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Abstract A new general approach for the limit

analysis of out-of-plane loaded masonry walls based

on an upper bound formulation is presented. A given

masonry wall of generic form presenting openings of

arbitrary shape is described through its Non-Uniform

Rational B-Spline (NURBS) representation in the

three-dimensional Euclidean space. A lattice of nodes

is defined in the parameters space together with

possible fracture lines. An initial set of rigid elements

initially subdividing the original wall geometry is

identified accordingly. A homogenized upper bound

limit analysis formulation, which takes into account

the main characteristics of masonry material such as

very low resistance in traction and anisotropic behav-

ior is deduced. Moreover the effect of vertical loads

and membrane stresses is considered, assuming

internal dissipation allowed exclusively along element

edges. A number of technically meaningful examples

prove that a good estimate of the collapse load

multiplier is obtained, provided that the initial net of

yield lines is suitably adjusted by means of a meta-

heuristic approach (i.e. a Genetic Algorithm, GA) in

order to enforce that element edges accurately repre-

sent the actual failure mechanism.

Keywords Limit analysis � Masonry � Masonry

walls � NURBS

1 Introduction

Unreinforced masonry structures account for a signif-

icant amount of the building stock in many countries

around the world. In particular, masonry walls are

widely employed both as principal members in

masonry structures and as non-structural components

(e.g. infill panels in framed structures and internal

partitions). It is worth noting that masonry walls are

often subjected simultaneously to in-plane compres-

sive vertical loads (i.e. self-weight and other perma-

nent loads) as well as out-of-plane actions. In

particular, vertical loads increase both the ultimate

out-of-plane strength and structural ductility, bringing

additional complexity to the structural analysis

problem.

The assessment of the ultimate load bearing

capacity of out-of-plane loaded masonry walls is a
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relevant issue for all professionals involved in the

structural analysis and design of new and existing

constructions. As witnessed by recent violent seismic

events occurred, for instance, in Italy (Abruzzo 2008;

Emilia 2012; Lazio 2016), out-of-plane failures are

mostly related to earthquake loads and the lack of out-

of-plane strength is one of the primary factors causing

failure in different types of masonry constructions,

particularly in the case of historical buildings (see for

instance [1–3]).

Experimental tests carried out since the 70’s on

laterally loaded brick masonry walls, have shown that

failure occurs along a well-defined pattern of lines (see

e.g. De Felice [4], Gazzola et al. [5]). This evidence

inspired approximate analytical solutions based on

both the fracture line theory [6] and the yield line

theory [7, 8], which in fact can be considered an

application of the kinematic theorem of limit analysis.

Moreover, the current Italian norms [9, 10] explicitly

require examining these local collapse modes and

suggest limit analysis as a verification tool.

Despite approximations and the awareness that

masonry does not behave as a rigid-plastic material,

limit analysis is, indeed, a highly reliable tool to assess

the ultimate load bearing capacity of masonry walls. In

the past decades, due to its simplicity and the usually

very limited number of parameters required, limit

analysis has been largely employed for evaluating the

failure modes and ultimate bearing capacity of planar

masonry structures, both in-plane and out of plane

loaded.

Based on the assumption (after Heyman [11]) that

masonry behaves as a no-tension material, a number of

Italian scientists (the so called Italian School: among

others, Di Pasquale [12],Angelillo [13], Del Piero [14],

Como [15]) have shown that the ultimate load-carrying

capacity of masonry structures can be assessed within

the framework of the limit analysis according to the

principles of plasticity theory. More precisely, it has

been shown that it is possible to estimate lower (static

theorem) and upper (kinematic theorem) bounds for

the collapse load, in presence of suitable admissible

stress and strain fields (see Del Piero [14]).

However, the no-tension model does not take into

account a number of mechanical features of masonry

i.e.:

1. Masonry is clearly a heterogeneous composite

material (made by clay bricks or stone blocks and

mortar) and, according to experimental evidence,

it exhibits a non-isotropic behavior both in the

elastic field and at failure [16].

2. Masonry tensile strength, very low but not null, is

quite variable and uncertain; usually the crisis

occurs at the interface between bricks and mortar.

Moreover, the infinite compression strength

assumption is questionable, and also Heyman

[17], among many others, suggested a method to

take this fact into account. Nevertheless, brittle

crushing phenomena have actually a minor

importance in the response of out-of-plane loaded

masonry structures.

3. According to experiments [18], friction coeffi-

cient l for masonry is relatively high (for

historical masonry l varies from 0.4 to 0.6). As

a consequence, normality condition is violated

(i.e. a non-associative flow rule must be defined)

and, therefore, limit analysis theorems do not hold

anymore [19–21]. Assuming an associative flow

rule gives rise to dilatancy, whose effects, how-

ever, appear in many cases negligible.

4. Finally, no-tension material model gives rise to

more complex computational formulations. For

instance, compatibility conditions, which are

related to the existence of statically admissible

stress fields and kinematically admissible dis-

placement fields, are not trivial to verify.

For these reasons, computational methods for the

structural assessment of laterally loaded masonry

walls have been proposed in literature, which are not

based on the no-tension model. Among these, we can

cite number of Finite Element methods (FEM) applied

to homogenized limit analysis [22, 23], classic rigid

blocks models [24–26], the Discrete Element Method

(DEM) [27, 28], the Non-Smooth Contact Dynamics

(NSCD) method [29, 30] and combined FEM/DEM

methods [31]. Many of these methods are often

computationally expensive, their practical application

requires skilled users and, in some cases, the definition

of a yield line pattern, which is a priori unknown.

The present paper deals with a new adaptive

NURBS-based approach to homogenized upper-

bound limit analysis of out-of-plane loaded masonry

walls, modeled as a rigid block assembly, where

dissipation is allowed only along elements edges. The

approach allows to quickly detecting the failure

mechanism for a wall of arbitrary geometry having
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holes of general shape. Both in- and out-of-plane

homogenized failure mechanical parameters are

obtained making use of homogenization concepts,

once that a suitable elementary cell is chosen.

NURBS (i.e. Non-Rational Uniform Bi-Spline) are

special approximating base functions widely used in

the field of 3D modeling [32] for their ability of

approximating the actual geometry in an extremely

accurate way. Recently, some of the Authors have

introduced the idea of using NURBS functions as the

basis for the limit analysis of masonry arches and

vaults [33–38]. To be more specific, an arbitrary

masonry wall, with arbitrarily shaped holes, can be

described by a NURBS representation of its mid-

surface, which can be generated within any commer-

cial free form modeler, together with information

about the local thickness at each point of the surface.

