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Abstract The problem of unsteady natural convec-

tion inside an inclined square cavity partitioned by a

flexible impermeable membrane is studied numeri-

cally using the finite-element method along with the

Arbitrary Lagrangian–Eulerian (ALE) approach. The

bottom and top walls of the cavity are kept adiabatic.

The left side wall is kept isothermal at a high

temperature, while the right wall is cooled in a

sinusoidal fashion. The cavity is provided by two

eyelets to compensate volume changes due to the

movement of the flexible membrane. The studied

pertinent parameters are the Rayleigh number (in the

range of 1E4–1E7), the amplitude of the sinusoidal

wall temperature (A in the range of 0–1.0), the

inclination angle of the cavity (in the range of-p/3 to
p/3), and the body force parameter (Fv in the range of

-1.64E-2 to?1.64E-2) whereas the Prandtl number

is fixed at 6.2. The results show that at a low Rayleigh

number, the membrane shape is a function of the

imposed body force. While at a high Rayleigh number,

the buoyancy force becomes responsible for the

membrane deflection. The natural convection is

appreciably affected by the inclination angle of the

cavity which in turn, affects the concave or convex

shape of the membrane.

Keywords Flexible membrane � Natural
convection � Inclined cavity � Arbitrary Lagrangian–

Eulerian method

List of symbols

A Amplitude of sinusoidal function

ds Displacement vector

E Dimensional Young’s modulus

Es Non-dimensional elasticity modulus

Fv Body force vector

g Gravitational acceleration vector

L Cavity size

P Pressure

Pr Prandtl number

Ra Thermal Rayleigh vector
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Ra Thermal Rayleigh number

t Time

T Temperature

x,y Cartesian coordinates

u Velocity vector

w Moving coordinate velocity

Greek symbols

a Thermal diffusivity

b Thermal expansion coefficient

r Stress tensor

s Dimensionless time

m Kinematic viscosity

t Poisson’s ratio

q Density

qR Density ratio

Subscripts

c Cold

f Fluid

h Hot

P Partition

s Solid

Superscripts

* Dimensional parameters

1 Introduction

The importance of natural convection in industry and

engineering applications has produced abundant

developments and innovations that improved the

process efficiency. The convection inside enclosures

has received numerous investigations because of its

vast environmental and industrial applications. So, the

relevant literature manifests different designs of the

domain enclosing the natural convection process

[1–6], different cooling or heating arrangements

[7–10], different nanoparticles addition to improve

the thermal properties of regular liquids [11–15].

Alternatively, some applications require retarding the

natural convection process, so an external magnetic

field is applied upon electrically-conducting liquids

[16–18] to suppress the natural convection. Inserting

baffles or fins or even tilting the whole cavity are some

techniques followed in controlling the natural con-

vection inside clear or saturated porous cavities

[19–27]. Natural convection in cavities composed of

two different layers with impermeable interface has its

substantial area in industrial applications [28, 29]. It is

essential to consider the transient numerical solutions

to investigate the transient features of the coupled

thermal boundary layers adjacent to a partition that

splits a cavity [30], to simulate a time varying thermal

boundary conditions [31], or for the simulation of

fluid-structure interaction [32].

During the last two decades, various methods have

been considered to enhance the natural convection by

exciting the entire cavity or its boundary using an

external mechanical or electrical force. Hence, this

mechanism is unrestricted by the electrical or thermal

properties of the fluid. The analysis of such a problem

is classified as a moving boundary problem which is

encountered in many engineering applications and in

nature as well. A cooling fan-induced vibration in

electronic devices, biological micro-scale experi-

ments, mixing and sterling devices, and heat exchang-

ers are examples of these applications. The effects of

vertical vibration and gravity on the induced convec-

tion inside an enclosure were simulated by Fu and

Sheih [33, 34]. Kimoto and Ishidi [35] investigated the

vibration effects on the natural convection heat

transfer in a square enclosure. Fu et al. [36] reported

a remarkable increase in heat transfer associated with

laminar forced convection in a parallel-plate channel

including an oscillating block. Florio and Harnoy [37]

studied the enhancement of natural convection cooling

of discrete heat source in a vertical channel using a

vibrating plate. Convection in porous media undergo-

ing mechanical vibration is reported by Razi et al.

[38]. Chung and Vafai [39] investigated the vibra-

tional and buoyancy-induced convection in a vertical

porous channel with an open-ended top and a vibrating

left wall. Cheng et al. [40] proposed a novel approach

to enhance the convective heat transfer in a heat

exchanger by using the flow-induced vibration instead

of strictly avoiding it. D’Orazio et al. [41] performed

mixed convection in an inclined enclosure for the case

of an imposed non-zero heat flux.

