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Abstract The dynamical response of a taut string

traveled by a single moving force is here studied in the

nonlinear regime. The equations of motion of the

system, accounting for geometric nonlinearities and

external damping, are discussed and then studied

through perturbation and numerical methods. In

particular, theMultiple ScaleMethod and the Straight-

forward Expansion are successfully applied to obtain

semi-analytical results, and direct numerical integra-

tions are performed on the equations of motion

discretized via a Galerkin approach; a solution through

the finite-difference method is also developed. Partic-

ular attention is devoted to the dynamic increment of

tension, which is the main nonlinear effect induced by

the traveling force. Using values of model parameters

deducted from the literature, the agreement of semi-

analytical results with numerical ones is discussed,

showing the good behavior of the Straightforward

Expansion and pointing out the importance of the

geometric nonlinearity for certain combinations of the

parameters involved.

Keywords Galerkin technique �Kirchhoff nonlinear
string model �Moving-load problems �Multiple Scale

Method � Straightforward Expansion � Weakly

nonlinear dynamics

1 Introduction

Moving-load problems are very important in several

engineering systems such as bridges traveled by

vehicles or pedestrians, machine tools, pantograph

collectors in railways, guideways in robotic solutions.

The loads can be schematized in three different ways:

moving force models if the mass involved in the

motion is not relevant compared to that of the

supporting systems (e.g., [1, 2]); moving mass models

in cases where possible effects of load-structure

interaction are negligible (i.e., the coupling between

the moving subsystem and its support is assumed

infinitely rigid; e.g., [3, 4]); moving oscillator models

when stiffness and damping couplings between the

load and the support are considered significant (e.g.,

[5, 6]). Recently, Cazzani et al. [7] have proposed a

new approach based on mixed variables that is able to

reproduce a continuous transition between a traveling

mass and a traveling oscillator. Although the literature

on this subject is very wide, there are still issues not
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fully clarified, especially among mathematical con-

sistent formulations and technical solutions (e.g., [8]).

Concerning the simplified moving force model, it is

still widely used in both scientific and technical field

since it is often sufficient to answer to problems of

practical interest. A typical load scheme is that of the

classic Dirac delta generalized function (e.g., [9, 10]),

which encompasses the jump conditions at the singu-

lar point. The usual field of application is that of

mechanically-linear systems. The vibration analysis of

a nonlinear beam subjected to a moving load has

attracted the interest of many researchers over the last

20 years, with analytical and numerical approaches

(e.g., [11, 12]). Concerning nonlinear suspended

cables carrying moving loads a few studies exist

(e.g., [13]), some of which turned to evaluate the

effects of the traveling mass on the cable dynamic

tension (e.g., [14]). To the best of the author’s

knowledge, whereas the linear taut string traveled by

moving loads has been extensively analyzed (e.g.,

[3, 15]) the situation is completely different for the

nonlinear taut string.

The taut string is an idealized model of cable with

evanescent sag. It is quite accurate when the natural

length of the cable is smaller than the distance between

the suspension points (i.e., prestressed cables). The

geometric non-linearity of taut strings is rarely

addressed in engineering applications, for specific

objectives such as the possibility of overcoming the

critical velocity (e.g., [16, 17]), whereas it is usually

neglected in several problems in which it is considered

of secondary importance (e.g., [18]). On the other

hand, the study of the dynamics of nonlinear strings is

of great interest frommathematical point of view (e.g.,

[19, 20]). For the description of the nonlinear dynam-

ical response of taut strings the most used model in the

literature is the Kirchhoff one, in which the longitu-

dinal inertia is neglected and the corresponding

displacement condensed (e.g. [21, 22]); with this

assumption the dynamic tension component is a

function of time alone. Similar problems are dealt

with in the field of traveling tensioned strings, where

Wickert [23] assumed the quasi-static stretch hypoth-

esis to establish an integro-partial-differential equa-

tion for the transverse motion.

