf g ¼ 1

2

o2Pk

o _gio _gj
xiyj

( )

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð14Þ

K3ðx; y; zÞ ¼
1

6

o3K

ogiogjogk
xiyjzk

" #

P3ðx; yÞ ¼ P3kðx; yÞf g ¼ 1

6

oPk

ogi
xi þ

oPk

o _gj
yj

 !3
8<
:

9=
;

8>>>>><
>>>>>:

ð15Þ

R0 ¼ K0 � P11 � P12D0 þ Q0;Q0

¼ oK

og1
g0

� �
oK

og2
g0

� �� �				
g0

ð16Þ

In Eqs. (12),…,(16), ()i and ()ij are the entries of a

vector or a matrix, respectively, and all derivatives are

evaluated at g = g0. In Eqs. (12),…,(15), x, y and z

represent g1, g2, D0g1, D1g1, D2g1, D0g2 and D1g2 in

Eqs. (9)–(10). Furthermore, in Eqs. (14) and (15)

oPk

ogi
xi þ

oPk

o _gj
yj

 !m1

¼
Xm1

n¼0

Cn
m1

om1Pk

ogni o _g
m1�n
j

xni y
m1�n
j ;m1 ¼ 2; 3

ð17Þ

At first, g0 can be determined by solving Eq. (7).

Then, ifM0 is nonsingular, Eq. (8) can be rewritten as

D2
0g1 þ S0g1 ¼ 0 ð18Þ

where S0 ¼ M�1
0 R0 is a matrix function with respect

to g0. By solving Eq. (18), the first-order approxima-

tion solution can be obtained as

g1 ¼ A1 expðix1T0Þp1 þ A1 expð�ix1T0Þp1
þ A2 expðix2T0Þp2 þ A2 expð�ix2T0Þp2 ð19Þ

where eigenvalues x1, x2 and corresponding eigen-

vectors p1, p2 represent the natural frequencies and the

mode shapes of Eq. (4) around g0, respectively, which

are acquired by solving the following eigenvalue

problem.

x2p ¼ S0p ð20Þ

It is obvious that the system may undergo 2:1 or 3:1

internal resonances according to the square and cubic

nonlinear terms in the system equation. To identify the

conditions of internal resonances, the parameter

combination of k, d and b are taken into account when

j2 ¼ 1. By solving Eq. (20), the conditions of internal

resonances can be obtained as follows

1. if k þ 1
3
ðdb2 þ 1Þ þ b2


 �2¼ 100
16

k 1
3
ðdb2 þ 1Þþ



b2 � 0:5692Þ;x2 ¼ 2x1 holds;

2. if k þ 1
3
ðdb2 þ 1Þ þ b2


 �2¼ 400
36

k 1
3
ðdb2 þ 1Þþ



b2 � 0:5692Þ;x2 ¼ 3x1 holds;

3. if k þ 1
3
ðdb2 þ 1Þ þ b2


 �2¼ 289
16

k 1
3
ðdb2 þ 1Þþ



b2 � 0:5692Þ;x2 ¼ 4x1 holds:

Figure 2 shows the parameter plane in the param-

eter space of (d, b, k), where different kinds of internal

resonances occur. In Fig. 2, there exist several kinds of

internal resonances, such as 3:1 and 2:1 internal

resonances.

In the following two subsections, 2:1 and 3:1

internal resonances are investigated in detail,

respectively.