In some applications, flexible boundaries oscillate

periodically resulting in a deformable domain. For

example, flow through a diaphragm pump, diaphragm

sensors, flow through elastic pipes as in arteries or

other blood vessels, moving pistons or sloshing of

fluids in elastic containers [42] are problems with

deformable domains. However, this type of problems
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is an interesting vehicle to mathematicians and those

whom delineated in computational fluid dynamics in

understanding the physics and flow characteristics. An

efficient numerical simulation technique that deals

with this time-dependent moving boundary problem is

the Arbitrary Lagrangian–Eulerian (ALE) approach. It

is a technique that discourses the drawbacks associ-

ated with the Lagrangian and Eulerian methods

individually. According to the ALE technique, the

mesh nodes of the computational domain may be

moved (according to the Lagrangian method), held

fixed (according to the Eulerian approach), or moved

in an arbitrary procedure. Details of this technique are

illustrated in the works of Hirt et al. [43], Hughes et al.

[44], and Donea et al. [45]. Fu and Huang [46] utilized

the ALE technique to investigate natural convection of

a heated plate in a vertical channel under vibrational

motion. One of their main conclusions was that for a

given Rayleigh number, natural convection for a

certain combination of frequency and amplitude was

possibly smaller than that of the stationary state.

A critical survey of natural convection inside a

cavity partitioned by a flexible impermeable mem-

brane has shown that no published works on this topic

exist. As such, the authors of this paper have found that

it is essential to discover the features of natural

convection in a cavity containing one or more fluids

separated by a thin flexible membrane. To make the

present study comprehensive, the inclination of the

whole cavity is considered. Moreover, the cavity is

equipped by two ports (eyelets) to compensate the

increase or decrease of fluid volume in both sides due

to the membrane deformation.

2 Problem description and mathematical

formulation

A schematic diagram of the cavity geometry under

investigation is shown in Fig. 1. The bottom wall of

the square cavity (x*-axis) makes an angle c with the

horizontal axis. The temperature is assumed to be

constant along the left wall and sinusoidal spatially-

varying on the right wall, whereas the top and bottom

horizontal walls are assumed thermally insulated.

Also, the sinusoidal distribution of temperature

expresses that the mean temperature is Tc
* along the

right sidewall. The cavity walls are stationary and it is

assumed that the no-slip boundary condition is

acceptable on them. The square cavity is divided into

two equal parts using a thin flexible membrane

perpendicular to the x*-axis. The thickness of the

flexible membrane is t*p and is considered to be

isotropic, uniform and dense. The temperature gradi-

ent and the energy storage are ignored in the mem-

brane because the membrane is very thin and has a

high thermal conductivity. All walls of the cavity as

well as the membrane are impermeable. Two eyelets

are embedded on the left and right sidewalls in order to

control the volume changes caused by the movement

of the flexible membrane in both parts.

The working fluid is assumed incompressible and

Newtonian and the fluid flow is considered to be

laminar and unsteady. The thermophysical properties

of the fluid are assumed constant except the density

variation in the body force term of the momentum

equation which is satisfied by the Boussinesq’s

approximation. The inclined cavity is under the

influence of the gravity field in the vertical direction.

Also, the viscous dissipation can be neglected com-

pared to the convection and conduction terms. The

body force exerted on the membrane is taken into

consideration in this study. This force includes the

effects of the weight of the membrane and the

buoyancy force of the fluid. Applying the mentioned

presumptions and using the Arbitrary Lagrangian–

Eulerian (ALE) technique, the governing equations for

the fluid flow and heat transfer consist of the balance

laws of mass, momentum and energy and can be

written as follows:

T*
=T

* c+A
(T* h-T* c)s
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π
y*
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Fig. 1 A schematic of the problem and coordinates system
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r� � u� ¼ 0 ð1Þ

ou�

ot
þ u� � w�ð Þ � r�u� ¼ � 1

qf
r�P� þ vfr�2u�

þ bg T� � T�
c

� �

ð2Þ

oT�

ot
þ u� � w�ð Þ:r�T� ¼ afr�2T� ð3Þ

Also, the structural displacement of the flexible

membrane is described using the following nonlinear

elasto-dynamic equation:

qs
d2d�

s

dt2
�r�r� ¼ F�

v ð4Þ

In these equations, u* is the fluid velocity field,

u* = (u*,v*), w* denotes the moving coordinate

system velocity, w* = (us
*,vs

*), P* is the fluid pressure,

T* is the fluid temperature, g is the acceleration vector.

r* is a dimensional gradient operator, ds
* is the

displacement vector of membrane such that dds
*/

dt = w*, r* is the solid stress tensor, Fv
* represents the

imposed body forces on the flexible membrane and

includes the components Fv
*cos c and Fv

*sin c along the
x*- and y*-axes, respectively. In both of the compo-

nents, Fv
* and c are the values of the body force vector

and inclination angle, respectively. It is clear that Fv
*,

the body force caused by the weight of the membrane

and the buoyancy force, is (qf–qs)g acting in the

vertical direction. qf and qs are the densities of the fluid
and the solid, respectively, mf and af are the kinematic

viscosity and thermal diffusivity of the fluid, respec-

tively and finally, b is the volumetric thermal expan-

sion coefficient.