This paper is the first step towards the study of the

combined effects induced by moving loads and

nonlinearities on Kirchhoff taut strings, paying special

attention to the dynamic change of tension, not

considered in the linear model. At present a single

moving force is considered supposing that its value is

sufficiently small, that is the system experiences small

displacements and the incremental dynamic tension is

small compared to the static prestress. Therefore, the

current study is limited to the weakly nonlinear

dynamics of taut strings. The main purpose is to

evaluate their behavior for load speeds below the

string celerity through the use of semi-analytical

techniques. After a summary of the equations of

motion (Sect. 2), different semi-analytical solutions of

the problem are obtained and critically discussed in

Sect. 3. A finite-difference numerical procedure is

illustrated and several numerical results are shown in

Sect. 4. The final Sect. 5 highlights the strong points

of the paper and its possible prospects.

2 Equations of motion

It is first presented the classic Kirchhoff model for a

taut string traveled by a single force (Sect. 2.1); then

the nondimensional partial differential equation is

reduced to a discrete system of ordinary differential

equations through the Galerkin method (Sect. 2.2).

2.1 Continuum model

Let us consider a planar taut string of length l, mass

per-unit-length m, damping coefficient n, fixed at the

two end points, (A, B), lying on the horizontal ax-axis

and subjected to the prestress T0. The curvature due to

the self-weight is assumed to be negligible. The string

is traveled by a vertical downward single force,�Pay,

which moves at a constant velocity, Uax. At the initial

instant t ¼ 0 the force P is at the left end of the string,

s ¼ 0. The force occupies the instantaneous position C

of abscissa sC :¼ Ut at the generic time t (Fig. 1).

Fig. 1 Taut string traveled by the single moving force P
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Therefore, the action produced by the moving force P

on the string depends on space and time, namely:

P ¼ �Pd s� Utð Þay if 0� t� tc
0 if t[ tc

�
ð1Þ

where d is the Dirac delta generalized function and

tc :¼ l=U is the crossing time. Accordingly, the string

experiences forced vibrations in the time interval

0; tc½ �; and free damped vibrations afterwards. The

attention is focused on the forced phase in the

following.

Using the quasi-static stretch assumption and

considering the transverse motion only, the motion

equation of a taut string in the ax; ay
� �

-plane reads

(e.g., [21]):

m€vþ n _v� T0 þ
EA

2l

Z l

0

v02 ds

� �
v00 ¼ �Pd s� Utð Þ

v 0; tð Þ ¼ v l; tð Þ ¼ 0

ð2Þ

v being the transverse (ay-direction) displacement and

EA the axial stiffness of the cable cross-section. The

problem is equipped with (generally) non-homoge-

neous initial conditions:

vðs; 0Þ ¼ f ðsÞ; _vðs; 0Þ ¼ gðsÞ ð3Þ

By defining the following nondimensional

quantities:

~v ¼ v

l
; ~s ¼ s

l
; ~t ¼ 1

l

ffiffiffiffiffi
T0

m

r
t; ~P ¼ P

T0
; ~U ¼ Uffiffiffiffiffiffiffiffiffiffiffi

T0=m
p ;

~n ¼ n
l

T0

ffiffiffiffiffi
T0

m

r
; a ¼ EA

2T0

ð4Þ

where a characterizes the elasticity of the cable (e.g.,

[24]), the dimensionless equation of motion are

obtained (omitting the tilde):

€vþ n _v� 1þ a
Z 1

0

v02 ds

� �
v00 ¼ �Pd s� Utð Þ

v 0; tð Þ ¼ v 1; tð Þ ¼ 0

ð5Þ

It should be noted that the nondimensional transfor-

mation of the Dirac delta function reads:

d s� Utð Þ ¼ 1
l
d ~s� ~U~t
� �

. Moreover, the term in brack-

ets in the left member of the Eq. (5) is the dimension-

less dynamic tension of the taut string: the nonlinear

contribution leads to an increase of the tension from

the unitary value, representative of the static prestress.