By a suitable algorithm, a mesh of the given surface,

usually composed of a relatively small number of

elements but still providing an exact representation of

the original surface, can be obtained. Each element of

the mesh is a NURBS surface itself and is idealized as

a rigid body. Starting from the obtained rigid bodies

assembly, an upper bound limit analysis problem with

very few optimization variables can be devised, in

which dissipation is allowed along element edges

only. The main aspects of masonry material (i.e.

negligible tensile strength, good compressive strength

and orthotropy at failure due to bricks arrangement)

are taken into account through an homogenization

approach based on the Method of Cells, described in

[35].

Due to the very limited number of rigid elements

used, the quality of the failure mechanism so found

depends on the shape and position of the interfaces,

where dissipation is allowed. Mesh adjustments are

therefore needed, but the utilization of Sequential

Linear Programming [39] (which would be really

cumbersome) can be here easily circumvented by

adopting a simple meta-heuristic approach of mesh

adjustment (i.e. a Genetic Algorithm GA equipped

with non standard optimization tools, see [40]).

In the GA-NURBS approach proposed, each indi-

vidual of a given population is represented by a

possible rigid body mesh. For small-to-medium pop-

ulations, each iteration requires the solution of a

Linear Programming (LP) problem for each individ-

ual. Thanks to the extremely reduced number of

NURBS elements used in the discretization (and hence

the number of variables of the LP problem), the

computational effort required at each iteration is

almost negligible.

The advantage of the proposed procedure with

respect to existing methods lies in its capability to

exploit a NURBS representation of a masonry panel of

arbitrary shape in order to define a very coarse but still

exact rigid block assembly, which is iteratively

adjusted by means of a suitable GA until the element

edges accurately approximate the actual failure mech-

anism. The knowledge of the actual failure mechanism

is not required in advance (differently from many

commercial software packages, see e.g. Mc4 Software

[41]), and yet, by working with very few elements, it is

possible to reduce the number of variables governing

the problem and obtain a fast evaluation of the

solution.

Furthermore, since NURBS represent a standard in

the field of 3D modeling, the proposed method could

easily be integrated within existing commercial CAD

software packages, which are popular in the commu-

nity of practitioners, thus allowing for the diffusion of

safety assessment of masonry walls through kinematic

limit analysis among a broad professional audience.

The paper is organized as follows: in Sect. 2 a

synthetic survey is given about how the geometric

shape of a masonry wall can be described by a NURBS

representation and a coarse NURBS mesh can be

defined on it, even in presence of openings of arbitrary

shape. In Sect. 3, the upper bound limit analysis

formulation with NURBS rigid elements and inter-

faces is proposed, based on the NURBS geometric

representation of the masonry wall, which allows to

compute the collapse load for a set of given failure

mechanisms. Here a brief review of the homogeniza-

tion approach used to estimate homogenized failure

surfaces is also provided. Section 4 outlines the

Genetic Algorithm strategy, which is capable of

selecting the correct failure mechanism, by adequately

adjusting the initial mesh. Finally, Sect. 5 is devoted

to present a number of numerical simulation on real

structural examples.

2 Rigid block assembly generation

An assigned masonry wall, possibly with openings,

can be modeled within any free form 3D modeler

using NURBS surfaces and a rigid block assembly can
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be defined on it. NURBS basis functions are built on

B-splines basis functions, which are piecewise poly-

nomial functions defined by a sequence of coordinates

N ¼ fn1; n2; . . .; nnþpþ1g, also known as the knot

vector, where the so-called knots, ni 2 ½0; 1�, are

points in a parametric domain, in which p and n

denote the polynomial order and the total number of

basis functions, respectively. The i-th B-spline basis

function, Ni,p, can be computed by means of the Cox-

de Boor recursion formula [32]. Given a set of

weights,wi 2 R, the NURBS basis functions, Ri,p, is

given by the following expression:

Ri;pðnÞ ¼
Ni;pðnÞwiPn
i¼1 Ni;pðnÞwi

: ð1Þ

NURBS share many properties with B-spline basis

functions. However, NURBS basis functions have the

great advantage of representing exactly the geometry

of a wide set of curves such as circles, ellipses, and

parabolas [32], and of the surfaces that can be

generated by these curves. Geometries that can be

generated with B-spline and NURBS are obtained as

linear combinations of basis functions [32]. If one

considers a set of NURBS basis functions Ri,p, a

NURBS curve of degree p is a parametric curve in the

three-dimensional Euclidean space defined as

CðuÞ ¼
Xn

i¼1

Ri;pðnÞBi ð2Þ

where coefficients Bi 2 R3 are known as control

points. Analogously, a NURBS surface of degree p in

the u-direction and q in the v-direction is a parametric

surface in the three-dimensional Euclidean space

defined as

Sðu; vÞ ¼
Xn

i¼0

Xm

j¼0

Ri;jðu; vÞBi;j ð3Þ

where fBijg form a bidirectional net of control points.

A set of weights {wi,j}and two separate knot vectors in

both u and v directions must be defined. Given a

NURBS surface Sðu; vÞ, isoparametric curves on the

surface can be defined by fixing one parameter in the

parameter space and letting the other vary. By fixing

u = u0 the isoparametric curve Sðu0; vÞ is defined on

the surface S, whereas by fixing v = v0 the isopara-

metric curve Sðu; v0Þ is obtained. Many commercial

free form surface modelers, such as Rhinoceros� [42],

utilize NURBS representation and its properties to

generate and manipulate surfaces in the three-dimen-

sional space. In the numerical simulations contained in

Sect. 5, masonry walls have been modeled within

Rhinoceros as NURBS surfaces and the resulting

NURBS structure have been imported within a

MATLAB� environment through the IGES (Initial

Graphics Exchange Specification) standard [43]. Once

the NURBS structure created within Rhinoceros� has

been transferred to the MATLAB� environment, it is

possible to manipulate it by exploiting NURBS

properties in order to define a NURBS mesh of the

masonry mid-surface, in which each element is a

NURBS (planar) surface itself. We will consider each

of these elements as a rigid block, so that the

geometrical mesh described on the surface defines

actually an assembly of rigid blocks. Furthermore, it is

possible to model wall thickness at each interface

between elements by offsetting the original interface

inward and outward through a translation in the

direction normal to the NURBS surface. Assigned a

given masonry wall, its NURBS representation Sw has

a counter-image Iw in the two-dimensional parameters

space u–v defined by the square [0, 1] 9 [0, 1]. In

general, the counter-image domain Iw is delimited by

boundary NURBS curves, which are directly defined

in the parameters space and whose definition is

suitably stored within the IGES format. Typically,

the easiest way to generate a NURBS mesh on a given

planar surface describing a wall is to subdivide the

two-dimensional parameters space u–v, by subdivid-

ing the knot vectors in both u and v directions into

assigned fixed intervals.