As shown in Fig. 1, the velocity and thermal

boundary conditions imposed on the geometry are

On all walls of cavity u� ¼ v� ¼ 0

On the top and bottom walls of cavity
oT�

oy�
¼ 0

On the left wall of cavity T� ¼ T�
h

On the right wall of the cavity

T� ¼ T�
c þ A T�

h � T�
c

� �
sin 2p

y�

L

� �

ð5Þ

In the above equation, A is the amplitude of the

sinusoidal distribution of temperature. In Eq. (4), the

stress tensor can be defined using the Neo-Hookean

solid model. A Neo-Hookean solid is defined as a

hyper-elastic material model that can be employed for

describing the non-linear stress–strain behavior of

materials with large deformations. This model can be

expressed by the following equation:

r� ¼ J�1FSFT ð6Þ

In the aforementioned equation, F ¼ I þr�d�
s

� �
,

J = det(F), S = qWs/qe, and superscript T denotes the

transpose of the matrix F. Ws and e are the strain

energy density function and the strain, respectively

and can be expressed by the following equations:

Ws ¼
1

2
ll J

�1I1 � 3
� �

� ll ln Jð Þ þ 1

2
k ln Jð Þð Þ2 ð7Þ

e ¼ 1

2
r�d�

s þr�d�T
s þr�d�T

s r�d�
s

� �
ð8Þ

In Eq. (7), k and ll are separately referred to as the

Lame’s first and second parameters, respectively and

are evaluated by ll = E/(2(1 ? m)) and k = Em/
((1 ? m)(1 - 2m)). Also, I1 refers to the first invariant

of the right Cauchy–Green deformation tensor. Two

boundary conditions applied for simulation of the fluid–

solid interaction are the continuity of the kinematic

forces and the dynamic motions. The dimensional

fluid–solid interface boundary conditions for the fluid at

the flexiblemembrane surface can bewritten as follows:

od�
s

ot
¼ u� and r� � n ¼ �P� þ lfru� ð9Þ

Also, it is necessary to depict the conservation of

energy requirement for the flexible membrane. There-

fore, two control surfaces are placed on either side of

the flexible membrane. In this case, the energy

generation and storage are no longer relevant for as

much as the membrane is very thin and has a high

thermal conductivity. Finally, the conservation of

energy and continuity of temperature lead to the

following equations, respectively:

oT

on

�þ
¼ oT

on

��
and T�þ¼T�� ð10Þ

In the above equation, the positive and negative

superscripts refer to the right and left surfaces of

membrane wall, respectively. For the two eyelets

embedded on the walls perpendicular to the x*-axis,

the following equation is satisfied:
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�P� þ lru�½ � � n ¼ 0 ð11Þ

The dimensional governing Eqs. (1)–(4) are con-

verted into non-dimensional equations using the

following dimensionless parameters:

ds ¼
d�
s

L
; r ¼ r�

E
; s ¼ taf

L2
; ðx; yÞ x

�; y�

L
;

ð12aÞ

u ¼ u�L

af
; w ¼ w�L

af
; P¼ L2

qf a
2
f

P�; T ¼ T� � T�
c

T�
h � T�

c

ð12bÞ

r ¼ r�

1=L
; r ¼ r�2

1=L2
; tp ¼

t�p
L

ð12cÞ

Thus, in the dimensionless coordinate, the governing

equations are:

1

qR

d2ds

ds2
� Esrr ¼ EsFv ð13Þ

r � u ¼ 0 ð14Þ

ou

os
þ u � wð Þ � ru ¼ �rPþ Prr2u þ PrRaT

ð15Þ

oT

os
þ u � wð Þ � rT ¼ r2T ð16Þ

where

Ra ¼ gb Th � Tcð ÞL3
tf af

; Pr ¼ tf
af

; Es ¼
EL2

qf a
2
f

;

Fv ¼
qf � qs
� �

Lg

E
; qR ¼

qf
qs

ð17Þ

are the Rayleigh number vector, Prandtl number, non-

dimensional elasticitymodulus, non-dimensionless body

force vector and the density ratio number, respectively. It

is necessary to mention that the Rayleigh number vector

has two components; Ra sin c along the x-axis and Ra

cos c along the y-axis. In these components, Ra is the

value of the Rayleigh number vector and is called

Rayleigh number. Also,Fv has two components;Fv sin c
and Fv cos c along the x- and y-axes, respectively.

The boundary conditions imposed on the geometry

in the dimensionless coordinate are changed as follows:

On all walls of cavity u ¼ v ¼ 0

On the top and bottom walls of cavity
oT

oy
¼ 0

On the left wall of cavity T ¼ 1

On the right wall of the cavity T ¼ A sin 2pyð Þ

For the flexible membrane
oT

on

þ
¼ oT

on

�
and Tþ ¼ T�

ð18Þ

At time t = 0, the fluid is quiescent (u (x,y,0) = 0).

