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Abstract This work is dedicated to the assessment of

the nonlinear behaviour ofmasonry panelswith regular

texture and subject to in-plane loads, by means of

numerical pushover analysis and an analytical homog-

enized model. Two numerical models are considered

and adopted for performing a set of numerical tests: a

discrete model developed by authors and a discrete/

finite element model frequently adopted in rock

mechanics field and effectively extended to masonry

structures. In both models the hypotheses of rigid

blocks and elastic–plastic joints following a Mohr–

Coulomb yield criterion are adopted. The aim of this

work is twofold: (1) a comparison and a calibration of

the numerical models, evaluating their effectiveness in

determining ultimate loads and collapse mechanisms

of masonry panels, by assuming a nonlinear homog-

enized model for regular masonry as reference solu-

tion; (2) the evaluation of sensitivity of masonry

behaviour and numerical models to panel dimension

ratio and to varying masonry texture. In a first case

study, sliding collapse mechanisms changing to

overturning collapse mechanisms for increasing panel

and block height-to-width ratio are obtained and the

results given by the numerical models turn out to be in

good agreement. Furthermore, a second case study,

dedicated to square panels supported at base ends and

vertically loaded, shows different ‘arch mechanisms’

depending on block height-to-width ratio.

Keywords Masonry structures � Discrete models �
Discrete/finite element models � Nonlinear analysis �
Mohr–Coulomb yield function

1 Introduction

Masonry is one of the more common structural

materials in ordinary and monumental buildings in

Italy and Europe, since it has been adopted for

centuries up to present days. As well known, masonry

is a composite or heterogeneous structural material

obtained by assembling natural or artificial blocks by

means of mortar layers or dry joints. Analytical and

numerical modelling of such a material represents a

research field that is continuously characterized by the

proposition of newmore or less detailed models, given

that the assessment of masonry structural behaviour is

fundamental for ensuring building safety condition

and for restoration purposes.

A wide set of analytical and numerical models may

be adopted for studying masonry material. Models

may be distinguished for different aspects; for
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instance, the scale level considered, the type of actions

adopted, and the type of analysis performed. This

work is dedicated to the analysis of small/medium

scale masonry specimens, subject to in-plane loads

and nonlinear analyses are carried on by adopting

models able to account for material heterogeneity.

In order to perform numerical or computer-aided

analysis of masonry at small/medium scale, detailed

models accounting for material heterogeneity may be

taken into account and, for this purpose, discrete

models [1] and heterogeneous finite element models

[2, 3] represent two main model categories that may be

found in literature. However, continuous models

accounting for masonry details at microstructure [4]

represent a further important and effective tool for

studying masonry behavior and innovative models, in

this field of analysis, are continuously developed

[5–8].

Focusing on discrete models, it must be pointed out

that they represent a class of numerical models able to

study the mechanical behaviour of systems made of

particles, blocks or multiple bodies. This model type

was introduced for modelling rocks [9, 10] and a

computer code was also created for this purpose in

plane case [11]. Discrete element models (DEMs) are

characterized by two components: elements and

contacts. Elements may be modelled as infinitely rigid

bodies or may be considered as deformable bodies by

adding strain deformation parameters to each block

[12] or by subdividing them into finite elements (FEs).

In both cases, the number of degrees of freedom

needed for describing the model is larger with respect

to the case of infinitely rigid bodies. Elements are

subject to displacements and rotations that may

become large during analysis, then DEMs are fre-

quently formulated in the dynamic field and dynamic

algorithms are adopted for obtaining numerical solu-

tions; for instance, starting with a perturbation to the

initial model and solving the equation of motion with a

direct integration in time domain. Contacts between

elements may be modelled with proper elements or by

evaluating element overlapping, and in many cases

they are often characterized by contact detection

algorithms.

Considering DEMs having elements subdivided

into FEs, the resulting model is often called FEM/

DEM [13–16]. In the field of masonry structures, this

code has already been used for determining ultimate

loads of masonry panels and arches [17, 18].