The resulting mesh is therefore defined by the

corresponding isoparametric curves. Each element of

the mesh is a NURBS surface itself and its edges are

branches of isoparametric curves belonging to the

initial surface. Moreover this subdivision defines a

lattice in the parameters space, whose elements are the

nodes of the mesh.

Figure 1a represents an example of a Rhino 3D

NURBS model of a simple plain masonry wall.

Figure 1b represents the corresponding counter-image

Iw in the parameters space, which in this case coincides

with the parameters-space [0, 1] 9 [0, 1] itself. Fig-

ure 1c, d represent two possible subdivisions of the

parameters space into four elements obtained within a

MATLAB� environment after exporting the original

NURBS structure through the IGES standard. The
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subdivision is obtained by creating a lattice of nodes in

the parameters space, starting from the definition of a

number of isoparametric curves, which identify a

given number of quadrilateral elements. In particular,

it is possible to transition from the subdivision

depicted in Fig. 1c to the one depicted in Fig. 1d by

controlling the position of the central node. In the

proposed procedure this process will be governed by a

Genetic Algorithm (see Sect. 4 for more details).

For our purposes, the number of nodes will always

be limited since it has been observed that masonry

walls tend to show a limited number of yield lines

upon failure [4]. This circumstance allow for a very

limited number of parameters governing the problem

and, therefore, a very small computation time.

In addition, a suitable algorithm must be devised in

order to deal with walls having openings of general

shapes. This algorithm is graphically illustrated in

Fig. 2 for a façade wall with two holes of different and

non-trivial shapes. The 3D NURBSmodel of the panel

is depicted in Fig. 2a whereas its counter-image Iw in

the parameters space [0, 1] 9 [0, 1] is shown in

Fig. 2b.

A first lattice subdivision of the whole square

parameters space [0, 1] 9 [0, 1] is carried out, as

shown in Fig. 2c, independently from the topology of

the actual counter-image domain Iw (step one).

Afterwards, the nodes of the lattice, which happen to

be placed outside the actual counter-image of the

original surface, are translated onto the nearest

boundary curve of the counter-image domain Iw
following rectilinear trajectories parallel to main axes

u–v, as shown in Fig. 2d (step two). Again, it is

possible to adjust the subdivision of the counter-image

domain Iw by controlling the position of nodes on step

one and in the proposed GA-NURBS approach this

process will be governed by a Genetic Algorithm. As

previously pointed out, the image of each element in

the parameters space is an element of the assembly,

which is a NURBS surface itself.

The union of every element of the chosen assembly

is equal to the original surface, no matter how coarse

the mesh is. For each element of the assembly, Ei, be

Ki its counter-image in the two-dimensional parame-

ters space u–v the quadrangular domain. Therefore,

the area of the surface can be computed through the

following relation:

Fig. 1 a NURBS model of an assigned masonry wall.

b Corresponding counter-image Iw in the parameters space u–

v. c Initial parameters space subdivision into four rectangular

elements. d GA-modified parameters space subdivision into

four generic quadrilateral elements

Fig. 2 a NURBS model of an arbitrary masonry wall with

holes. b Corresponding counter-image Iw in the parameters

space u–v. c Initial counter-image Iw subdivision: step one.

d Initial counter-image Iw subdivision: step two. e GA-modified

parameters space subdivision: step one. f GA-modified param-

eters space subdivision: step two
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Ai ¼
ZZ

Ei

dS ¼
ZZ

Ki

Su � Svk k du dv ð4Þ

where Su and Sv are partial derivatives of the

parametric surface Sðu; vÞ in the u and v directions.

Analogously, the center of mass of each element may

be computed with the following relation:

c ¼ 1

Ai

ZZ

Ei

x dS ¼
ZZ

Ki

Sðu; vÞ Su � Svk k du dv

ð5Þ

Since integrals (5) and (6) are evaluated on general

quadrangular domains, an isoparametric approach can

be adopted for their numerical computation.

Let K be a quadrilateral domain in the parameters

space with straight boundary lines and vertices

(ui, vi), i = 1, 2, 3, 4 arranged in counter-clockwise

order (Fig. 3). The idea is simple: first transform the

quadrilateral domain K to the standard quadrilateral

element Rst and then apply the Gaussian quadrature.

The transformation can be done by using the following

nodal shape functions for quadrilaterals:

Niðn; gÞ ¼
1

4
ð1� nÞð1� gÞ; i ¼ 1; . . .; 4 ð6Þ

Note that Niðn; gÞ ¼ 1 at node i, and zero at other

nodes. Now, it is necessary to construct a linear

mapping to map the quadrilateral domain K to the

standard square Rst = [-1, 1] 9 [-1, 1] in the aux-

iliary two-dimensional space ðn; gÞ (see Fig. 3). The

mapping can be achieved conveniently by using the

nodal shape function as follows:

u ¼ Pðn; gÞ ¼
X4

i¼1

uiNiðn; gÞ

v ¼ Qðn; gÞ ¼
X4

i¼1

viNiðn; gÞ
ð7Þ

Then, a given integral over K can be rewritten in the

following way as an integral over Rst:

ZZ

K

Fðu; vÞ du dv ¼
ZZ

Rst

FðPðn; gÞ;Qðn; gÞÞ Jðn; gÞj jdn dg;

ð8Þ

where Jðn; gÞ is the Jacobian of the transformation (8).

Therefore, it is now possible to apply the Gaussian

quadrature rule for standard square domains:

ZZ

K

Fðu; vÞ du dv ¼
XN

i¼1

XN

j¼1

wiwjFðPðni; gjÞ;

Qðni; gjÞÞ Jðni; gjÞ
�
�

�
�:

ð9Þ

where ðni; gjÞ and wj are Gaussian quadrature points

and weights respectively. In the numerical examples

discussed in Sect. 4, a 3-points in each direction Gauss

rule has been adopted for computing area (5) and

center of mass (6) integrals, since this choice provides

the needed accuracy.