3.1 2:1 Internal resonances

To describe the closeness of x2 to 2x1, a detuning

parameter r is defined as x2 ¼ 2x1 þ er. By substi-

tuting the expressions of g0 and g1 into Eq. (9), a

unique solution g2 is obtained only if the secular terms

are orthogonal to every solution uj, which is given by

x2
jM

T
0uj ¼ RT

0ujðj ¼ 1; 2Þ ð21Þ

Then, eliminating the secular terms gives rise to the

following differential equations

ðuT1 v1ÞD1A1 þ iðuT1a1ÞA1A2 expðirT1Þ ¼ 0 ð22Þ

ðuT2 v2ÞD1A2 þ iðuT2a2ÞA2
1 expð�irT1Þ ¼ 0 ð23Þ

where

Meccanica (2018) 53:33–48 37

123



v1 ¼ 2x1M0p1 þ iP12p1

a1 ¼ x2
1M1ðp2Þp1 þx2

2M1ðp1Þp2 � 2K2ðp1; p2Þg0
�K1ðp2Þp1 � K1ðp1Þp2 þ P21ðp1; p2Þ

þP21ðp2; p1Þ þx1x2ðP22ðp1; p2Þ þ P22ðp2; p1ÞÞ

v2 ¼ 2x2M0p2 þ iP12p2

a2 ¼ x2
1M1ðp1Þp1 � K2ðp1; p1Þg0 � K1ðp1Þp1

þ P21ðp1; p1Þ �x2
1P22ðp1; p1Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

As uj is the eigenvector, it can be normalized

such that uTj vj ¼ 1. Afterwards, by letting Aj ¼

aj expðibjÞ=2, j ¼ 1; 2 in Eqs. (22) and (23) and

separating the real and imaginary parts, one arrives

at the modulation equations as follows

D1a1 ¼
1

2
a1a2 uT1a1


 �
sin c ð24Þ

a1D1b1 ¼ � 1

2
a1a2 uT1a1


 �
cos c ð25Þ

D1a2 ¼ � 1

2
a21 uT2a2

 �

sin c ð26Þ

a2D1b2 ¼ � 1

2
a21 uT2a2

 �

cos c ð27Þ

where

c ¼ b2 � 2b1 þ rT1 ð28Þ

From Eqs. (24) and (26), one has [35]

1

2
a21 þ

1

2
c0a

2
2 ¼ E0 ð29Þ

where c0 ¼ uT1a1

 ��

uT2a2

 �

¼ c1=c2 and E0 is an

energy constant determined by initial mode ampli-

tudes. When c0 [ 0, Eq. (29) is called the equation of

elliptic-type, whereas Eq. (29) is called the equation

of hyperbolic-type when c0\0. In addition, Eqs. (25)

and (27) can be combined to

a2D1c ¼ ra2 þ � 1

2
c2a

2
1 þ c1a

2
2

� �
cos c ð30Þ

With help of Eqs. (26) and (29), Eq. (30) can be

rewritten in the complete differential form as

a21a2 cos c�
r
c2

a22 ¼ L0 ð31Þ

where L0 is an integral constant.

When c0 [ 0, let a21 ¼ 2E0nðT1Þ. Then, a22 ¼
2E0ð1� nðT1ÞÞ=c0 holds according to Eq. (29). Com-

bining Eqs. (24) and (31) gives

c0

2c21E0

dn
dT1

� �2

¼ f1ðnÞ2 � f2ðnÞ2 ð32Þ

where

f1ðnÞ2 ¼ n2ð1� nÞ; f2ðnÞ2

¼ c0

8E3
0

L0 þ
2rE0

c2c0
ð1� nÞ

� �2
ð33Þ

(a)

(b)

(c)

Fig. 2 The parameters for complete resonance condition. a
x2 ¼ 2x1, b x2 ¼ 3x1, c x2 ¼ 4x1
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The analytical solution of Eq. (32) exists if and

only if f1ðnÞ2 � f2ðnÞ2 holds. There are three intersec-
tions n1, n2 and n3 determined by the curves f1 and f2 as

shown in Fig. 3. According to the assumption of

a21 ¼ 2E0nðT1Þ, n is a positive number. Hence, the

bounded aperiodic oscillation of the original system

occurs when n 2 ðn2; n3Þ holds, as indicated by the

heavy line in Fig. 3.