Moreover, similar FEM/DEM codes have been

recently introduced and applied to the field of masonry

structures in-plane loaded by static and dynamic

actions [19, 20]. Thanks to the FE discretization,

FEM/DEM codes are able to simulate masonry

damage both at joint level and at block level; however,

the number of degrees of freedom involved in analysis

requires a large computational effort and for this

reason it does not allow to model complex masonry

structures.

In order to reduce the computational effort, discrete

models with infinitely rigid elements may represent a

simpler modelling choice, in particular if ancient

masonry characterized by strong blocks and weak

mortar or dry joints is studied. It must be pointed out

that masonry specimens may be characterized by a

regular arrangement of resisting elements having a

well-defined square or rectangular shape; moreover,

displacements caused by any type of load are usually

smaller than those that may be found in soil and rock

systems. In particular, contact topology does not vary

during analysis, due to the small displacements with

respect to the overall specimen dimensions. For these

reasons, a simplified discrete model that neglects

contact detection algorithms allows to further reduce

the computational effort of the analysis. Cecchi and

Sab [21] proposed a simple and effective discrete

model with rigid elements and elastic interfaces for

modelling regular masonry in- and out-of-plane

loaded. This model was extended to the case of

random masonry [22] and recently it has been

extended to the in-plane modal analysis of regular

masonry by introducing amatrix solution method [23].

In particular, the rigid DEM has been recently

extended to the nonlinear analysis of in-plane loaded

masonry panels by adopting a Mohr–Coulomb yield

criterion for restraining joint actions [24]. A model

adopting the same assumptions in linear and non-

linear fields was studied by Trovalusci and Masiani

[25], moreover it is worth noting that the hypotheses of

rigid blocks and dry joints following aMohr–Coulomb

yield criterion are often adopted in the field of limit

analysis of masonry [26–29].

The rigid DEM introduced previously has been

already compared and calibrated with a FEM/DEM

code in elasticity [30]. Moreover in a recent contribu-

tion, authors have initially compared the two models

also accounting for material nonlinearity [31]. In this

contribution, rigid DEM and FEM/DEM already
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considered by authors are deeply calibrated and

compared in the field of material nonlinearity by

performing a wide set of incremental analyses of

masonry panels having dry and mortar joints. Such a

comparison is fundamental for calibrating the joint

stiffness values adopted by the rigid DEMwith respect

to the zero-thickness interfaces adopted by the FEM/

DEM. Numerical analyses allow to determine ultimate

loads and collapse mechanisms of the case studies

considered; furthermore, the influence of panel overall

dimension ratio is taken into account together with the

influence of block dimension ratio. Ultimate loads are

also compared with analytic solutions based on a

homogenized yield criterion that takes into account

masonry microstructure.

This paper is organized as follows: the geometric

model representing regular masonry is introduced and

nonlinear behaviour at joint level is described; DEM

and FEM/DEM are presented separately for first and

then a parameter calibration between models is

proposed; several case studies of masonry panels with

varying overall dimension ratio and block dimension

ratio are introduced; a homogenized yield criterion for

masonry panels is defined and finally numerical tests

with DEM and FEM/DEM are performed.

2 Geometric and mechanic model

Masonry panels having regular texture and subject to

in-plane loads are investigated. Block dimensions are

(Fig. 1a): a (height), b (width) and t (thickness).

Masonry regularity is represented by the so-called

‘running bond’ pattern, characterized by each block

surrounded by six neighbours by means of six

interfaces (Fig. 1b). Due to the pattern considered,

horizontal interfaces width is equal to half block width

and vertical interfaces height is coincident with block

height. In the following, four block width-to-height

ratios are taken into account in order to evaluate the

influence of local size effect on overall panel

behaviour with particular attention to ultimate loads

and collapse mechanisms, for instance b/a = 4, 2, 1,

0.25 (Fig. 2). Following the hypotheses adopted by

authors in previous contributions [21–24, 31], blocks

are modelled as rigid bodies, dry or weak/thin mortar

joints are modelled as interfaces and plane stress

hypotheses are adopted. Then, block displacement is

described by a rigid body motion, characterized by in-

plane block center translation ui;j ¼ fui;j1 u
i;j
2 g

T
and by

a rotation with respect block centre x3
i, j, having i,

j denoting block order, where j can assume any integer

value and i is such as i ? j is always even.