3 Kinematic limit analysis formulation

Limit analysis is a powerful tool to assess the

structural safety level of a masonry construction. As

already discussed, given the NURBS geometric rep-

resentation of a masonry wall, a NURBS mesh can be

defined. This Section summarizes the proposed upper

bound limit analysis formulation for the assigned rigid

body assembly composed by NE elements. The

kinematics of each element is determined by the six

(three translational and three rotational) generalized

velocity components fuix; uiy; uiz; Ui
x; U

i
y; U

i
zg of its

center of mass Gi, expressed in a global reference

system Oxyz. On the structure, dead loads F0 and live

loads C are acting. Internal dissipation is assumed to

occur only along element interfaces. Indicating by NI

the number of interfaces, total internal dissipation

power Dint is equal to the sum of the power dissipated

along each interface Pi
int. Furthermore, total internal

dissipation power Dint is equal to the sum of the

powers of live (1 � C) and dead (F0) loads, indicated as

PC and PF0
respectively:

Dint ¼
XNI

i¼1

Pi
int ¼ PC þ PF0

ð10Þ

C is a load multiplier. The linear programming

problem related to the kinematic formulation of limit

analysis consists in an appropriate minimization of theFig. 3 Linear mapping between K and Rst
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load multiplier C under the action of suitable con-

straints, which are described in the following Subsec-

tions. The vector of unknowns of the linear

programming problem,X, contains the six generalized

velocity components for each element and a number of

plastic multipliers along each interface which will be

defined in Sect. 3.2.

3.1 Geometric constraints

Vertex belonging to element free edges, which do not

constitute an element interface, can be subjected to

external kinematic constraints, by imposing an

assigned value for translational and/or rotational

velocities at these points. For each of such vertex Vj,

kinematic constraints can be expressed in terms of

generalized velocities of the center of mass of the i-th

element they belong to. For example, in case only

translational velocities of a given vertex Vj, belonging

to element i, are constrained to zero, the following

relation holds as a geometric constraint:

uVj
¼ ui þ R xVj

� xGi

� �
¼ 0 ð11Þ

where uVj
¼ ½uVj

x ; u
Vj
y ; u

Vj
z �T are the three translational

velocity components of the vertex Vj, ui ¼
½uix; uiy; uiz�

T
are the three (unknown) translational

velocity components of the center of mass of element i

to whom vertex Vj belongs, and R is a rotation matrix

whose elements are the (unknown) generalized rota-

tional velocities of the center of mass of element i. In

general, all linear geometric constraints can be re-

written in the following standard form:

Aeq;geomX ¼ beq;geom ð12Þ

where Aeq;geom is the matrix of geometric constraints

and beq;geom the corresponding vector of coefficients.

3.2 Compatibility constraints

Interfaces between elements are planar surfaces whose

height in each point of their midline corresponds to the

local thickness of the vault.

In order to enforce plastic compatibility along

interfaces and correctly evaluate dissipation power,

intrados and extrados edges of each interface have

been subdivided into an assigned number (Nsd ? 1) of

points Pi (see Fig. 4).

On each point Pi of each interface, which separates

the two elements E0 and E00, the following compati-

bility equation must hold:

D~u ¼ _k
of

or
ð13Þ

where r ¼ ½rnn; rns; rnt� is the stress vector acting on
Pi in the three local reference directions, f ðrÞ is a

suitable yield function (evaluated through homoge-

nization) and _k is an unknown plastic multiplier

vector. In Eq. (13), D~u is the representation in the

local reference system of the quantity Du in the global

reference system which is defined as:

Du ¼ u0Pi
� u00Pi

ð14Þ

where u0Pi
and u00Pi

are the vectors composed of three

translational velocity components of the pointPi, seen

as belonging to elements E0 and E00 respectively. Du is

related to D~u through the following relation:

D~u ¼ ~RDu ð15Þ

where ~R is a suitable 3 9 3 rotation matrix whose

rows are respectively the components of the three local

vectors ðn; s; tÞ expressed in the global reference

system.

The yield surface f ðrÞ can be obtained by means of

a homogenization procedure. In developing the appli-

cations, we adopted the so-called Method of Cells

(MoC) (see [44]). The method, applied to running

bond masonry in-plane loaded, consists into the

subdivision of the REV into 6 rectangular sub-cells,

as shown in Fig. 5, where the velocity field is

approximated using two sets of strain-rate periodic

piecewise differentiable velocity fields, one for normal

and one for shear deformation mode. Let us indicate

with the symbols u1
n(i) and u2

n(i) vertical and horizontal

velocity fields of the i-th cell for deformation mode

Fig. 4 Masonry-masonry interface and corresponding local

reference system
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acting axially along vertical and horizontal directions.

Assuming the same periodic field proposed for

displacements in the elastic range in [45], the follow-

ing relations hold:

u
nð1Þ
1 ¼2U1

x1

bb
; u

nð1Þ
2 ¼�2W1

x2

hb

u
nð2Þ
1 ¼U1þ

U2�U1ð Þ x1�bb
2

� �

bm

u
nð2Þ
2 ¼�2

x2

hb

2 W1�W2ð Þ bmþbb
2

�x1
�
�

�
�

bm
þW2

 !

u
nð3Þ
1 ¼u

nð1Þ
1 �

U1 1þ2abð Þ�U2ð Þ hb
2
�x2

� �

2hm

u
nð3Þ
2 ¼�W1þ

W1�W3ð Þ x2�hb
2

� �

hm

u
nð4Þ
1 ¼u

nð1Þ
1 þ

U1 1þ2abð Þ�U2ð Þ hb
2
�x2

� �

2hm

u
nð4Þ
2 ¼u

nð3Þ
2

u
nð5Þ
1 ¼U1�
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� �
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x1
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U1�

U1þU1�U2

2ab

� �
x2�hb

2

� �

hm

0

@

1

A

u
nð6Þ
2 ¼�W1þ

W2�W3þ2 W1�W2ð Þ x1j j
bm

� �
x2�hb

2

� �

hm

ð16Þ

An additional constraint W1 = W2 is imposed in

the model in order to avoid undesired bilinear terms

of the velocity field in cross-joints. Frame of

reference x1–x2 and geometrical meaning of the

symbols are provided in Fig. 5a: hb is the brick

height, hm is the thickness of the bed joints, ab is the
ratio between bm and bb, respectively bed joint

thickness and brick length. Fields (16) depend on

the four degrees of freedom U1, U2, W1, W2 = W1

and W3 with clear physical meaning represented in

Fig. 5b.