In the case of c0\0, let a21 ¼ 2ðE0 � jE0jc0nðT1ÞÞ.
Then, one obtains a22 ¼ 2jE0jnðT1Þ and

1

2 E0j jc22
dn
dT1

� �2

¼ f1ðnÞ2 � f2ðnÞ2 ð34Þ

where

f1ðnÞ2 ¼ n
E0

E0j j � c0n

� �2

; f2ðnÞ2

¼ 1

8 E0j j3
L0 þ

2r
c2

E0j jn
� �2

ð35Þ

As illustrated in Fig. 4a, there are three intersec-

tions n1, n2 and n3 determined by the curves f1 and f2 as

well. When n 2 ðn1; n2Þ or n 2 ðn2; n3Þ, as indicated

by the heavy line in Fig. 4a, the bounded aperiodic

oscillation of original system occurs. There is only one

intersection n1 as shown in Fig. 4b which indicates

that the unbounded aperiodic oscillation of original

system may occur when n[ n1.
Furthermore, for the case of c0 [ 0, Eq. (32) can be

written as

c0

2c21E0

dn
dT1

� �2

¼ ðn3 � nÞðn� n2Þðn� n1Þ ð36Þ

when n 2 ðn2; n3Þ. By introducing the transformation

of ðn3 � nÞ ¼ ðn3 � n2Þ sin2 y, one has

a1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0 n3 � ðn3 � n2Þsn2ðq1t; gÞ½ �

p

a2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0

c0
1� n3 þ ðn3 � n2Þsn2ðq1t; gÞ

 �r

8<
:

ð37Þ

where

q1 ¼ c1e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðn3 � n1Þ

2c0

s
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 � n2
n3 � n1

s
ð38Þ

For the case of c0\0, one obtains the following

expressions as

a1 ¼ �
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 � E0j jc0 n3 � ðn3 � n2Þsn2ðq1t;gÞð Þ

p
a2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
2 E0j j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 � ðn3 � n2Þsn2ðq1t;gÞ

p
�

ð39Þ
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where

q1 ¼ c2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0j jðn3 � n1Þ

2

r
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 � n2
n3 � n1

s
ð40Þ

Then, the approximate solution of 2:1 resonance

can be analytically obtained as

g ¼ g0 þ e a1 cosðx1t þ b1Þp1 þ a2 cosð2x1t þ 2b1 þ cÞp2½ �

ð41Þ

It should be noted that the solutions of the nonlinear

normal modes of the original system correspond to the

steady state solutions of Eqs. (24), (26) and (30).

Then, these mode solutions are asymptotically stable if

the eigenvalues of the Jacobian matrix of Eqs. (24),

(26) and (30) at the corresponding steady-state point

are in the left-half of complex plane. Hence, the non-

trivial constant solutions are corresponding to

sin c ¼ 0. Then, the case of cos c ¼ 1 [40] is consid-

ered. By linearizing Eqs. (24), (26) and (30) near the

non-trivial constant solutions, the characteristic equa-

tion is given as follows

det

k 0 � 1

2
a1a2c1

0 k
1

2
a21c2

a1

a2
c2 �c1 �

1

2

a21
a22

c2 k

2
6666664

3
7777775
¼ 0 ð42Þ

where k is the eigenvalue of the characteristic

equation. The solutions of Eq. (42) are

k1 ¼ 0; k22;3 ¼ �a21 c1c2 þ
1

4
h
2
c22

� �
ð43Þ

where h ¼ a1=a2. The coupled mode is stable if

c1c2 þ h
2
c22=4[ 0. Otherwise, it is unstable.

According to the steady state solution of Eq. (30),

the following equation can be obtained

h2c2 � 2c1 � 2
r
a2

¼ 0 ð44Þ

where h ¼ a1=a2 is the steady-state amplitude ratio.

Figure 5 illustrates the variation of h with r=a2 when
x2 : x1 � 2 : 1 holds for fixed parameters d ¼ 3,

b ¼ 0:6, k ¼ 0:6, j2 ¼ 1 and L ¼ 10, respectively. As

shown in Fig. 5, the system has two stable coupled-

mode solutions when r=a2 [ � 0:1853 and no mode

solution when r=a2\� 0:1853.