The homogeneous undamped linear problem is

reduced to:

€v� v00 ¼ 0

v 0; tð Þ ¼ v 1; tð Þ ¼ 0
ð6Þ

which admits the solution:

v s; tð Þ ¼ /j sð Þeixjt ð7Þ

where:

/j sð Þ ¼
ffiffiffi
2

p

xj

sin xjs
� �

; xj ¼ jp; j ¼ 1; 2; . . .

ð8Þ

are eigenfunctions which satisfy:

Z 1

0

/0
i/

0
j ds ¼ dij ð9Þ

2.2 Discretized model

A discrete model can be derived via the classic

Galerkin Method (GM). The transverse displacement

v is assumed as:

v s; tð Þ ¼
XN
m¼1

/m sð Þqm tð Þ ð10Þ

/m being the eigenfunctions of the linear taut string,

Eq. (8), and qmðtÞ their time-varying amplitudes.

Replacing the previous expression in Eq. (5), multi-

plying by /j and integrating over the string domain

0; 1½ �, the following equation is obtained:

XN
m¼1

Z 1

0

/j /m€qj þ n/m _qj
�

� 1þ a
XN
h¼1

XN
k¼1

Z 1

0

/0
h/

0
k ds qhqk

 !
/00
mqm� ds

¼ �P

Z 1

0

/jd s� Utð Þ ds j ¼ 1; . . .;N

ð11Þ

Using the normalized eigenfunctions, Eq. (8), and

their orthogonality condition, Eq. (9), together with

the property of the Dirac delta function, the generic j-

th Galerkin equation becomes:
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€qj þ n _qj þ x2
j qj 1þ a

XN
h¼1

q2h

 !
¼ �Pxj

ffiffiffi
2

p
sin Xjt
� �

ð12Þ

where Xj :¼ jpU ¼ xjU. The forcing term in Eq. (12)

shows that the traveling load induces an equivalent

harmonic excitation of frequency Xj, proportional to

the load speed U. The system of coupled nonlinear

Galerkin equations can be summarized in matrix form

as follows:

1 0 0 0

0 1 0 0

0 0 . .
.

0

0 0 0 1

2
666664

3
777775

€q1

€q2

..

.

€qN

0
BBBBBB@

1
CCCCCCA

þ n

1 0 0 0

0 1 0 0

0 0 . .
.

0

0 0 0 1

2
666664

3
777775

_q1

_q2

..

.

_qN

0
BBBBBB@

1
CCCCCCA

þ

x2
1 0 0 0

0 x2
2 0 0

0 0 . .
.

0

0 0 0 x2
N

2
6666664

3
7777775

q1

q2

..

.

qN

0
BBBBBB@

1
CCCCCCA

þ a

x2
1q1 q21 þ q22 þ . . .þ q2N
� �

x2
2q2 q21 þ q22 þ . . .þ q2N
� �

..

.

x2
NqN q21 þ q22 þ . . .þ q2N

� �

0
BBBBBB@

1
CCCCCCA

¼ �P
ffiffiffi
2

p

x1 sin X1tð Þ

x2 sin X2tð Þ

..

.

xN sin XNtð Þ

0
BBBBBB@

1
CCCCCCA

ð13Þ

Once the generic amplitude qjðtÞ has been deter-

mined by numerical integration of Eq. (13), the

solution of the problem is reconstructed by means of

the Galerkin expansion (10).

3 Semi-analytical solutions

Two direct perturbation solutions on the string con-

tinuum model are described in Sects. 3.1 (Multiple

Scale Method) and 3.2 (Straightforward Expansion).

The solution of the linear problem is obtained as a first

perturbation step.

3.1 Multiple Scale Method (MSM)

One considers a regime of small but finite displace-

ments, for which the incremental tension is small

compared with the static prestress (i.e., weakly non-

linear dynamics). Due to the absence of quadratic

nonlinearities (which vanish with the initial curva-

ture), the problem is symmetric so that a first-order

analysis requires a single perturbation step.