The deformability of the model is lumped at

interface level. Interfaces between blocks are mod-

elled following an elastoplastic constitutive law, based

on a Mohr–Coulomb yield criterion. In the elastic field

[32], the interface behaviour is given by a linear

relation between interface tractions and deformations

between adjacent blocks. Then, normal and tangential

stresses r ¼ fr? rj jgT over a generic interface

depend on the relative displacements ½½d�� ¼
f d? dj j d3 gT between the blocks connected by

the interface: rn = K[[d]], where n is the vector

normal to the interface. In case of mortar joints, the

interface stiffness matrix K depends on the Young’s

modulus EM and the Poisson’s ratio mM of mortar [21],

whereas in case of dry joints, a fictitious stiffness is

defined, accounting for block surface roughness.

Material nonlinearity is considered at interface

level only, due to the hypothesis of rigid blocks.

Mortar or dry joints are modelled as a Mohr–Coulomb

interfaces, then the yield criterion depends on

Bi,j B
B

BB
B

Bi-1,j-1 i+1,j-1

i+1,j+1i-1,j+1

i+2,ji-2,j

Σ +1,-1

Σ2,0

Σ +1,+1

Σ -1,+1

Σ -2,0

Σ -1,-1

b

a

t
y1

y2

a

b
Fig. 1 Block dimensions

(a) and geometric model

adopted (b)
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cohesion c C 0 (with c = 0 in case of dry joints) and

friction angle 0\/\p/2. Adopting a statically

admissible approach, the failure condition over a

generic interface R can be expressed as

f ðr?; rj jÞ ¼ jrj jj þ r? tan/� c� 0: ð1Þ

Adopting a cinematically admissible approach, for

any point along the interface, the Mohr–Coulomb

yield criterion is expressed by

pðn; ½½ _u��Þ ¼ c � ctg/ ½½ _u�� �n if ½½ _u�� �n�j½½ _u��j sin/
þ1 otherwise

�

ð2Þ

where ½½ _u�� denotes the velocity jump across the

interface R when following the normal n to the R
interface. The first case may be also expressed as

u\ C u| | � tan /.

3 Discrete model with rigid elements

The rigid discrete element model (DEM) reviewed

here is based on the original numerical method

formulated in elastic field in case of regular periodic

masonry [21], and recently extended to the field of

material nonlinearity [24]. Particularity of the pro-

posed model is the reduction of its degrees of freedom

to block centre translations and block rotation with

respect to its centre: qi;j ¼ fui;j1 u
i;j
2 x

i;j
3 g

T
(Fig. 1b).

Then, panel overall degrees of freedom are collected

in q and relative displacements between adjacent

blocks connected by an interface may be written as

function of block degrees of freedom by means of a

‘compatibility matrix’ [24] that is frequently adopted

for performing limit analysis [28, 29]. The discrete

model is also able to integrate interface stresses to a set

normal and tangential forces and a couple,

f ¼ f f? fj j m3 gT , applied to block centres and in

equilibrium with external forces (Fig. 3). In the elastic

case, it can be demonstrated that

f ¼ �K½½d�� ¼ KA½½d��, where A is a diagonal matrix

collecting interface area and moment of inertia

[23, 24], ½½d�� ¼ f d? dj j d3 gT , and the diagonal

terms of tensor �K are K\, K| | , and Km, representing

normal, tangential and rotational interface stiffnesses,

respectively. In the non-linear field, interface actions

must satisfy the Mohr–Coulomb yield criterion, rep-

resented by the following conditions [24, 25]:

f? ¼ f � e? � ft;

jfj j j ¼ jf � ej jj � ðft � f?Þ tan/;
jm3j � ðft � f?Þ lc:

ð3Þ

that represent, respectively, detachment, sliding and

rotational failure modes, where ft = cS/tan/ is the

tensile strength of the interface, with S = Sv = at or

Sh = bt/2 for a vertical and horizontal interface,

respectively. Characteristic interface length lc is the

maximum distance of the interface normal force with

respect to block centre. Authors already showed that

static problems of masonry panels subject to external

actions may be solved by means of a molecular

dynamics algorithm [21, 33, 34], that solves the

equation of motion for each block degree of freedom

and then applies the restrictions of Eq. 3 to interface

actions. Another solution choice is a static solution

algorithm, that requires to determine and to update

panel stiffness matrix by setting equal to zero local

interface stiffness values if the corresponding condi-

tions in Eq. 3 are not respected. The latter method

turned out to be faster than the first one for performing

pushover analyses [24].

b/a = 4

b/a = 2 b/a = 1 b/a = 1/4

Fig. 2 Block width-to-height ratios adopted in this work

Fig. 3 Interface between adjacent blocks and interface actions
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4 FEM/Dem model

In recent times an increasing number of models

attempted to combine the advantages of Finite and

Discrete Element methods. In the late 1980’s, Cundall

[35] and Hart et al. [36] proposed a model with

deformable blocks discretized by an internal Finite

Element mesh with 2D triangular plane strain ele-

ments. Shi and Goodman [12] developed a disconti-

nous deformation analysis method where deformable

blocks are assumed to be in a state of uniform strain

and stress. Barbosa [37] proposed a Discrete-Finite

Element model where deformable blocks are meshed

by quadrilateral isoparametric finite element.

One of the approaches that combines DEM and

FEM is the combined finite-discrete element method

(FEM/DEM) developed by Munjiza in the early

1990’s [13, 14]. It consists in a discrete element

method in which the individual elements are meshed

into finite elements. The model relies into a triangular

discretization of the domain with embedded crack

elements that activate whenever the peak strength is

reached. Finite elements allow for the reproduction of

elastic strain into continuum, while discrete element

algorithms allows to model interaction, fracture and

fragmentation processes.

Differently from the DEM described above, blocks

can be assumed to behave as elastic bodies. Mortar

joints might be idealized as elastic or elastic–plastic

zero-thickness Mohr–Coulomb interfaces. In the pre-

sent case, blocks have been modelled by means of

finite elements while interfaces are modelled as

discrete elements.

These models, initially developed in the field of

geo-mechanics, can properly represent the behaviour

of historical masonry, which could be considered as

made of dry stone blocks exhibiting a periodic pattern.

FEM/DEM allows to further extend the study to both

linear and nonlinear masonry behaviour, it has been

successfully adopted to study the behaviour of histor-

ical masonry construction [17–19, 30, 31, 38].

The analyses have been performed by means of the

FEM/DEM Y2D code [14], in particular the updated

version Y-GUI [15] to make the input file and the

Y-Geo code developed by the Geo Group of the

Toronto University [16] to run the analyses, under 2D

plane stress conditions.

Joints are modelled as elastic–plastic Mohr–Cou-

lomb interfaces, by means of specific cracks elements

that are embedded between all the Finite Elements of

the mesh. The mechanical parameters adopted for the

joints are: cohesion c, friction angle / and tensile

strength rt which is set equal to c/tan/.
Fracture energy defines the non-linear behaviour of

the cracks elements once the value of cohesion or tensile

strength—depending by the kinematic mechanism

activated—are reached. Two different fracture energies

are adopted: fracture energy of firstmodeGIC, related to

the de-cohesion mechanism, and fracture energy of

second mode GIIC, related to slippage mechanism.

Fracture energy has been calculated as [39]:

GIC ¼ l � p � c2
EM

ð4Þ

GIIC ¼ l � p � t2S
EM

ð5Þ

Where l is the length of interface, equal to b for a

horizontal one and to a for a vertical one, and EM is the

Young’s modulus of the joints. In the model, the joints

are modelled as zero-thickness interfaces, therefore

the young’s modulus EM adopted is a Young’s

modulus suitable for mortar.

5 FEM/DEM and DEM procedures

DEM and FEM/DEM are characterized by several

differences related to the parameters needed for

describing masonry linear and nonlinear behaviour,

together with different solution strategies for obtain-

ing incremental curves for masonry panels subject to

dead and live increasing loads.