At this time, the temperatures of the fluid in the left and

right sub-cavities are the temperatures of the hot and

cold walls, respectively. In other words, the left sub-

cavity is initially at the uniform temperature Th while

the right-sub cavity is initially at the uniform temper-

ature Tc. The dimensionless boundary conditions for

the fluid–solid interface are

ods

os
¼ u and Esr � n ¼ �Pþ Prru ð19Þ

Finally, the dimensionless boundary conditions for

both of the eyelets are provided as follows:

�Pþ Prru½ � � n ¼ 0 ð20Þ

In order to estimate the heat transfer rate, the local

Nusselt number for the vertical walls is given as

Nulocal ¼ � oT

ox
ð21Þ

The average Nusselt number can be obtained by

integrating the local Nusselt number as follows:

Nuavg ¼
Z1

0

Nulocaldy ð22Þ

Eventually, in order to describe the fluid motion, it is

worthwhile to define another parameter namely, the

stream function w that can be expressed as follows:

u =
ow
oy

; v = � ow
ox

ð23Þ

3 Numerical solution and validations

3.1 Grid independency test

The dimensionless governing partial differential

Eqs. (13)–(16) subjected to the mentioned boundary
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conditions (18)–(20) are transformed into the weak

form and solved numerically by the Galerkin finite-

element method. The details of this method are

discussed in [47]. The Arbitrary Lagrangian–Eulerian

(ALE) approach is followed to interpret the moving

boundary originated by the flexible motion of the

impermeable membrane. The quadratic elements with

the Lagrangian shape function are used in the finite-

element method. The governing equations for the

continuity, momentum, solid structure and the heat

transfer are fully coupled by employing the damped

Newton method. Then, the Parallel Sparse Direct

Solver (PSDS) is utilized to solve the obtained

algebraic equations corresponding to the governing

equations.

The convergence criterion is based on the condition

that the residuals for the defined dependent variables

are below 10-6. The 2Dmesh that has been used in this

work is a non-uniform unstructured mesh. Prior to

starting the calculations, a grid-independence test has

been performed to ensure that the results do not

depend on the grid size. For this purpose, the average

Nusselt number history on the right wall (the wall with

the sinusoidal distribution of temperature) is evaluated

for several different grids at Ra = 107, c = 0, A = 1,

Es = 1014 and Fv = 1.64 9 10-2. As shown in

Fig. 1, the variations of the obtained results versus

the dimensionless time are congruent for the grid size

more than 37,029. Therefore, we have chosen to

continue the computing with the grid size of 37,209

(Fig. 2).

3.2 Numerical code verification

The accuracy of the numerical approach applied in the

present study has been assessed by comparing our

results with several test cases. The first test case is

unsteady natural convection in a square cavity that has

been divided into two equal parts using a vertical rigid

membrane. Figure 3 depicts the comparison of the

dimensionless temperature history obtained from the

current study with the results reported by Xu et al. [30]

at the specified point (0.0083, 0.375). The very good

agreement between both of the graphs confirms the

validity of our study. The second test case for

validation is an inclined square cavity with adiabatic

top and bottomwalls and constant temperature vertical

right wall. The temperature of the vertical left wall

varies in a sinusoidal fashion with time. Also, it is

assumed that the time-averaged temperature is the

same on the both of vertical walls. The results of the

present study and those obtained by Kalabin et al. [31]

are in an excellent agreement as show in Fig. 4.

In another test case, the accuracy of the results is

assessed by comparing the results of this study with

those of Cheong et al. [10] who performed a numerical

investigation on natural convection in an inclined

rectangular cavity with angle c and aspect ratio Ar

(Ar = height/width). In their study, the bottom and

τ

N
u av

g

10-4 10-3 10-2 10-1 100

0

2

4

6

8

10

5362
6805
8497
10058
16661
20809
23936
28825
33485
37029
40679

Grid size

Fig. 2 Grid independence test for Ra = 107, A = 1,

Fv = 1.64 9 10-2, Es = 1014 and c = 0

τ

T

10-1 100 101 102
-0.5

-0.4

-0.3

-0.2

-0.1

0

Xu et al. [30]
Present study

Fig. 3 Comparison of temperature variations versus dimen-

sionless time between the present results and those reported by

Xu et al. [30] for Ra = 9.2 9 108, Pr = 6.63 and tp = 10-4
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top walls of the cavity are adiabatic; a sinusoidal

temperature profile is imposed on the left wall and the

right wall is at a low constant temperature Tc. As can

be seen in Fig. 5, the results in terms of the average

Nusselt number on the left wall are highly consistent

with each other. The last validation compares the

deformation of a flexible wall of a lid-driven cavity in

the investigation examined by Küttler and Wall [32]

and the present study. As illustrated in Fig. 6, the

accuracy of the solution method is confirmed. In this

verification, the maximum difference between the

present result and that reported by Küttler and Wall

[32] is about 1% of the length of the membrane and it

occurs at x = 0.46.