3.2 3:1 Internal resonances

To describe the closeness of x2 to 3x1, a detuning

parameter r is defined as x2 ¼ 3x1 þ er. By substi-

tuting the expressions of g0 and g1 into Eq. (9) and

eliminating the secular terms, one has

D1AjðT1; T2Þ ¼ 0 ð45Þ

Hence, the second-order approximation of Eq. (4)

reads

g2 ¼ DðxÞ �M1ðg1ÞD2
0g1 �K2ðg1;g1Þg0 �K1ðg1Þg1



þP2ðg1;D0g1Þ�

ð46Þ

where DðxÞ ¼ K�1ðxÞ ¼ ðR0 �M0x2Þ�1
is a matrix

that matched each frequency of those harmonic terms

in the right-hand side of Eq. (46). Then, by substitut-

ing the expressions of g0, g1 and g2 into Eq. (10), one

can get a unique solution g3 only if the secular terms

are orthogonal to every solution uj given by

x2
jM

T
0uj ¼ RT

0ujðj ¼ 1; 2Þ ð47Þ

Hence, the solvability conditions are obtained as

follows

ðuT1a1ÞA0
1 þ ðuT1a10ÞA2

1A1 þ ðuT1a12ÞA1A2A2

þ ðuT1a13ÞA2A
2

1 expðirT2Þ
¼ 0 ð48Þ
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Fig. 5 Variation of h with r=a2 for 2:1 internal resonance
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ðuT2a2ÞA0
2 þ ðuT2a20ÞA2

2A2 þ ðuT2a21ÞA2A1A1

þ ðuT2a23ÞA3
1 expð�irT2Þ ¼ 0

ð49Þ

where ðÞ0 denotes derivative with respect to T2 and the
details of aj, aj0 and asr, j; r; s ¼ 1; 2; 3 are listed in

‘‘Appendix’’. By letting AjðT2Þ ¼ ajðT2Þ expðibjðT2ÞÞ
=2, j ¼ 1; 2 in Eqs. (48) and (49) and separating the

real and imaginary parts, one obtains the following

modulation equations

4 _a1 þ a31v101 þ a1a
2
2v121

þ a21a2 v131 cos c� v132 sin cð Þ ¼ 0
ð50Þ

4a1 _b1 þ a31v102 þ a1a
2
2v122

þ a21a2 v131 sin cþ v132 cos cð Þ ¼ 0
ð51Þ

4 _a2 þ a32v201 þ a2a
2
1v211

þ a31 v231 cos cþ v232 sin cð Þ ¼ 0
ð52Þ

4a2 _b2 þ a32v202 þ a2a
2
1v212

þ a31 �v231 sin cþ v232 cos cð Þ ¼ 0
ð53Þ

where vjr ¼ uTj ajr and vjr1 and vjr2 are the real and

imaginary parts of vjr, respectively, cðT2Þ ¼ b2ðT2Þ�
3b1ðT2Þ þ rT2. Hence, the second-order approxima-