Considering masonry elements, DEM is character-

ized by infinitely rigid blocks, hence no parameters are

needed for their description, whereas FEM/DEM

envisages the definition of block elastic modulus and

Poisson ratio EB, mB and a FE discretization of each

block is adopted by means of constant strain triangular

elements, as showed by Fig. 4a for the four different

texture types considered in this work. In order to

compare the two models, blocks are considered rigid

in FEM/DEM by the adoption of a very high value of

EB (1000 GPa) and assuming mB = 0.

Considering then joints or contacts between ele-

ments, DEM joints are represented by relative actions

-normal force, shear force and moment- between the

centres of adjacent blocks, depending on block relative
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displacements. DEM interface elastic behaviour is

governed by interface stiffness values, that depend on

mortar elastic parameters EM, mM; whereas nonlinear
behaviour follows a simple Mohr–Coulomb yield

criterion (Eq. 3). In FEM/DEM, joints are modelled

by specific zero-thickness four-noded interface ele-

ments, that are embedded between the edges of all

adjacent triangular element pairs since from the

beginning of simulation [40]. Then, potential cracks

can open both between block elements and both along

interfaces between blocks. In order to simulate historic

masonry behaviour, with cracks usually occurring

along mortar or dry joints [3, 41], two different

interface elements have been used: an elastic one

inside the block FEs for avoiding block cracking, and

an elastoplastic one between adjacent blocks, follow-

ing the Mohr–Coulomb yield criterion (Eq. 1). The

Mohr–Coulomb parameters adopted for DEM inter-

faces are also adopted for FEM/DEM joint parameters,

in particular cohesion c, friction ratio tan/, tensile
strength rt = c/tan/; whereas and fracture energy

(Eqs. 4 and 5) is evaluated by assuming the same EM

adopted by DEM.

The rigid DEM adopted in this work is based on

small displacement hypothesis. In particular, block

centre positions are not updated during analysis

accounting for increasing displacements and no con-

tact detection algorithms are needed, given that texture

regularity is maintained during analyses. On the other

hand, FEM/DEM is based on finite displacements,

therefore larger displacements may be reached during

non-linear behaviour with respect to DEM.

Focusing then on solution strategies, in this work,

analyses performed with DEM adopt a static solution

method, that allows performing fast pushover analyses

with a small computational effort with respect to a

molecular dynamics solutionmethod [24]. FEM/DEM,

instead, is based on a molecular dynamics solution

method, which implies a wider computational effort

respect to the static solution method adopted by DEM

but that does not require the definition of the stiffness

matrix of the entire masonry assemblage. Contact

between discrete elements together with the deforma-

bility of discrete elements is described in terms of

nodal forces and nodal displacements. The governing

dynamic equations of the problem are solved adopting

the central difference time integration scheme, that is

an explicit integration scheme of the equation for each

degree of freedom.With respect to the solution adopted

by DEM, here it is not necessary to assemble or store

stiffness matrices. The stability of the scheme is

achieved through reducing the time step size, resulting

in an increasing of computational effort for more

refined mesh. Moreover, the following incremental

analyses performed by FEM/DEM are obtained as the

results of several dynamic non-linear analyses per-

formed for each increasing value of incremental load.

As previously stated, in the DEM, thanks to rigid

block hypothesis, forces are applied at block centres

(Fig. 4b) and, similarly, panel restraints are imposed at

block centres, whereas in the FEM/DEM, forces are

lumped at the inner nodes of each block subdivision

(Fig. 4a). Different block subdivision are adopted in

FEM/DEM depending by the arrangement of blocks,

in order to allows the definition of different joints

inside or between the blocks.

6 Numerical tests

In the following numerical tests, two loading condi-

tions are taken into account:

Fig. 4 Detail of block

representation and applied

forces in case of FEM/DEM

(a) and DEM (b)
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1. panel subject to self-weight and increasing lateral

loads, with varying slenderness and block dimen-

sions and supported along its base;

2. square panel subject to a symmetric vertical

concentrated load, and supported at base edges,

with varying block dimensions.