By rescaling the variables as:

v ! e1=2 v; n ! e n; P ! e1=2 P ð14Þ

the dimensionless equation of motion (divided by e1=2)
reads:

€vþ e n _v� 1þ e a
Z 1

0

v02 ds

� �
v00 ¼ �Pd s� Utð Þ

v 0; tð Þ ¼ v 1; tð Þ ¼ 0

ð15Þ

Since the excitation P is in general non-resonant, the

load is ordered at the same level of the transverse

displacement v; this case is also referred to as hard

excitation (e.g., [21]).

Moreover, the following expansion is assumed for

the unknown displacement:

v ¼ v0 þ e v1 þ � � � ð16Þ

where independent time scales are introduced,

tk ¼ ekt ðk ¼ 0; 1; . . .Þ, so that the first and second

time-derivatives are expressed asD ¼ d0 þ e d1 þ � � �,
D2 ¼ d20 þ 2 e d0d1 þ � � �, where dk ¼ o

otk
.

The MSM perturbation equations are thus obtained:

e0 :

d20v0�v000 ¼�Pd s�Ut0ð Þ

v0 0; t0; t1; . . .ð Þ¼ v0 1; t0; t1; . . .ð Þ¼ 0

v0 s;0;0; . . .ð Þ¼ �f sð Þ; d0v0 s;0;0; . . .ð Þ¼ �g sð Þ

8>>><
>>>:

e1 :

d20v1�v001 ¼�2d0d1v0�nd0v0þav000

Z 1

0

v020 ds

v1 0; t0; t1; . . .ð Þ¼ v1 1; t0; t1; . . .ð Þ¼ 0

v1 s;0;0; . . .ð Þ¼ 0; d0v1 s;0;0; . . .ð Þ¼�d1v0 s;0;0; . . .ð Þ

8>>>>><
>>>>>:

ð17Þ

For the sake of simplicity it is assumed in the

following that �f sð Þ ¼ �g sð Þ ¼ 0.
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From the e0-order equation, the generating solution
reads:

v0 s; t0; t1; . . .ð Þ ¼
XN
j¼1

/j sð Þx0j t0; t1; . . .ð Þ ð18Þ

The modal amplitude associated with the j-th eigen-

function, x0j t0; t1; . . .ð Þ, is the solution of the linear

system:

d20x0j þ x2
j x0j ¼ �Pxj

ffiffiffi
2

p
sin Xjt0
� �

x0j 0; 0; . . .ð Þ ¼ d0x0j 0; 0; . . .ð Þ ¼ 0

�
ð19Þ

which leads to:

x0j ¼ Aje
ixj t0 þ Cje

iXjt0 þ Kje
ixjt0 þ c:c: ð20Þ

where the term c.c. denotes the complex conjugate

and:

Cj ¼ i
Pxjffiffiffi

2
p

x2
j � X2

j

	 
 ; Kj ¼ �Xj

xj

Cj ð21Þ

Cj;Kj being purely imaginary numbers and Aj ¼
Aj t1; t2; . . .ð Þ the j-th complex amplitude, which is a

function of slow time scales. Note that the particular

solution of Eq. (20) satisfies the initial conditions of

Eq. (19) from which Aj 0; � � �ð Þ ¼ 0 follows.

Replacing the generating solution (18) in the e-
order perturbation equation, observing that /00

j ¼
�x2

j /j and accounting for the normalization condition

(9), one obtains:

d20v1 � v001 ¼
XN
j¼1

/j

�
� 2ixjd1Aje

ixj t0 � in xjAje
ixjt0

�

þCjXje
iXj t0 þ xjKje

ixjt0 � þ

� ax2
j x0j

XN
h¼1

x20h þ c:c:

)

ð22Þ

Eq. (22) contains harmonic functions of frequency xj,

generated by damping and inertia forces, and cubic

combinations of the frequencies x’s and X’s (namely,

2xh � xj, xh þ Xh � Xj, xh � Xh þ Xj, when h ¼ j).