tion of system is obtained as follows

g ¼ g0 þ e½a1ðtÞ cosðx1t þ b1ðtÞÞp1
þ a2ðtÞ cosðx2t þ b2ðtÞÞp2�

þ 1

2
e2
(X2

j¼1

X2
r¼1

Dðxj þ xrÞajar cosððxj þ xrÞt

þbjðtÞ þ brðtÞÞz1jr þ
X2
j¼1

X2
r¼1

Dðxj � xrÞajar

� cosððxj � xrÞt þ bjðtÞ � brðtÞÞz2jr

)
ð54Þ

where

z1jr ¼ x2
rM1ðpjÞpr � xjxrP22ðpj; prÞ � K2ðpj; prÞg0

� K1ðpjÞpr
z2jr ¼ x2

rM1ðpjÞpr þ xjxrP22ðpj; prÞ � K2ðpj; prÞg0
� K1ðpjÞpr ð55Þ

By combining Eqs. (51) and (53), one obtains the

following equation

4a1a2 _c ¼ a1a
3
2ð3v122 � v202Þ

þ 3a21a
2
2ðv131 sin cþ v132 cos cÞ

þ a2a
3
1ð3v102 � v212Þ

� a41ð�v231 sin cþ v232 cos cÞ þ 4a1a2r

ð56Þ

The solutions of the nonlinear normal modes of the

original system are corresponding to the steady-state

solutions of Eqs. (50), (52), and (56). The stability of

these modes coincides with that of the corresponding

constant solutions of the modulation equations. The

solutions of the corresponding characteristic equation

are

k1 ¼ 0; k22;3 ¼ �a21a
2
2B ð57Þ

where B ¼ v2232h
4 þ 6v132v232h

2 � 2v232v202 � 6v122ð
v232 þ 6v102v132 � 2v212v132Þh� 3v2132, and h ¼
a1=a2. The coupled mode is stable if B[ 0. Other-

wise, it is unstable.

According to the steady state solution of Eq. (56),

one obtains

� v232h
4 þ ð3v102 � v212Þh3 þ 3v132h

2

þ ð3v122 � v202Þ þ
4r

a22

� �
h ¼ 0

ð58Þ

where h ¼ a1=a2. The variation of h with r=a22 for 3:1
internal resonance is shown in Fig. 6. In Fig. 6, the
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Fig. 6 Variation of h with r=a22 for 3:1 internal resonance
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parameters are set as d ¼ 3, b ¼ 0:3, k ¼ 0:38, j2 ¼ 1

and L ¼ 0:3 to meet the requirement of x2 � 3x1

when 3:1 internal resonance occurs. In Fig. 6, there

exist one stable and one unstable coupled-mode

solutions when r=a22\24:48 or r=a22 [ 52:11 holds,

one stable and three unstable coupled-mode solutions

when 24:48\r=a22\30:12, two stable and two unsta-

ble coupled-mode solutions when 30:12\r=a22\
50:98, two stable coupled-mode solutions when

50:98\r=a22\51:71, and three stable coupled-mode

solutions when 51:71\r=a22\52:11.

4 Numerical results

In this section, to validate the analytic results, the

approximate solutions given by Eqs. (41) and (54) are

compared with the numerical results of the dynamic

equations of the rigid-flexible system Eq. (4) solved

via the Runge–Kutta method, respectively.

In the case of 2:1 internal resonance, to meet the

requirement of x2 : x1 � 2 : 1, the physical parame-

ters were set as d ¼ 3, b ¼ 0:6, k ¼ 0:6, j2 ¼ 1 and

L ¼ 10, respectively. Then in the case of 3:1 internal

resonance, the physical parameters were set as d ¼ 3,

b ¼ 0:3, k ¼ 0:38, j2 ¼ 1 and L ¼ 10, respectively, to

meet the requirement of x2 : x1 � 3 : 1. There is a

good agreement between the numerical solutions and

the approximate solutions for both 2:1 internal reso-

nance and 3:1internal resonance as shown in Fig. 7a,

b, respectively, with the initial state ða10; a20; b10; b20Þ
¼ ð0:05; 0:05; 0; 0Þ. In addition, Fig. 8 shows numer-

ical integrations of Eqs. (24), (26) and (30) with the

initial state ða10; a20; cÞ ¼ ð0:1; 0:2; p=12Þ. The

energy in the system continues to be exchanged

between the two modes as shown in Fig. 8.

5 Experimental investigation of nonlinear

resonance

From the results of the analytic analysis, the nonlinear

bifurcation phenomena have been found in the rigid-
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flexible structure of concern. Furthermore, in this

section, an experimental study is performed to verify

the analytic analysis in Sect. 3.

As shown in Fig. 9, the experiment equipment is

composed of an L-shape rigid-flexible structure, a

laser displacement sensor and data acquisition soft-

ware. Similar with the figure shown in Fig. 1, the L-

shape rigid-flexible structure is composed of a rigid

metal arm and a flexible metal beam-2 made of

aluminium in the experimental setup shown in Fig. 9.