6.1 Panel subject to self-weight and increasing

lateral loads

6.1.1 Geometric and mechanic parameters

Three different base supported panels are considered,

together with four block width-to-height ratios, as

stated in the first paragraph. Panel width L is assumed

constant and equal to 1440 mm, whereas height H is

assumed equal to L/2, L and 2L (Fig. 5). Blocks

arranged in a ‘running bond’ pattern, with

b = 240 mm and a = 60 mm (then, b/a = 4), are

assumed as reference case. Table 1 resumes panel

dimensions, block dimensions and block number in

both plane directions (n1 and n2, respectively) for the

case studies considered. It is worth noting that block

and panel thickness t = 120 mm is assumed to be

constant. Negligible cohesion c is considered for

representing dry joints, whereas a friction ratio tan/
= 0.6 is assumed, corresponding to a friction angle of

about 30�. A fictitious mortar elastic modulus EM = 1

GPa is assumed for representing dry joints elastic

deformability. Each panel is subject to a uniform

vertical load representing its self-weight and to a

horizontal increasing force representing a lateral

acceleration statically applied. Then, nonlinear incre-

mental analyses of the panels considered are per-

formed in order to determine their ultimate load

multiplier (kDEM and kFEM/DEM) and the correspond-

ing collapse mechanisms.

6.1.2 Incremental analyses

Ultimate load multipliers obtained with DEM and

FEM/DEM are collected in Table 2, together with the

corresponding analytic solutions obtained with a

homogeneous material equivalent to masonry in its

geometry and in the material properties [42]. In

particular, in case of shear failure, the collapse

multiplier is kHOMO ¼ tan/, whereas in the case of

Fig. 5 Panels considered for the numerical tests

Table 1 Case studies considered with the corresponding panel

dimensions, block dimensions and block number along plane

directions

Case L (mm) H (mm) b (mm) a (mm) n1 n2

1 1440 720 240 60 6 12

2 1440 6 24

3 2880 6 48

4 720 120 60 12 12

5 1440 12 24

6 2880 12 48

7 720 60 60 24 12

8 1440 24 24

9 2880 24 48

10 720 60 240 24 3

11 1440 24 6

12 2880 24 12

Table 2 Comparison between ultimate load multipliers for

masonry panels subject to self-weight and increasing lateral

loads

Case H/L b/a kFEM/DEM kDEM kHOMO

1 0.5 4/1 0.500 0.570 0.537

2 2/1 0.410 0.390 0.380

3 1/1 0.310 0.260 0.269

4 1/4 0.310 0.160 0.134

5 1.0 4/1 0.380 0.390 0.537

6 2/1 0.320 0.310 0.380

7 1/1 0.225 0.230 0.269

8 1/4 0.140 0.110 0.134

9 2.0 4/1 0.240 0.330 0.372

10 2/1 0.220 0.310 0.328

11 1/1 0.175 0.200 0.267

12 1/4 0.130 0.094 0.134
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flexural failure, a rigid body rotation mechanism is

activated by a cracking line having inclination w
from the lower-right corner of the panel, tan w B

(m/tan /)-1/2, with m = 2a/b, and the collapse mul-

tiplier is given by:

kHOMO ¼

1

2
ðm= tan/Þ�1=2

if r ¼ H=L�ðm= tan/Þ1=2

3r � 2ðm= tan/Þ�1=2

3r2 � ðm= tan/Þ otherwise

8>><
>>:

ð6Þ

Further details may be found in the works of De Buhan

and De Felice, Cecchi and Vanin [43, 44], whereas

kHOMO values for increasing H/L and varying b/a are

showed in Fig. 6.

Figure 7 collects incremental curves obtained with

the numerical models, compared with analytic solu-

tions and Figs. 8, 9, 10 collect collapse mechanisms.