It is interesting to notice that velocity fields inside

each cell are either linear (cells 1, 3, 4) or quadratic

(cells 2, 5, 6). When a shear deformation mode is

applied on the REV, the following fields of velocity

are assumed inside each cell:

u
t 1ð Þ
1 ¼ 2Ut

1

x2

hb
u
t 1ð Þ
2 ¼ 0 u

t 2ð Þ
1 ¼ u

t 1ð Þ
1 u

t 2ð Þ
2 ¼ Wt

1

x1 � bb
2

bm

u
t 3ð Þ
1 ¼ Ut

1 þ
Ut

2 � Ut
1

hm
x3 �

hb

2

	 


u
t 3ð Þ
2 ¼ �Wt

2

x2 � hb
2

hm

u
t 4ð Þ
1 ¼ u

t 3ð Þ
1 u

t 4ð Þ
2 ¼ �u

t 3ð Þ
2

u
t 5ð Þ
1 ¼ u

t 3ð Þ
1 u

t 5ð Þ
2 ¼ �Wt

1

x1 � bbþbm
2

� �
x2 � hb

2

� �
� hm x1 � bb

2

� �

bmhm

u
t 6ð Þ
1 ¼ u

t 3ð Þ
1 u

t 6ð Þ
2 ¼ Wt

1

x1 x2 � hb
2

� �

bmhm

ð17Þ

Symbols u1
t(i) and u2

t(i) in Eq. (17) indicate

vertical and horizontal velocity fields of the i-th

cell for the shear deformation mode imposed. In

Eq. (17) independent variables (DOFs) are repre-

sented by U1
t , U2

t , W1
t and W2

t , whose physical

meaning is depicted in Fig. 5c. It should be pointed

out that the kinematics of the shear deformation

mode depicted in Fig. 5c only requires that

Fig. 5 a REV adopted in the MoC approach and subdivision

into cells; b Strain-periodic kinematically admissible velocity

field under horizontal or vertical macroscopic normal stresses;

c Strain-periodic kinematically admissible velocity field under

macroscopic shear stress
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velocities must be anti-periodical. This requirement

is independent from the failure surfaces actually

adopted for bricks and mortar joints.

An additional constraint W1
t = 2W2

t is imposed in

the model to make the velocity field compatible

between cross-joints and contiguous sub-cells. Let

u1 = u1
n(i) ? u1

t(i) and u2 = u2
n(i) ? u2

t(i) denote the

horizontal and vertical components of the velocity

field in the (i)-th sub-cell. At each point of any sub-

cell, the associated flow rule translates into three

equality constrains, which can be written as

_eðiÞpl ¼ ov1

oy1

ov2

oy2

ov1

oy2
þ ov2

oy1

� �

¼ _kðiÞ ofb;m
or , where _eðiÞpl

is the plastic strain rate field in the (i)-th sub-cell,

_kðiÞ(C0) is the rate of the plastic multiplier, and fb;m is

the (non) linear failure surface of either bricks (b) or

mortar (m). Let the failure surfaces of bricks and

mortar be approximated by m planes, so that each

strength criterion is defined by a set of linear

inequalities of the form fb;m � Ainr� bin. As _eðiÞpl
varies at most linearly within each sub-cell, plastic

admissibility is checked only at three of the corners.

Hence, nine linear equality constraints per sub-cell are

introduced in matrix form as Aeq
UðiÞUþ Aeq

kðiÞ
_k
ðiÞ ¼ 0,

where U is an array collecting the 7 DOFs describing

the microscopic velocity field (i.e. U = {U1, U2, W1,

W2, U1
t , U2

t W1
t }T), _k

ðiÞ ¼ _k
ðiÞT
A

_k
ðiÞT
B

_k
ðiÞT
C

h iT
is an

array of 3 m entries, collecting the rates of the plastic

multipliers _k
ðiÞ
J at three of the corners of the rectan-

gular sub-cell (J = A, B, C), and Aeq

UðiÞ, A
eq

kðiÞ are a

9 9 7 and a 9 9 3 mmatrix, respectively. The plastic

admissibility conditions are then assembled cell by

cell into the following global system of equality

constraints:

Aeq
UUþ Aeq

k
_k ¼ 0 ð18Þ

where Aeq
U ¼ AeqT

Uð1Þ; . . .;A
eqT

Uð6Þ

h iT
, _k¼ _k

ð1ÞT
; . . . _k

ð6ÞTh iT
,

and Aeq
k is a block matrix of dimension

(6.9) 9 (6.3 m), which can be expressed as:

Aeq
k ¼ Aeq

kð1Þ 	 Aeq

kð2Þ 	 � � � 	 Aeq

kð6Þ ð19Þ

where 	 denotes direct sum. Let B and C be a couple

of corners at the opposite ends of one of the diagonals

of the (i)-th rectangular sub-cell. The internal power

dissipated within the sub-cell can be written as:

pðiÞin ¼ XðiÞ

2
b
ðiÞT
in

_k
ðiÞ
B þ b

ðiÞT
in

_k
ðiÞ
C

� �

¼ XðiÞ

2
01�m b

ðiÞT
in b

ðiÞT
in

h i
_k
ðiÞ
; ð20Þ

where 019m is an array of m zero entries and XðiÞ is the
area of the (i)-th sub-cell. The power dissipated inside

the whole RVE is obviously the sum of the contribu-

tions of each sub-cell, i.e.:

pin ¼
X6

i¼1

XðiÞ

2
01�m b

ðiÞT
in b

ðiÞT
in

h i
_k
ðiÞ
: ð21Þ

The array of the macroscopic stress components

can be expressed as R ¼ K a b c½ �T , whereK is the

load multiplier and a, b, c are the director cosines of

the direction of R in the space of the homogenized in-

plane stresses. The power of the external loads is

simply pex ¼ K a b c½ �D with normalization con-

dition given by a b c½ �D ¼ 1: Any point of the

homogenized failure surface is thus determined solv-

ing the following constrained minimization problem:

minpin subject to

a b c½ �D ¼ 1 ða)
Aeq

U Uþ Aeq
k
_k ¼ 0 ðb)

D ¼ 1

A

Z

oY

v

s
ndS ðc)

_k� 0 ðd)

8
>>>>><

>>>>>:

8
>>>>><

>>>>>:

ð22Þ

where (a) is the normalization condition, (b) is the set

of equations representing the admissibility of the

plastic flow, Eq. (18), and (c) links the homogenized

strain rate with the local velocity field. With the

iterative solution of Eq. (22), it is possible to easily

provide a linearization for f ðrÞ the assigned yield

surface. Let us indicate with the equation Airnn þ
Birns þ Cirnt ¼ 1 the i-th plane representing f ðrÞ. In
such a way, Eq. (13) simplifies to the equation:
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D~u ¼

PNpl

i¼1

Ai
_ki

PNpl

i¼1

Bi
_ki

PNpl

i¼1

Ci
_ki

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð23Þ

where _ki is the i-th plane plastic multiplier and Npl is

the total number of linearization planes used. The

previous constraint must hold for each point Pi of each

interface. Since for each point of each interface a set of

Npl unknown plastic multipliers is defined, the total

number of unknown plastic multipliers is equal to

Npl(Nsd ? 1)2NI.