To eliminate secular terms the solvability condition

should be imposed requiring the vanishing of the xj-

harmonic terms (i.e., terms multiplied by eixjt0 ). By

accounting for Eq. (20) and excluding special resonant

values of Xj, the ordinary Amplitude Modulation

Equations (AME) in complex form are derived:

2ixjd1Aj þ inxj Aj þ Kj

� �
þ 4 ax2

j Cj
�Cj Aj þ Kj

� �
þ ax2

j Aj þ Kj

� �
2 �Aj þ �Kj

� �

þ 2ax2
j

XN
h¼1

Ch
�Ch þ Ah þ Khð Þ �Ah þ �Kh

� �" #
Aj þ Kj

� �
¼ 0

ð23Þ

Setting Aj ¼ aj þ ibj, with aj :¼ aj tð Þ; bj :¼ bj tð Þ, the
AME in (real) Cartesian form are achieved:

_bj þ
1

2
n bj � iKj

� �
� 1

2
axjaj a2j þ b2j � 4C2

j � 2ibjKj � K2
j

	 


� axj

XN
h¼1

a2h þ b2h � C2
h � K2

h � 2iKhbh

 !
aj ¼ 0

_aj þ
1

2
naj þ

1

2
axj bj � iKj

� �
a2j þ b2j � 4C2

j � 2ibjKj � K2
j

	 


þ axj

XN
h¼1

a2h þ b2h � C2
h � K2

h � 2iKhbh

 !
bj � iKj

� �
¼ 0

ð24Þ

where it has been taken into account that Re Cj

� �
¼

Re Kj

� �
¼ 0 , Im Cj

� �
¼ �iCj; Im Kj

� �
¼ �iKj, and

that C2
j and K2

j are real quantities.

Equation (24) are a set of infinitely many AME’s.

The infinite number is a consequence of the fact that

all the modes of the string are excited by the moving

force P. Since the interest is not aimed at determining

fixed points of the dynamical system defined by

AME’s, numerical integrations are mandatory. A finite

number of involved modes must be considered with a

convergence check of the solution.

Through MSM the original partial differential prob-

lem (5) has been reduced to a systemof (infinite) ordinary

differential equations. Differently from GM, which also

supplies a set of infinite ordinary differential equations in

the coupled modal coordinates, MSM filters the fast

dynamics: the unknown amplitudes slowly vary in time

making easier to perform numerical integrations.

Once the complex amplitude Aj is calculated, the j-

th modal amplitude x0j is rebuilt, then the first-order

MSM solution v0 is drawn coming back to the true

time t.

It is worth noting that the MSM e-order solution, v1,
could be obtained in a semi-analytical way through a
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very burdensome procedure only, once solved numer-

ically the AME’s. In this way the advantage of using a

semi-analytical method fails and the direct application

of the Galerkin method, as was done in Sect. 2.2,

appears much more consistent. Therefore, the MSM

solution is limited to the first order although this fact

may limit its accuracy, as will be shown in

applications.

3.2 Straightforward Expansion (SE)

As it is well-known (e.g., [25]), SE leads to the

occurrence of secular terms that can be eliminated by

invoking suitable solvability conditions. This problem

occurs if the interest is directed to infinite time

domains (e.g., t ! 1), in which the asymptotic series

breaks down when t ¼ O e�1ð Þ. If the interest is

addressed to a finite time domain, such as 0; tc½ �, such
drawback does not occur if etc � 1. Therefore, SE is

expected to work properly without any correction for

small displacements (e.g., of the order of 10�3 times

the span of the string) and sufficiently high load speeds

(e.g., of the order of 10�1 times the celerity of the

string).

Putting Eq. (16) into Eq. (15) and separating the

terms of the same order, the following perturbation

equations are obtained:

e0 :

€v0 � v000 ¼ �Pd s� Utð Þ

v0 0; tð Þ ¼ v0 1; tð Þ ¼ 0

v0 s; 0ð Þ ¼ �f sð Þ; _v0 s; 0ð Þ ¼ �g sð Þ

8>>><
>>>:

e1 :

€v1 � v001 ¼ �n _v0 þ av000

Z 1

0

v020 ds

v1 0; tð Þ ¼ v1 1; tð Þ ¼ 0

v1 s; 0ð Þ ¼ 0; _v1 s; 0ð Þ ¼ 0

8>>>>><
>>>>>:

ð25Þ

As before, it is assumed �f sð Þ ¼ �g sð Þ ¼ 0.