4 Results and discussion

This section presents the numerical results obtained by

solving the problem under investigation. In this study,

the effects of the following variable parameters are

examined on the characteristics of the fluid flow and

heat transfer: the Rayleigh number (104 B Ra B 107),

the amplitude of sinusoidal function (0.0 B A B 1),

the inclination angle of cavity (-p/3 B c B p/3) and
the body force parameter (Fv = ± 1.64 9 10-2).

Whereas, the Prandtl number Pr and the non-dimen-

sional elasticity modulus Es are kept fixed at 6.2 and

1014, respectively.

Figures 7 and 8 depict the contours of the stream-

lines and isotherms for several time steps until

reaching the steady-state condition. At the time step

of s = 10-8, due to the very low streamlines density

and also, the distribution of the streamlines, it can be

seen that the velocity of the fluid is zero. Entrance and

ventilation of the fluid from the embedded eyelets

creates secondary vortices in the upper corners of the

τ

N
u av

e

0.8 0.9 1 1.1 1.2

-2

0

2

4

Present study
Kalabin et al. [31]

γ=36

γ=89

γ=0

Fig. 4 Variations of the average Nusselt number versus

dimensionless time for the present results and those reported

by Kalabin et al. [31] for various values of c = 0�, c = 36�,
c = 89� at Ra/Pr = 2 9 105

γ

N
u av

g

0 10 20 30 40 50 60 70 80 90

2

4

6

8

10
Cheong et al. [10]
Present study
Cheong et al. [10]
Present study
Cheong et al. [10]
Present study
Cheong et al. [10]
Present study

Ra=106

Ra=105

Ra=104Ra=103

Fig. 5 Comparison of the average Nusselt number obtained in

the present study and those reported by Cheong et al. [10] for

Ar = 1, Pr = 0.71, 103 B Ra B 106 and 0� B c B 90�

x

y

0 0.5 10

0.5

1

Küttler and Wall [32]
Present study

Fig. 6 The deformation of the flexible bottom wall of the lid-

driven cavity perused by Küttler and Wall [32] and the present

study at t = 7.5 s

Meccanica (2017) 52:2685–2703 2691

123



= 10-8 5×10-5 10-4 5×10-4

10-3 5×10-3 10-2 10-1

Fig. 7 Streamlines at various dimensionless times for A = 0.5, Fm = -1.64 9 10-2, Ra = 107, c = p/3

= 10-8 5×10-5 10-4 5×10-4

10-3 5×10-3 10-2 10-1

Fig. 8 Isotherms for various dimensionless times for A = 0.5, Fm = -1.64 9 10-2, Ra = 107, c = p/3
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cavity. The negative and positive signs of the stream

function indicate that the fluid flow circulates in the

clockwise and counter-clockwise directions, respec-

tively. Therefore, it is clear that the secondary vortices

created in the vicinity of the eyelets circulate in a

direction opposite to the circulation of the primary

circulations.

The fluid flow tends to enter the right sub-cavity as

the flexible membrane moves to the left side. At the

same time, some of the fluid exactly equals to the fluid

incoming from the right sub-cavity comes out from the

left sub-cavity. Finally, the entrance and ventilation of

the fluid from the eyelets result in the increase and

decrease of the volumes of the right and left sub-

cavities, respectively. As is shown in Fig. 8, at

s = 10-8, the cavity is divided into two isothermal

regions. With time evolution, the heat transfer starts

from areas very close to the membrane and the right-

hand wall. At these stages, heat transfer occurs by the

thermal conduction predominantly. Then, the advec-

tion heat transfer dominates as the thermal mixing of

the fluid increases.

Generally, it can be said that there are two types of

forces applied to the membrane. As explained earlier,

one force is produced by gravity and buoyancy which

is called the static force or the body force Fv. The other

force is applied to the membrane causing the fluid

motion and pressure distribution and is called the

dynamic force. The resultant of these two forces

determines the final shape of the flexible membrane.

Here, we have examined the effect of the body force

parameter on the final shape of the membrane at low

and high Rayleigh numbers 104 and 107, respectively.

For this scrutiny, two values for the body force Fv

(± 1.64 9 10-2) are considered whereas c and A are

kept fixed at -p/6 and 0.50, respectively.