3.3 Non-negativity of plastic multipliers

An additional constraint, which must be included into

the linear programming problem is the non-negativity

of each plastic multiplier:

_kij � 0: ð24Þ

3.4 Normality condition

The last condition to be applied is the so-called

normality condition which requires that the external

power dissipated by the live load 1 � C set equal to one,

is itself equal to one, i.e.:

PC¼1 ¼ 1 ð25Þ

This condition allows to rewrite Eq. (10) in the

following way:

C ¼
XNI

i¼1

Pi
int � PF0

ð26Þ

3.5 Internal dissipated power and linear

programming problem

On each interface i, covering the surfaceSi, the internal

dissipated power is defined as the integral:

Pi
int ¼

Z

Si

r � D~u dS ð27Þ

in the local reference system, where both r and D~u

have been defined in SubSect. 3.2. Therefore,

remembering Eq. (26) and following the kinematic

theorem of limit analysis, the related linear program-

ming problem can be stated as follows:

min
XNI

i¼1

Pi
int � PF0

( )

ð28Þ

under geometric constraints (12), compatibility con-

straints (23), non-negativity of plastic multipliers

constraints (24) and the normality condition (25).

The unknowns of the linear programming problem are

the 6�NE generalized velocity components of the

center of mass of each element and the Npl(Nsd ? 1)

2NI plastic multipliers at each point of each interface.

4 Genetic algorithm overview

A genetic algorithm (GA) is used to adjust the mesh in

order to find the minimum collapse multiplier among

all possible configurations and therefore to determine

the actual collapse mechanism. A genetic algorithm is

a method for solving both constrained and uncon-

strained optimization problems based on a natural

selection process that mimics biological evolution.

The algorithm repeatedly modifies a population of

individual solutions. At each step, the genetic algo-

rithm randomly selects individuals from the current

population and uses them as parents to produce the

children for the next generation. Over successive

generations, the population ‘‘evolves’’ toward an

optimal solution.

A NURBS mesh of the structure is determined by a

given number Npar of real parameters p1, p2, …, -

pNpar, that depend on the type of collapse mechanism

which must be detected. A given NURBS mesh is

regarded as an individual and each individual, is

written as an array with 1 9 Npar elements:

individual ¼ ½p1; p2; . . .; pNpar� ð29Þ

Each individual has a cost, found by evaluating the

cost function f at the parameters p1, p2, …, pNpar. The

cost function f is defined as a function whose outputs

the collapse load multiplier kc for every assigned

individual (i.e. an assigned mesh on the surface)

through the implementation of the limit analysis

procedure described in Section 3:

kc ¼ f ðindividualÞ ¼ f ðp1; p2; . . .; pNparÞ ð30Þ
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To begin the genetic algorithm, we define an initial

population of Nipop individuals. More details on the

GA adopted are contained in previous papers on the

evaluation of the collapse mechanism for vaulted

masonry structures [35].

In this paper, a weighted cost selection with

assigned probabilities is used [46]. Each pair produces

two offspring that contain traits from each parent.

Mating is carried out by choosing one or more points

in the chromosome to mark as the crossover points

and the parameters between these points are merely

swapped between the two parents. In this paper a

multi-point crossover operator is used and

ki = [1, 2, …, c - 1] crossover points are randomly

selected on two individuals (parents) represented by c

chromosomes. Moreover, if care is not taken, the

genetic algorithm may converge too quickly into one

region of the cost surface and this may be not good if

the problem we are modeling has several local

minima, in which the solution may get trapped. To

avoid this problem of overly fast convergence, we

force the routine to explore other areas of the cost

surface by randomly introducing changes, or muta-

tions, in some of the parameters. A classic mutation

operator is applied to all Npop individuals at each

generation. For each individual pi the mutation

operator works stochastically on all the chromosomes

of the individual subject to mutation (i.e. changing at

random one of the individual chromosomes in the

process of generating offsprings). A mutation proba-

bility of 15% has been chosen in this paper. The

algorithm described is improved by adding a zooming

with elitist strategy (see e.g. [40]) in order to obtain a

considerable enhancement of both robustness and

efficiency of the algorithm. The zooming technique

consists in sub-dividing the initial population into two

groups �x ¼ f�xi : i ¼ 1; . . .;Nelitg and y ¼ x� �x ¼
fyi : i ¼ 1; . . .;Npop � Nelitg and in collecting at each

iteration the individuals with higher fitness into an

‘‘elite’’ sub-population with user defined dimension

Nelit. Afterwards, for each individual belonging to

group �x, only a mutation with high probability is

applied (i.e. not crossover) in order to improve

individual fitness. From a practical point of view,

zooming has to be a priori set by the user by means of

the so called zooming percentage z% defined as the

percentage ratio between initial population size Npop

and �x sub-population size Nelit. Even if zooming

percentage is taken constant in this paper (equal to 5%)

z% can be reduced if necessary ad libitum passing from

the i-th iteration to the successive one following an

exponential reduction.

5 Structural examples

This Section is devoted to illustrate the GA-NURBS

procedure applied to the structural assessment of out-

of-plane loaded masonry walls through a number of

meaningful numerical simulations. The first two

simulations concern masonry walls in two-way bend-

ing and differently constrained at the edges, the first

one without openings and the second one with a

rectangular opening. Such case studies have been

already analyzed both experimentally and numeri-

cally in [47–49]. In the third example, the more

complex case of a masonry façade constrained by two

orthogonal panels is discussed. In the last example,

the whole façade of the Italian historical church of S.