Such a rigid-flexible structure is fixed at the free tip of

a cantilever beam-1 which can be equivalent to a

torsional spring. Hence, the rotation angle of the arm is

the same as that of the free tip of the beam-1, and the

deformation of the beam w shown in Fig. 1 is

corresponding to the deformation of the flexible

beam-2 which is measured by the laser displacement

sensor directly. As well known, the rotation of the free

tip of a cantilever beam under the external moment

applied to the same position can be expressed as

hB ¼ �Mel
	=ðEI	Þ. Then the equivalent stiffness of

the torsional spring can be derived as k1 ¼ EI	=l	,
where EI	 and l	 are the bending stiffness of the

flexible beam-1 and the distance between the free tip

of the flexible beam-1 and the clamping position of the

flexible beam-1, respectively. By adjusting the clamp-

ing position, the equivalent stiffness of the torsional

spring can be regulated to meet the requirement of the

internal resonance. Moreover, the translation of the

free tip of the flexible beam-1 has little influence on

the dynamic behavior of the beam-2 since it is parallel

to the axis of the beam-2 and the axial vibration of the

beam-2 is neglected. All the experimental data are

collected during the quasi-steady-state vibration to

assure the authenticity of the vibration signals.
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The length and the mass of the arm were 0.11 m and

0.0749 kg, whereas the length and themass of the beam-

2 as 0.297 m and 0.0185 kg. The bending stiffnesses of

beam-1 and beam-2 were 0.0906 and 0.079 Nm2. By

adjusting the clamping position, the length of beam-1

was set as 0.129 m, then the equivalent stiffness of the

torsional spring was 0.7023 Nm tomeet the requirement

of x2 � 3x1 when the 3:1 internal resonance

occurred. The vibration responses of the beam-2 were

measured by a laser displacement sensor.

Figure 10 illustrates the time history of the dis-

placement of the free tip of beam-2 for the experiment

case of 3:1 internal resonance and the corresponding

frequency spectrum for the case is illustrated in

Fig. 11. As shown in Fig. 11, the frequencies of the

experimental system meet the requirement of

x2 � 3x1. Hence, the mode amplitude ratio for the

3:1 internal resonance can be obtained as shown in

Fig. 12 by a red circle A. Then, the vibration responses

of the beam-2 and their mode amplitudes a1 and a2 are

excited by adjusting the initial deformation of the free

tip of the beam-2. For the same detuning parameter r,
r=a22 and h will vary with the change of a1 and a2. So

dozens of experimental data can be obtained. Fig-

ure 12 presents the variation of the ratio of steady-

state amplitudes h with respect to r=a22. As shown in

Fig. 12, the experimental data are coincident well with

the stable solutions correspond to the analytical

predictions and the unstable solutions predicted by

the analysis are not occurred in the experiment. The

results indicate that the approximate amplitude ratios

derived from the analytic method agree well with the

experimental data. Similarly, the experiment for 2:1 internal reso-

nance was carried out, wherein the length and the

mass of the arm were set as 0.205 m and 0.11 kg,

whereas the length and the mass of the beam-2 as

0.295 m and 0.0159 kg. In this case, the bending

stiffnesses of beam-1 and beam-2 were 0.1184 and

0.1026 Nm2. In order to meet the requirement of

x2 � 2x1, the length of the beam-1 was set as

0.041 m by adjusting the clamping position, and then

the equivalent stiffness of the torsional spring was

2.8878 Nm. The distance between the measured point

B and the free tip of the beam-2 is 0.173 m. Figure 13

presents the time history of the displacement of the

point B for 2:1 internal resonance, and the corre-

sponding frequency spectrum for the case is depic-

tured in Fig. 14. As shown in Fig. 14, the two
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frequencies meet the requirement of x2 � 2x1.

Hence, by changing the initial deformation of the free

tip of the beam-2, dozens of experimental data of the

mode amplitude ratio for the 2:1 internal resonance

can be obtained. As shown in Fig. 15, the experimen-

tal data coincide well with the stable solutions

obtained by the analytical predictions.

As shown in Figs. 10 and 13, the vibrations of

beams in the experimental research damped very

slowly since the damping is very small, which is also

true for a real flexible space structure. So the responses

of the experimental cases during a small period can be

treated as a quasi-steady-state motion approximately.