The generating solution is written as:

v0 s; tð Þ ¼
XN
j¼1

/j sð Þx0j tð Þ ð26Þ

The modal amplitude x0j tð Þ, associated with the j-th

eigenfunction, is the solution of the following linear

system:

€x0j þ x2
j x0j ¼ �Pxj

ffiffiffi
2

p
sin Xjt
� �

x0j 0ð Þ ¼ _x0j 0ð Þ ¼ 0

8<
: ð27Þ

namely:

x0j ¼ Cje
iXj t þ Kje

ixjt þ c:c: ð28Þ

where Cj and Kj are defined in Eq. (21).

Replacing the generating solution (26) into the e-
order equation and taking into account the normaliza-

tion condition (9), one obtains:

e1 :

€v1 � v001 ¼
XN
j¼1

/j �n iXjCje
iXj t þ ixjKje

ixj t
� ��

� ax2
j x0j

XN
h¼1

x20h þ c:c:g

v1 0; tð Þ ¼ v1 1; tð Þ ¼ 0

v1 s; 0ð Þ ¼ 0; _v1 s; 0ð Þ ¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð29Þ

The solution of the previous equation can be written

as:

v1 s; tð Þ ¼
XN
j¼1

/j sð Þx1j tð Þ ð30Þ

where the e-order modal amplitude x1j tð Þ is the

solution of:

€x1j þ x2
j x1j ¼ �n iXjCje

iXjt þ ixjKje
ixj t

� �

� ax2
j x0j

XN
h¼1

x20h þ c:c:

x1j 0ð Þ ¼ _x1j 0ð Þ ¼ 0

8>>>>><
>>>>>:

ð31Þ

Then, x1j tð Þ can conveniently be expressed through the
classic convolution (Duhamel) integral:

x1j tð Þ ¼
1

xj

Z t

0

sin xj t � sð Þ
� �

�n iXjCje
iXjs þ ixjKje

ixjs
� ��

� ax2
j x0j sð Þ

XN
h¼1

x20h sð Þ þ c:c:� ds

ð32Þ

Indeed, although the known terms are harmonic

functions, the analytical solution is quite laborious

due to the occurrence of resonances. These latter
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originate from the combination of the xj frequencies

(occurring for any load speed U) as well from cubic

combinations of the xj and Xj frequencies (occurring

only for special values of the load speed, even if sub-

critical). For these reasons the convolution integral is

more conveniently evaluated numerically. It is worth

noticing that, differently from the MSM approach, the

special sub-critical resonances are now accounted for.

Once v0 s; tð Þ and v1 s; tð Þ have been calculated, the

response of the nonlinear taut string is determined by

Eq. (16).

4 Numerical results

A fully numerical solution is introduced for validation

of the semi-analytical approaches. The Finite-Differ-

ence (FD) method is applied in order to discretize the

equation of motion (5) over the spatial variable s. The

string is divided into Nd elements of equal length h :
¼ 1=Nd by ðNd þ 1Þ nodes; therefore, the string

transverse displacement v is evaluated in discrete

form as a function of the single variable time,

vjðtÞ :¼ vðsj; tÞ, with sj :¼ jh ðj ¼ 0; 1; :::;NdÞ. The

moving force P is usually assumed to move jerkily

over the nodes [26]. Using the central difference

technique also for the nonlinear integral term similarly

to [27], the following system of coupled ordinary

differential equations is obtained:

€vjðtÞ þ n _vjðtÞ ¼
vjþ1ðtÞ � 2vjðtÞ þ vj�1ðtÞ

h2
�

� 1þ ah
1

2

v1ðtÞ � v0ðtÞ
h

� �2
"(

þ 1

2

vNd
ðtÞ � vNd�1ðtÞ

h

� �2

þ
XNd�1

k¼1

vkþ1ðtÞ � vk�1ðtÞ
2h

� �2

�g þ fjðtÞ

ð33Þ

where the boundary conditions imply

v0ðtÞ ¼ vNd
ðtÞ ¼ 0. The issue is the discretization of

the Dirac delta function that appears in the forcing

term fjðtÞ :¼ f ðsj; tÞ. It has been suggested that it can

be approximated (and regularized) by a standard

Gaussian function [28] or handled by combining the

differential quadrature approach with the integral

quadrature method (e.g., [29]). Discretizing the Dirac

delta function by a standard Gaussian function, the

forcing term fjðtÞ becomes:

fjðtÞ ¼ � P

b
ffiffiffi
p

p exp � sj � Ut

b

� �2
" #

ð34Þ

b being the regularization parameter, which has to be

as small as possible to obtain an accurate representa-

tion of the Dirac delta function.

Literature values of model parameters are consid-

ered. The elasticity coefficient a is assumed between

200 and 500 for metal string [21]. The moving load P

is about 0.01 as for suspended cable problems

interested in dynamic tension (e.g., [14]); a value of

up to 0.02 is consistent with the hypothesis of weakly

nonlinear dynamics. The load speed is chosen between

0.1 and 0.5 (i.e., to be neither too low nor too close to

the critical value). The damping coefficient is set to the

reference value of 0.01. Numerical solutions are

determined through standard solvers (e.g., ode45 in

MATLABr software). As basic example, according

to the aforementioned values, it is chosen a ¼ 200,

P ¼ 0:01, U ¼ 0:1. The percent dynamic increase of

the string tension, Td, is evaluated as measure of the

effective nonlinearity of the problem: its value is the

correction to the (unitary) static value, Eq. (5).

Figure 2 shows the convergence check on FD

solutions. Differences between using 100 or 1000

elements are very limited. An improvement occurs

with a smaller value of the regularization parameter b,
which is only possible for a sufficiently small step,

such as Nd ¼ 1000, to avoid numerical oscillations in

the solution. In this way the discontinuity in the string

deformation is described quite well (Fig. 2b). Figure 3

presents the convergence of GM varying the number

of eigenfunctions considered. The solutions for N ¼
20 and N ¼ 30 are almost indistinguishable; the cusp

in the deformation, Fig. 3b, is obviously regularized as

in the philosophy of weighted residual methods.

Using the convergence values (Nd ¼ 1000 and b ¼
0:001 for FD, N ¼ 30 for GM), Fig. 4 shows a

comparison between the two solutions. Concerning

the basic example, the agreement is very good for both

the deformed shape (with the exception of the cusp, as

to be expected; Fig. 4a) and for the dynamic tension

(Fig. 4b). However, this example features reduced

values of tension increase. In order to complete the

validation between the two solutions a couple of

examples in which the nonlinearity is more
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pronounced were considered, setting the upper

extreme of the range identified for the problem

parameters (i.e., a ¼ 500, P ¼ 0:02). Figure 5 pre-

sents the dynamic tension for two different values of

U, reaching increases of up to 15% with regard to the

static prestress: the agreement between the two

solutions is very good. Therefore, from now on, GM

will be used as reference for the semi-analytical

solutions.

Concerning the basic example, Fig. 6 presents the

comparison between the two perturbation solutions

proposed and the Galerkin Method; moreover, the

linear solution is also shown as reference. The

agreement between the results is great but the effect

of nonlinearity is very moderate; indeed, the linear

solution is practically superimposed on the nonlinear

ones and the string tension increment does not reach

the one percent of the static prestress. Figure 7 is

obtained by increasing the elasticity parameter a from
200 to 500: the agreement among the different

solutions remains good (even if MSM slightly over-

estimates the results) but the system behavior is still

almost linear.