Pietro in Coppito [50], severely damaged during

L’Aquila earthquake in 2009, is taken into consider-

ation. Materials parameters assumed for all the

simulations are summarized in Table 1, where fk
denotes compressive strength of masonry, ft tensile

strength, and fvk0 shear strength.

5.1 Panel in two-way bending without openings

Experimental tests on five solid clay panels (labeled

from SB01 and SB05) with and without openings

Fig. 6 Geometry and

constraints of SB01

masonry panel without

openings tested in [47]
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where carried out in [47]. Of those specimens, only

panel SB01 without openings, depicted in (Fig. 6), is

replicated in this Subsection. All the panels of the

experimental campaign, having dimensions

5615 9 2475 9 102 mm, were built in stretcher bond

between two stiff abutments with the vertical edges

simply supported (allowance for in-plane displace-

ments was provided) and the top edge free. The panels

were loaded by air-bags until failure with increasing

out-of-plane pressure p. During the tests, the air

pressure and the displacement d for the middle point of

the free edge were monitored. Masonry parameters

adopted are taken from [47] and [48] (see Table 1); a

null value of specific weight is assumed to replicate

experimental condition [47].

The initial NURBS mesh of the panel surface is

composed of ten quadrangular elements (Fig. 7a),

obtained by subdividing the parameters space starting

from a 3 9 6 lattice of nodes. Four nodes, corre-

sponding to the vertexes of the wall, are fixed. The

genetic algorithm allows evaluating the optimal

position of the remaining fourteen free nodes, in order

to minimize the collapse load multiplier and therefore

obtain the actual failure mechanism.

The position of every node is governed by two

parameters, except for edge-nodes that are ruled by a

single parameter and the four vertex-nodes, which are

kept fixed. Thus, the general problem is governed by a

total of eighteen parameter. It must be observed that,

for the specific load configuration here considered,

symmetry allows to reduce the number of governing

parameters to nine.

In the genetic algorithm an initial population of 20

individuals has been chosen, each individual being a

nine-element vector.

A collapse load p = 2.69 kN/m2 has been obtained.

Figure 7a, b show the initial and the final mesh of the

masonry wall, whereas Fig. 7c depicts the computed

failure mechanism. As can be seen in Fig. 7d, the

algorithm has a quite fast convergence towards the

optimal solution and the best fitness value is obtained

after about forty generations. Finally, a good agree-

ment can be found when comparing the obtained

results using the proposed GA-NURBS approach with

the outcomes from both original experiments and

different numerical procedures found in literature.

In Fig. 7e, f, the failure mechanism computed in

[49] though a finite-element homogenized limit anal-

ysis approach and both experimental and numerical

out-of-plane force–displacement curves referred to

Specimen SB01 are reported. As expected, the

proposed GA-NURBS approach tends to slightly

overestimate the actual collapse load (upper bound

theorem of limit analysis).

Due to efficiency and ease of use of the algorithm, a

sensitivity analysis has been conducted on the geo-

metrical parameters defining wall dimensions. Fig-

ure 8 depicts the obtained failure mechanisms for two

different aspect ratios, l/h = 4, l/h = 1.3 and l/h = 1,

whereas Fig. 9 gives a representation of the depen-

dence of the collapse load on the aspect ratio. As it

could expected, ceteris paribus, an increase in the

bearing capacity is detected with the decrease of the

ratio l/h.

5.2 Panel in two-way bending with a rectangular

opening

In the present example, the panel SB02 with a

rectangular opening experimentally tested in [47] is

analyzed. External geometric dimensions and load

conditions are described in the previous Subsec-

tion. The rectangular opening has dimensions 2260 9

1125 mm. Masonry parameters adopted are the same

Table 1 Material parameters used in the simulations

Case study Masonry material parameters Specific

weight

(kN/m3)Compressive

strength (fk) (MPa)

Tensile

strength (ft) (MPa)

Shear

strength (fvk0) (MPa)

SB01, SB02 [47–49] 8.00 0.32 0.32 0.0

Façade with side walls 2.40 0.01–0.20 ft 18.0

Façade of S. Pietro in Coppito [50] 2.00 0.05 1�model: 0.05

2� model: 0.30

18.5
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of the previous Section and a null value of specific

weight is assumed to replicate experimental condition

[47] (Fig. 10).

The initial NURBS mesh of the panel surface is

composed of sixteen quadrangular elements, obtained

by subdividing the parameters space as described in

Sect. 2 starting from a 5 9 5 lattice of nodes. Four

nodes, corresponding to the four external vertexes of

the wall, are fixed. The genetic algorithm allows

evaluating the optimal position of the remaining

twenty-one nodes, in order to minimize the collapse

load multiplier and therefore obtain the actual failure

Fig. 7 SB01 masonry panel without openings tested in [47].

a Initial mesh, b Final mesh obtained through the proposed GA-

NURBS procedure. c Failure mechanism through the proposed

GA-NURBS procedure. d Convergence of the GA towards the

optimal solution in terms of best and mean fitness value.

e Failure mechanism obtained by FEM homogenized limit

analysis [49]. f Comparison in terms of collapse load with

experiments and other numerical approaches [47–49, 51]
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mechanism. The position of every node is governed by

two parameters, except for edge-nodes that are ruled

by a single parameter. Thus, the general problem so, is

governed by a total of thirty parameters. It must be

observed that, for the specific load configuration here

considered, symmetry allows to reduce the number of

governing parameters to fourteen. In the genetic

algorithm an initial population of 20 individuals have

been chosen, each individual being a fourteen-element

vector. A collapse load p = 2.19 kN/m2 has been

obtained. Figure 11a, b show the initial and final mesh

of the masonry wall, whereas Fig. 11c depicts the

computed failure mechanism. It can be shown that the

sensitivity of the resulting failure mechanism to initial

mesh size and location is very low, provided that

initial mesh do not comprise excessively elongated or

very irregular elements which might trigger numerical

instabilities. It has also to be pointed out that the

strength of the method relies in the capability of

producing good results starting from a very coarse

mesh. Thus, the use of finer meshes is not advisable

since it reduces the computational advantage provided

by the procedure. As can be seen in Fig. 11d, the

algorithm has a quite fast convergence towards the

optimal solution and the best fitness value is obtained

Fig. 8 Failure mechanisms

obtained for two different

aspect ratios of the wall. a l/

h = 4, b l/h = 1.3, c l/
h = 1

Fig. 9 Dependence of the collapse load on the aspect ratio
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after about forty generations. Finally, a good agree-

ment can be found when comparing the obtained

results using the proposed GA-NURBS approach with

the outcomes from both original experiments and

different numerical procedures found in literature. It

has to be observed that, in this case, the collapse load

obtained with GA-NURBS procedure (2.19 kN/m2) is

more accurate in comparison with the result of upper

bound homogenized limit analysis of [48] (2.66 kN/

m2). In Fig. 11e, the failure mechanism computed in

[49] through a finite-element homogenized limit

analysis approach is shown whereas in Fig. 11f

experimental and numerical out-of-plane force–dis-

placement curves referred to Specimen SB02 are

reported.