Moreover, the natural frequencies of 3:1 and 2:1

internal resonances are listed in Table 1. As shown in

Table 1, the natural frequencies of the experimental

cases are very close to the analytical ones. The results

indicate that the dynamic equation derived based on

the assumed modes method in this research is

feasible.

From the experiment results, the nonlinear bifur-

cation phenomena is observed. There is a agreement

between the experiment and the analytic results in a

wide range of r=a22, however, there is no experimental

data in the right of Fig. 12 corresponding to positive

value of r=a22. The main reason is that the detuning

parameter r is always negative with respect to the

physical parameters in the experimental study due to

the restriction of the rigid-flexible structure. The

curves shown in Figs. 6 and 12 are reversed in each

other. The reason is that the corresponding coefficients

are in different unfolding parameters regions, hence,

their topologies are different.
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Fig. 15 Analytical and experimental results of amplitude ratio

for 2:1 resonance

Table 1 Comparison of natural frequencies of analytical and

experimental results for 3:1 and 2:1 internal resonances

Type Order Analytical

(Hz)

Experimental

(Hz)

Error

(%)

3:1 1 3.74 3.54 -5.35

2 10.93 10.48 -4.12

2:1 1 5.04 5 -0.79

2 10.11 10.08 -0.3
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Fig. 14 Frequency spectrum for 2:1 internal resonance
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6 Conclusions

This study investigates the nonlinear internal reso-

nances of an L-shape rigid-flexible antenna system

theoretically and experimentally. The study shows that

the antenna system has various internal resonances,

such as those of 3:1 and 2:1, under different combina-

tions of structural parameters. Using the method of

multiple scales, one can derive the approximate solu-

tions of those internal resonances. Then the frequency-

amplitude responses of internal resonances are deter-

mined and the stabilities of the internal resonances are

analyzed. The approximate solutions of those internal

resonances are consistent with numerical solutions.

An important contribution of the study is to analyze

the nonlinear internal resonances of the L-shape rigid-

flexible structure via experimental tests. There is a

good agreement between the analytical and experi-

mental results both of which indicate that there exists

bifurcation phenomena of the frequency-amplitude

response of an internal resonance.
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Appendix

The details of aj, aj0 and asr in Eqs. (48) and (49) read

a1 ¼�2ix1M0p1;a2 ¼�2ix2M0p2
a10 ¼ x4

1½4M1ðp1ÞDð2x1ÞðM1ðp1Þp1 �P22ðp1;p1ÞÞ
þM1ðDð0ÞðM1ðp1Þp1 þP22ðp1;p1ÞÞÞp1
þM1ðDð2x1ÞðM1ðp1Þp1 �P22ðp1;p1ÞÞÞp1�
þx2

1½2M2ðp1;p1Þp1 þM2ðp1;p1Þp1�
þ2x4

1P22ðp1;Dð2x1ÞðM1ðp1Þp1
�P22ðp1;p1ÞÞÞ

a20 ¼ x4
2½4M1ðp2ÞDð2x2ÞðM1ðp2Þp2 �P22ðp2;p2ÞÞ
þM1ðDð0ÞðM1ðp2Þp2 þP22ðp2;p2ÞÞÞp2
þM1ðDð2x2ÞðM1ðp2Þp2 �P22ðp2;p2ÞÞÞp2�
þx2

2½2M2ðp2;p2Þp2 þM2ðp2;p2Þp2�
þ2x4

2P22ðp2;Dð2x2ÞðM1ðp2Þp2
�P22ðp2;p2ÞÞÞ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð59Þ