• Thick panel (H/L = 0.5, Fig. 8): DEM collapse

mechanisms are characterized by a slight sliding of

horizontal joints that increases along panel height

and by the rotation of blocks close to the upper-

right corner for b/a from 4 to 1. The case with b/

a = 1/4 is characterized by a generalized block

rotation along second and third rows. FEM/DEM

collapse mechanisms present a more evident

sliding of horizontal joints with respect to block

rotation. Such differences in collapse mechanisms

are motivated by the joint rotational stiffness

accounted by DEM that allows a more evident

block rotation with respect to the FEM/DEM.

However, ultimate loads obtained with the two

numerical models are in quite good agreement also

with analytical results for b/a from 4 to 1. For the

case with b/a = 1/4, FEM/DEM is characterized

by an ultimate load multiplier closer to that

obtained with b/a = 1, probably due to the same

size of horizontal interfaces that govern the sliding

mechanism (Eqs. 4 and 5).

• Square panel (H/L = 1, Fig. 9): collapse mecha-

nisms obtained with DEM and FEM/DEM are

typical shear failure mechanisms, characterized by

a diagonal cracking line starting from the lower-

right corner and moving to the upper portion of

panel left side. The resulting triangular/trapezoidal

panel portion over the cracking line is subject to a

rotation or overturning mechanism. Due to the

rigid block hypothesis, cracking line involves

subsequent horizontal and vertical dry joints,

however its overall inclination increases for

reducing b/a ratio, as showed also by the analytic

solution (tan w B (m/tan /)-1/2). This aspect is

evident for the panel with b/a = 1/4, that is

characterized by a small triangular portion col-

lapsing on the right side of the panel. Moreover,

FEM/DEM collapse mechanism shows a clear

crack line with an overall inclination equal to 45�,
given that horizontal joint length is coincident with

Fig. 6 Ultimate load

multipliers for masonry

panels subject to self-weight

and increasing lateral loads,

for increasing H/L ratio and

for four masonry patterns
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Fig. 7 Incremental

analyses for panels subject

to self-weight and

increasing lateral loads.

Load multiplier versus

horizontal displacement at

the upper-right corner

of the panel. a H/L = 0.5,

b H/L = 1, c H/L = 2
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vertical joint height. In this case, DEM and FEM/

DEM collapse load multipliers are in better

agreement with respect to the previous case for

all b/a ratios considered. Moreover, both numer-

ical models are in quite good agreement with

analytic solutions, except for the case with

b/a = 4.

• Slender panel (H/L = 2, Fig. 10): collapse

mechanisms obtained with DEM and FEM/

DEM are characterized by a diagonal crack

similarly to the previous case. However in this

case, a bigger and slender portion of the panel is

subject to a rotation mechanism, leading to

smaller collapse load multipliers with respect to

the other panels considered. The slender panel

with b/a = 1/4 is characterized by a small

triangular portion subject to an overturning

mechanism. More generally, with this panel

type, collapse load multipliers are in quite good

agreement with analytic solutions.

6.2 Panel subject to a vertical concentrated force

6.2.1 Geometric and mechanic parameters

Here, analyses are limited to the square panels studied

in the previous sub-paragraph (cases 2, 5, 8 and 11 in

Table 1). Panels are simply supported at the lower

corners, whereas the concentrated load P is applied at

the upper edge midpoint This condition is quite

similar to the deep beam test performed by Page [2].

In order to avoid sudden collapse mechanisms along

the lower edge, a not-negligible interface cohesion

c = 0.1 MPa is adopted, whereas tan/ = 0.6 is

assumed equal to the previous case studies, together

with EM = 1 GPa.

6.2.2 Incremental analyses

Figure 11 collects incremental curves obtained with

DEM and FEM/DEM for the four square panels, with

Fig. 8 Collapse

mechanisms of masonry

panels with H/L = 0.5,

subject to self-weight and

increasing lateral loads
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vertical displacement evaluated at the upper edge

midpoint. Figure 12 collects the corresponding col-

lapse mechanisms. The numerical models adopted are

in quite good agreement both for this case study, even

if FEM/DEM turns out to be slightly stronger and less

deformable than DEM. Ultimate loads and collapse

mechanisms are strictly depending on blocks engage-

ment given by block height-to-width ratio. For this

Fig. 9 Collapse

mechanisms of masonry

panels with H/L = 1,

subject to self-weight and

increasing lateral loads
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reason, the panel with b/a = 4, characterized by the