The effect of the speed increase is analyzed in

Fig. 8. When the elasticity parameter is small

(a ¼ 200; Fig. 8a, b) the linear solution is practically

exact and the dynamic increase of tension is about two

percent of the static prestress. For high values of a
(e.g., 500; Fig. 8c, d) the nonlinearity becomes more

relevant and the linear solution shows a small error. In

Fig. 2 Convergence check of FD solution: a motion under the load, b deformed shape for force at midpoint (basic example)

Fig. 3 Convergence check of GM solution: a motion under the load, b deformed shape for force at midpoint (basic example)
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both the situations SE solution is coincident with GM

reference solution and MSM appears to be the least

accurate.

Finally, the effect of the load increase is taken into

account in Fig. 9. Using a large value of the elasticity

parameter (a ¼ 500Þ the nonlinearity is growing in

importance. When the load speed is limited (U ¼ 0:1;

Fig. 9a, b) both the perturbation solutions show

inaccuracies compared to GM. For high load speed,

U ¼ 0:5 (Fig. 9c, d), SE solution leads to good results

in both string motion and dynamic tension increment

even if the nonlinear effect becomes relevant. Further

increases in P values would result in highly nonlinear

behaviors that go beyond the hypothesis of weakly

nonlinear dynamics.

5 Final remarks and future developments

This paper points out the lack of literature on the

problem of nonlinear taut strings traveled by moving

load. Two perturbation solutions have been proposed

within weakly nonlinear dynamics; a Galerkin proce-

dure was discussed whose validity has been verified

through an extensive parametric analysis; a finite-

difference solution has also been identified. Three

aspects can be highlighted:

Fig. 4 Comparisons between GM and FD solutions: a deformed shape for force at midpoint, b dynamic tension increment (basic

example)

Fig. 5 Comparisons between GM and FD solutions (a ¼ 500, P ¼ 0:02): dynamic tension increment for a U ¼ 0:1 and b U ¼ 0:5
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Fig. 6 Comparison among semi-analytical solutions (basic example): a motion under the load, b midpoint transverse displacement,

c dynamic tension increment, d deformed shape for force at midpoint

Fig. 7 Comparison among semi-analytical solutions (a ¼ 500): a motion under the load, b dynamic tension increment
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1. the nonlinearity may have some relevance on the

problem addressed; for certain combinations of

the parameters involved (speed and intensity of

the load, elasticity coefficient) the dynamic ten-

sion increment can achieve values close to twenty

percent of the static prestress while remaining in

the domain of weakly nonlinear dynamics; similar

behaviors are found in the dynamics of suspended

cables with moving mass ([14]), where the

importance of this effect for design purposes is

underlined;

2. between the proposed perturbation procedures,

the Straightforward Expansion is pretty simple

and has very good performance, paying attention

to meeting its validity range; on the other hand,

MSM shows larger error for low nonlinearities

too, also because it has been limited to the first

order expansion for consistency of analysis; on the

other hand, leading MSM to second order nullifies

the advantage of using a semi-analytical

technique;

3. the Galerkin approach can be considered a good

reference solution for the string nonlinear problem

(as often happens in linear problems) if the aim is

the analysis of global behaviors of the system; the

averaging operation implicit in the use of Galerkin

procedures could lead to localized problems, near

the supports, as shown in [3, 4, 8, 17].

The most important prospects concern the extension of

this work to (a) train of moving forces (dealt with in

Fig. 8 Effect of speed increase (U ¼ 0:5): a, c motion under the load and b, d dynamic tension increment for a ¼ 200; 500,
respectively (P ¼ 0:01)
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[26] limited to the linear range) and (b) strongly

nonlinear regimes.

Improvements on Galerkin method are also possi-

ble by adding suitable quasi-static correction func-

tions. The development of more sophisticated

numerical methods can benefit from the techniques

developed, e.g., in [30, 31].

The effect of damping has not been examined. It is a

quantity subjected to considerable uncertainty, which

can have great influence on the fatigue damage in

structures under repeated loads (e.g., [32, 33]). The

design of innovative damping mechanisms for con-

trolling vibrations due to moving loads is a challeng-

ing aspect. A possible approach to smart taut string is

the use of piezo-electromechanical transducers fol-

lowing the strategy presented, e.g., in [34–37].
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