a12 ¼ ðx1 � x2Þ2M1ðp2ÞDðx1 � x2Þðx2
2M1ðp1Þp2

þ x1x2P22ðp1; p2ÞÞ
þ ðx1 þ x2Þ2M1ðp2ÞDðx1 þ x2Þ½x2

2M1ðp1Þp2
� x1x2P22ðp1; p2Þ þ x2

1M1ðp2Þp1
� x1x2P22ðp2; p1Þ� þ x2

1x
2
2M1ðDð0ÞðM1ðp2Þp2

þ P22ðp2; p2ÞÞÞp1
þ x2

2M1ðDðx1 � x2Þðx2
2M1ðp1Þp2

þ x1x2P22ðp1; p2ÞÞÞp2
þ x2

2M1ðDðx1 þ x2Þðx2
2M1ðp1Þp2

� x1x2P22ðp1; p2Þ
þ x2

1M1ðp2Þp1 � x1x2P22ðp2; p1ÞÞÞp2
þ 2x2

1M2ðp2; p2Þp1 þ 2x2
2M2ðp1; p2Þp2

þ 2x2
2M2ðp1; p2Þp2

� x2ðx1 � x2ÞP22ðp2;Dðx1 � x2Þðx2
2M1ðp1Þp2

þ x1x2P22ðp1; p2ÞÞÞ
þ x2ðx1 þ x2ÞP22ðp2;Dðx1 þ x2Þðx2

2M1ðp1Þp2
� x1x2P22ðp1; p2ÞÞÞ
þ x2ðx1 þ x2ÞP22ðp2;Dðx1 þ x2Þðx2

1M1ðp2Þp1
� x1x2P22ðp2; p1ÞÞÞ

a21 ¼ ðx2 � x1Þ2M1ðp1ÞDðx2 � x1Þðx2
1M1ðp2Þp1

þ x1x2P22ðp2; p1ÞÞ
þ ðx1 þ x2Þ2M1ðp1ÞDðx1 þ x2Þ½x2

1M1ðp2Þp1
� x1x2P22ðp2; p1Þ
þ x2

2M1ðp1Þp2 � x1x2P22ðp1; p2Þ�
þ x2

1x
2
2M1ðDð0ÞðM1ðp1Þp1 þ P22ðp1; p1ÞÞÞp2

þ x2
1M1ðDðx2 � x1Þðx2

1M1ðp2Þp1
þ x1x2P22ðp2; p1ÞÞÞp1
þ x2

1M1ðDðx1 þ x2Þðx2
1M1ðp2Þp1

� x1x2P22ðp2; p1Þ
þ x2

2M1ðp1Þp2 � x1x2P22ðp1; p2ÞÞÞp1
þ 2x2

2M2ðp1; p1Þp2 þ 2x2
1M2ðp2; p1Þp1

þ 2x2
1M2ðp2; p1Þp1

� x1ðx2 � x1ÞP22ðp1;Dðx2 � x1Þðx2
1M1ðp2Þp1

þ x1x2P22ðp2; p1ÞÞÞ
þ x1ðx1 þ x2ÞP22ðp1;Dðx1 þ x2Þðx2

1M1ðp2Þp1
� x1x2P22ðp2; p1ÞÞÞ
þ x1ðx1 þ x2ÞP22ðp1;Dðx1 þ x2Þðx2

2M1ðp1Þp2
� x1x2P22ðp1; p2ÞÞÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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a13¼ðx2�x1Þ2M1ðp1ÞDðx2�x1Þðx2
1M1ðp2Þp1

þx1x2P22ðp2;p1ÞÞ
þ x2

1M1ðDðx2�x1Þðx2
1M1ðp2Þp1

þ x1x2P22ðp2;p1ÞÞÞp1
þ x2

2M2ðp1;p1Þp2þ2x2
1M2ðp2;p1Þp1

þ x1ðx2�x1ÞP22ðp1;Dðx2�x1Þðx2
1M1ðp2Þp1

þ x1x2P22ðp2;p1ÞÞÞ
a23¼x4

1½4M1ðp1ÞDð2x1ÞðM1ðp1Þp1�P22ðp1;p1ÞÞ
þM1ðDð2x1ÞðM1ðp1Þp1�P22ðp1;p1ÞÞÞp1�
� 2x4

1P22ðp1;Dð2x1ÞðM1ðp1Þp1�P22ðp1;p1ÞÞÞ
þ x2

1M2ðp1;p1Þp1

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:
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