best engagement, has a collapse load larger than those

obtained with other b/a ratios. More generally,

collapse loads decrease as a consequence of the

smaller block engagement and the collapse mecha-

nisms are characterized by diagonal cracks starting

from base supports and moving towards panel vertical

axis of symmetry. The restraint condition chosen is

able to show an ‘arch mechanism’ that is typical of

masonry façade spandrels over openings, subject to

the collapse or to an excessive vertical displacement of

the lintel. The portion of masonry panel involved in

such a mechanism is characterized by a triangular or

trapezoidal shape which dimensions increase for

decreasing block engagement.

7 Conclusions

In this contribution, the nonlinear behaviour of

masonry panels with regular texture and subject to

in-plane loads has been investigated by means of two

numerical models: a discrete model (DEM) developed

by authors and a discrete/finite element model (FEM/

DEM) originally introduced for studying rock

mechanics problems and effectively extended to

masonry structures. These models have been com-

pared and calibrated, given that a Mohr–Coulomb

yield criterion have been adopted for representing

joint or interface elastic–plastic behaviour in both

numerical models. Moreover, rigid block hypothesis

typical of the proposed DEM has been also considered

with FEM/DEM by adopting a large elastic modulus

for blocks.

Numerical pushover analysis of masonry panels

subject to self-weight and increasing proportional

lateral loads have been performed for first and an

analytical homogenized model has been taken as

reference for the determination of collapse load

multipliers. Three different panel height-to-width

ratios and four different masonry textures have been

considered. Then, focusing on the square panel, a

second case study has been considered for simulating a

mechanism typical of masonry spandrels with a weak

or damaged supporting lintel.

bFig. 10 Collapse mechanisms of masonry panels with H/

L = 2, subject to self-weight and increasing lateral loads
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The numerical test campaign showed that the DEM

and FEM/DEM models represent a simple and effec-

tive tool for studying the nonlinear behaviour of

masonry structures, in particular both models are able

to take into account the actual texture of masonry

walls, thus they are able to describe with accuracy the

real crack pattern that may develop in masonry walls

and to reveal the potential collapse mechanisms. DEM

is simpler than FEM/DEM and requires a smaller

computational effort, however it is less accurate than

FEM/DEM and it does not account for typical aspects

of discrete models such as large displacements and

contact variation during analysis. DEM turns out to be

a good and fast modelling choice for studying

historical masonry specimens characterized by weak

or dry joints between blocks, whereas it is not able to

represent block deformation and cracking in case of

stronger mortar joints and in this last case the FEM/

DEM represents the more accurate solution. However,

the critical comparison and calibration between DEM

and FEM/DEM carried out in this work allowed to

obtain results in good agreement also with the analytic

solution.

The sensitivity analysis to masonry geometric

parameters in the first case study showed that sliding

collapse mechanisms are typical of thick panels with

larger horizontal joint length with respect to vertical

joint height, these mechanisms are characterized by

ultimate load multipliers quite close to the value of

friction ratio. Rotation or overturning collapse mecha-

nisms are typical of slender panels and of panels with

smaller horizontal joint length with respect to vertical

joint height.

The second case study showed the capability of

both models to represent different collapse mecha-

nisms governed by block dimensions in presence of a

concentrated vertical force and supported base cor-

ners. Similarly to the first case study, the collapse

loads decrease for decreasing blocks engagement.

Further developments of this work will regard the

improvement of the current rigid DEM by adding

inner interfaces into blocks, i.e. along block vertical

axis of symmetry, in order to simulate the possible

formation of vertical cracks along block height that are

often found in masonry specimens with mortar joints

and subject to both vertical and lateral loads. For this

Fig. 11 Incremental analyses for square panels subject to an increasing vertical load at the upper edge midpoint. Load versus vertical

displacement
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purpose, the FEM/DEM, that usually allows block

cracking, will be fundamental for comparing results

and calibrating DEM interface stiffness and strength

parameters.
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