According to the relationship listed for Fv in

Eq. (17), it is obvious that Fv is greater than zero

Ra = 104 Ra = 107 Ra = 104                                        Ra = 107

(I) Fv = -1.64×10-2 (II) Fv = +1.64×10-2

Ra = 104                                  Ra = 107    Ra = 104                                            Ra = 107

(I) Fv = -1.64×10-2 (II) Fv = +1.64×10-2

(a)

(b)

Fig. 9 The effects of body force (I): -1.64 9 10-2 and (II): ?1.64 9 10-2 on the final shape of membrne, countors of streamlines

(a) and isotherms (b)
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Fig. 10 Streamlines (left)

and isotherms (right) for

inclination angles c of a -p/
3, b -p/6, c 0.0, d p/6, and
e p/3 for Ra = 107,

Fv = 1.64 9 10-2, A = 1
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when the density of the fluid is higher than the density

of the membrane. Similarly, an opposite state exists

for Fv less than zero. The results shown in Fig. 9

demonstrate the effects of the body force applied to the

flexible membrane Fv on the countors of the stream-

lines and the isotherms and most importantly, the final

shape of the membrane. As it can be seen, in the case

of Fv = -1.64 9 10-2 (indicated by I), the men-

tioned two forces contradict with each other. For this

reason, the final shape of the membrane is defined

based on the larger force. Because at the Rayleigh

number of 104, the flow circulation manifests low

strength, the body force Fv is dominant against the

dynamic force caused by the distribution of the fluid

flow. Therefore, the membrane deformation is con-

cave upward, or in accordance with Fig. 9, it is to the

left direction. In contrast, when the Rayleigh number

is 107, the strength of the fluid flow is very high and the

dynamic force due to the velocity and the pressure

distributions overcome the body force Fv, the results

presented in Fig. 9a-I, b-II confirm our attribution.

Both the dynamic and body forces are aligned and

have the same direction in the case of

Fv = 1.64 9 10-2. In such a case, it is obvious that

the membrane moves upward. Also, it can be seen that

for Fv = 1.64 9 10-2 and at the Rayleigh number of

107, the streamlines are very similar to those in

Fv = -1.64 9 10-2. However, the streamlines asso-

ciated with the Rayleigh number of 104 are somewhat

different for both positive and negative body force Fv

values.

Figure 10 presents the effect of varying the incli-

nation angle of the cavity on the isotherms and

streamlines for Ra = 107, Fv = 1.64 9 10-2, A = 1.

It should be noted that these contours are for steady

state. It can be observed that the isotherms and

streamlines at different inclination angles of the cavity

are very dissimilar. As shown, the strength of the fluid

flow |w|max increases with the change of the cavity

angle from –p/3 to p/3 in both partitions. The counter-
clockwise vortex area formed in the right partition

diminishes and moves upward with revolving the

cavity from –p/3–0. Then, this vortex is shifted to the

upper right-hand corner of the enclosure for c = p/6.
As mentioned earlier, the Rayleigh number vector Ra

has two components, Ra sin c and Ra cos c along the

x and y axes, respectively. Ra cos c is the component

that causes the fluid to rise along the hot wall (or the

flexible membrane) and then to come down along the

membrane (or the wall with sinusoidal temperature) in

the left side sub-cavity (or right side sub-cavity).

However, if c[ 0 (right lateral inclination), the

Fig. 10 continued
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Fig. 11 Effect of inclination angle of cavity on the final shape

of the flexible membrane for Ra = 107, Fv = 1.64 9 10-2,

A = 1
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component Ra sin c, is from the hot left wall (or

flexible membrane) to the membrane (or the wall with

sinusoidal temperature), and as a result, it improves

the natural convection (motion) of the fluid. On the

contrary, in the case where the inclination is to left

lateral (c\ 0), this component is from the wall with

sinusoidal temperature (the flexible membrane) to

membrane (the hot wall), and hence it acts against the

typical motion of the fluid as a drag force. The

contours of isotherms display that the non-uniformity

in the membrane temperature is too high for c = -p/3
and decreases with increasing values of the inclination

angle of the cavity from –p/3 to p/3. The thermal

mixing of the fluid gets better due to increasing the

strength of the fluid flow as the inclination angle varies

from -p/3 to p/3 and consequently, the isotherms are

more distorted.

In order to make better imagination of the defor-

mations of the flexible membrane of Fig. 10, we have

collected all those together in Fig. 11. As shown, the

deformation of the membrane is the same for

inclination angles c = -p/3 and c = -p/6. The

resultant of the body force Fv and the dyanmic force

are consistent with each other causing such deforma-

tions. The membrane deviation from a straight-line

shape decreases when the cavity is vertical. This can

be attributed to the fact that the body force Fv does not

have a signifcant effect on the membrane deflection. It

is observed also that the concavity deformation of the

membrane is changed when the cavity rotates in the

counter-clockwise (c = p/3 and c = p/6) direction.

This behavior demonstrates that the body force Fv is

dominant against the dynamic force applied to the

membrane.

Figure 12a, b depicts the variations of the average

Nusselt number on the hot wall and the average

temperature inside the whole cavity with the dimen-

sionless time for five different inclination angles of the

cavity between c = -p/3 and c = p/3 at Ra = 107,

Fv = 1.64 9 10-2, A = 1. As seen, at the initial

stages of natural convection, the average Nusselt

number at the hot wall is exactly zero for all
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Fig. 12 Variations of average Nusselt number on the hot wall (a) and the average temperature (b) versus the dimentionless time for

different inclination angles of cavity at A = 1, Fv = 1.64 9 10-2, Ra = 107

Table 1 The effectof c on rm and rSS

c -p/3 -p/6 0.0 p/6 p/3

rm 8.82E?12 8.30E?12 7.45E?12 7.08E?12 5.04E?12

rSS 8.82E?12 6.89E?12 4.90E?12 3.85E?12 4.23E?12
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Fig. 13 Streamlines (left)

and isotherms (right) for

a A = 0, b A = 0.25,

c A = 0.5, d A = 0.75, and

e A = 1 at Ra = 106,

Fv = -1.64 9 10-2,

c = -p/6
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inclination angles of the cavity. This is due to the fact

that there is no convected fluid during these stages.

The average Nusselt number overshoots for clockwise

cavities (c = -p/6 and –p/3) before reaching the

steady-state condition. It can be seen also that the heat

transfer rate rises as the inclination angle changes from

–p/3 to p/6, and afterwards, it decreases when c
reaches p/3. The variations of the dimensionless

temperature with time, shown in Fig. 12b, illustrates

that the average temperature inside the whole cavity is

exactly 0.5 for the initial stages. This result adapts with

the initial conditions defined by us. For the clockwise

tilted caviteis (c = -p/3 and c = -p/6), a slight drop
can be seen at s = 4 9 10-3, afterwards, the temper-

ature rises over time until it reaches the constant

values of 0.712 and 0.533 at c = -p/3 and c = -p/6,

respectively. Also, the results indicate that for a non-

inclined (c = 0.0) and anti-clockwise (c = p/3 and

c = p/6) cavites, the mean temperature decreases and

this process continues until reaching the constant

values.

Table 1 includes the maximum stress (rm) at all

times and the stress at the steady state (rSS) for various
inlication angles of the cavity at A = 1,

Fv = -1.64 9 10-2, Ra = 107. rm is reduced with

changing of the inclination angle from -p/3 until p/3.
This procedure is also seen for rSS except in c = p/3.
As it is seen, rSS decreases with revolving the cavity

from -p/3 to p/6, then, it increases at p/3.
Figure 13 illustrates the influence of varying the

amplitude of the sinusoidal function of temperature

A on the contours of the streamlines and the isotherms,

Fig. 13 continued
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Fig. 14 Variations of the average Nusselt number on the hot wall (a) and the average temperature (b) versus the dimentionless time for

different values of A at c = -p/6, Fv = -1.64 9 10-2, Ra = 106
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whereas Ra, c and Fv are kept fixed at 106, -p/6 and

-1.64 9 10-2, respectively. As is seen from Fig. 13,

the vortex localized in the right sub-cavity breaks up

into two vortices as A increases from 0 to 0.25. On the

left sub-cavity, the pattern of the streamlines remains

constant while the vortex weakens. Then, rising the

amplitude from 0.25 to 0.5 makes a small counter-

clockwise vortex that is created in the vicinity of the

right wall and particularly in the middle of the right

sub-cavity. Afterwards, the domain occupied by a

counter-clockwise vortex in the right sub-cavity is

developed with the increase of the amplitude so that

three completely separate vortices can be observed

clearly for A = 1. Also, it should be said that the

strength of the vortex |w|max formed in the left sub-

cavity slightly decreases as the amplitude of the

sinusoidal distribution of the temperature augments

until A = 1. Whilst the trend is slightly different in the

other sub-cavity. In the right sub-cavity, first, the

strength of the vortex |w|max is reduced until A = 0.75,

then grows for A = 1.0.

The results indicated in Fig. 14a state that the heat

transfer rate is approximately equal for all amplitudes

of the sinusoidal function of the temperature in the

initial stages of natural convection defined with

(I) range. It is evident that the Nusselt number, as

representation of the heat transfer, reduces with the

increase of the amplitude. This can be attributed to the

fact that a local mometum exhange takes place close to

the right wall due to the relatively high temperature

difference. This weakens the fluid flow in the sub-

cavity adjacent to the hot wall. The ifluence of the

amplitude on the mean temperature versus the dimen-

sionless time is depicted in Fig. 14b.

The amplitude of the temperature slightly affects

the deflection of the membrane as shown in Fig. 15.

This figure shows that an increase of A can increase the

membrane deviation.

The parameters used in plotting Fig. 14 are adopted

for demonstrating the effect of the amplitude of the

sinusoidal temperature on rm and rSS as presented in

Table 2.

The effects of the Rayleigh number on the contours

of the streamlines and isotherms are presented in

Fig. 16 for A = 1, Fv = -1.64 9 10-2, c = p/3. At
the low Rayleigh number of 104, the streamlines are on

a regular basis and smooth so that the streamlines close

to the center of the vortex formed in the right sub-

cavity are almost a circle. As the Rayleigh number

increases, both primary vortices are stretched until the

vortex in the left sub-cavity breaks up into two vortices

at 106. It is also clear that the centers of the primary

vortices shift towards the walls as the Rayleigh

number increases. However, the strengths of the

primary vortices and the secondary vortex formed in

the upper right corner of the cavity increase with the

increase of the Rayleigh number. The reason is that the

buoyancy force acting on the flow field increases as Ra

increases. The form of the isotherms depicted in

Fig. 16 indicates how predominant mechanisms of

heat transfer change with the increase of the Rayleigh

number. At the low Rayleigh number of 104, the
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Fig. 15 Effect of the amplitude of the sinusoidal distribution of

the temperature on the final shape of the flexible membrane at

c = -p/6, Fv = -1.64 9 10-2, Ra = 106

Table 2 The effect of A on rm and rSS

A 0 0.25 0.5 0.75 1.0

rm 5.34E?12 3.37E?12 3.32E?12 3.05E?12 3.31E?12

rSS 3.03E?12 3.04E?12 3.04E?12 3.05E?12 3.05E?12

Meccanica (2017) 52:2685–2703 2699

123



Fig. 16 Streamlines (left)

and isotherms (right) for

a Ra = 104, b Ra = 105,

c Ra = 106, and d Ra = 107

at A = 1,

Fv = -1.64 9 10-2,

c = p/3
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vertical isotherms state that the predominant mecha-

nism of heat transfer is conduction. Increasing the

Rayleigh number makes the impact of conduction heat

transfer dwindles compared to advection heat transfer.

This is due to the fact that the thermal mixing of the

fluid increases with the Rayleigh number.

The influence of Ra on the final shape of the

membrane is depicted in Fig. 17. As a whole, the

membrane deviation increases noticeably with the

increase of Ra. In fact, the fluid–structure interaction

increases with Ra.

Figure 18a, b demonstrates the influence of the

Rayleigh number on the mean Nusselt number and the

mean temperature inside the whole cavity according to

the dimensionless time. There is a certain trend for

both the heat transfer rate and the mean temperature

with increasing values of Ra. The increase of Ra

causes a rapid increase in Nuav and a rapid decrease in

T.

The maximum transient and steady stresses in the

flexible membrane for the different Rayleigh numbers

at A = 1, Fv = -1.64 9 10-2, c = p/3 are presented
in Table 3. When the Rayleigh number increases, the

stress in the flexible number becomes forcible. This is

due to the fact that increasing the Rayleigh number

increases the strength of the fluid flow and accord-

ingly, the interaction between the fluid and the flexible

membrane augments. A comparison between the

maximum stress and tension at the steady-state
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Fig. 17 Effect of Rayleigh number on the final shape of the

flexible membrane at A = 1, Fv = -1.64 9 10-2, c = p/3
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Fig. 18 Variations of the average Nusselt number on the hot wall (a) and the average temperature (b) versus the dimentionless time for

the different Rayleigh numbers at A = 1, Fv = -1.64 9 10-2, c = p/3

Table 3 The effect of Ra on rm and rSS

Ra 104 105 106 107

rm 4.75E?12 4.76E?12 4.99E?12 8.28E?12

rSS 4.75E?12 4.76E?12 4.99E?12 8.28E?12
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conditions shows that the maximum stress occurs at

the steady state.

5 Conclusions

Unsteady natural convection inside an inclined square

cavity partitioned by a flexible impermeable mem-

brane is studied numerically using the Arbitrary

Lagrangian–Eulerian (ALE) approach. The cavity

bottom and top walls are kept adiabatic. The left side

wall is kept isothermal at a high temperature, while the

right wall is cooled in a sinusoidal fashion. The results

have led to the following concluding remarks:

1. With time evolution, there is a continuous defor-

mation of the flexible membrane before it reaches

its final configuration at steady state.

2. In the case of a low Rayleigh number, the shape of

the memberahne is under a significant influence of

the body force Fv. However, as the Rayleigh

number increases, the interaction between the

fluid and the membrane gets important. Hence, in

the case of high values of the Rayleigh number,

the body force is not significant compared to the

fluid and membrabne interaction forces. Thus, the

shape of the membrane is mainly a function of the

flow patterns and interaction between the fluid and

the membrane.

3. The contours of the isotherms display that the

non-uniformity in the membrane temperature is

too high for c = -p/3 and decreases with

increasing values of the inclination angle of the

cavity from -p/3 to p/3.
4. The natural convection is appreciably affected by

the tilting angle of the cavity, and as such, the

concave or convex fashion of the membrane is

appreciably affected by the cavity tilting angle.

5. The effect of the sinusoidal distribution amplitude

of the cold temperature on the membrane defor-

mation is found to be small in the simulations.

Whereas, the Rayleigh number manifests notice-

able deformation of the membrane.

6. The maximum convective heat transfer is attained

with the counter-clockwise cavity inclination i.e.

at c[ 0, and particularly at c = p/6�. On the

other hand, the convective heat transfer is a

decreasing function of the sinusoidal distribution

amplitude of the cold temperature.
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