5.3 Rectangular masonry panel with side walls

In the following third example, the case of a masonry

panel restrained by two orthogonal walls is consid-

ered. The example is representative of the common

occurrence in which a masonry wall is connected to

one or more orthogonal panels.

Geometry and load condition of the system are

depicted in Fig. 12. Each wall has dimensions

6000 9 6000 9 500 mm. A triangular pressure dis-

tribution on the principal restrained wall is applied.

Furthermore, traversal walls are loaded with an in-

plane triangular distribution of forces. A fixed rotation

constraint is assigned to the free side of the two

orthogonal restraining walls.

The initial NURBSmesh of the system is composed

of ten quadrangular elements (two for the restrained

wall and four for each restraining panel), obtained by

subdividing the parameters space as described in

Sect. 2 starting from a suitable lattice of nodes. Eight

nodes, corresponding to the vertexes of the three walls

are fixed. The genetic algorithm allows evaluating the

optimal position of the remaining ten nodes, in order to

minimize the collapse load multiplier and therefore

obtain the actual failure mechanism. The general

problem is here governed by a total of twelve

parameters. It must be observed that, for the specific

load configuration here considered, symmetry allows

to reduce the number of governing parameters to six.

In the genetic algorithm an initial population of 20

individuals has been chosen, each individual being a

six-element vector.

Due to efficiency and ease of procedure, it has been

possible to conduct a number of different analyses, in

order to evaluate the sensitivity of the solution on the

material parameters. Different parameters of resis-

tance have been adopted for principal façade, lateral

walls, and interfaces between principal and lateral

walls (so that quality of connection between walls can

be taken into account). In particular, different values

of tensile strength (ft) and shear stress (fvk0) have been

adopted (see Table 1), whereas compressive strength

(fk) is assumed constant and equal to 2.4 MPa. For the

principal façade, tensile and shear strength are always

equal to 0.2 MPa. Two set of simulations have been

conducted.

In the first group of analyses a good quality of

connection between orthogonal walls has been

assumed and a value of 0.3 MPa for both ft and fvk0
has been adopted for interfaces between lateral walls

and façade. For lateral walls, three different tensile and

shear strength values were adopted, namely 0.01, 0.05,

0.1 and 0.2 MPa.

In the second set of simulations, a good quality of

lateral walls has been hypothesized and, therefore, a

value of 0.2 MPa for both ft and fvk0 has been adopted.

On the other hand, for interfaces between lateral load

and façade, three different tensile and shear strength

values were adopted, namely 0.01, 0.05, 0.1 and

0.2 MPa.

Figure 13a, b depicts respectively the computed

failure mechanisms for cases ft = fvk0 = 0.01 MPa

Fig. 10 Geometry and

constraints of SB02

masonry panel tested in [47]
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and ft = fvk0 = 0.2 MPa in lateral walls, with good

quality of connections (ft = fvk0 = 0.3 MPa along

interfaces between orthogonal walls), whereas

Fig. 13c shows the dependence of collapse load on

the quality of masonry in lateral walls. As can be

inferred from Fig. 13a, b, an increase in the fracture-

angle can be observed when considering better quality

masonry of lateral walls.

Figure 14a, b depicts respectively the computed

failure mechanisms for cases ft = fvk0 = 0.01 MPa

and ft = fvk0 = 0.2 MPa along interfaces between

façade and lateral walls, with good quality of lateral

walls (ft = fvk0 = 0.2 MPa for masonry), whereas

Fig. 13c shows the dependence of collapse load on

quality of connections. In the case depicted in Fig. 14a

simple overturning of the principal façade is observed,

Fig. 11 SB02 masonry panel with a rectangular opening tested

in [47]. a Initial mesh. b Final mesh obtained through the

proposed GA-NURBS procedure. c Failure mechanism through

the proposed GA-NURBS procedure. d Convergence of the GA

towards the optimal solution in terms of best and mean fitness

value. e Failure mechanism obtained by FEM homogenized

limit analysis [49]. f Comparison in terms of collapse load with

experiments and other numerical approaches [47–49, 51]
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as it was expected; in the second case, depicted in

Fig. 14b, a portion of side walls is involved in the

overturning as well. Generally, from Figs. 13 and 14 it

can be observed that failure mechanism is dependent

on material parameters assigned to each structural

element.

5.4 Façade of the S. Pietro in Coppito historical

church

The last example here presented deals with the

masonry façade of the S. Pietro in Coppito church

[50]. The church of San Pietro di Coppito in

L’Aquila, damaged by the April 6, 2009 earthquake,

dates to the mid-13th century; it was progressively

transformed up to the 19th century and then restored

to its initial appearance in 1969–1972. The church

features a central nave and a single aisle, and is

therefore highly asymmetrical along its length, the

transept is split into two parts of different shapes and

heights. An octagonal bell-tower, having internal

winding stairs, is partially incorporated into the

external wall of the church. The most significant and

visible damage the church incurred during the

earthquake involves the façade and the bell tower;

the top portion of the façade is unconstrained, since

the back portion of the church roof does not reach the

same height. The façade of the church and its

geometry, characterized by complex openings of

circular and semicircular shape, are depicted in

Fig. 15.

A NURBS description of the surface comes partic-

ularly handy in the present case, since NURBS allows

for an exact representation of openings of arbitrarily

complex geometry. Two models have been considered

in the analysis. In the first model, only the façade is

considered (Fig. 16a). Low quality masonry has been

assumed for the façade: a value of 0.05 MPa have been

adopted for both tensile and shear strength (see

Table 1). Two load conditions have been applied: a

triangular out-of-plane pressure linearly increasing

with height (Fig. 16c), and an asymmetric linear out-

of-plane pressure distribution increasing with both

height and length (Fig. 16d).

The second load condition follows from the obser-

vation of the failure mechanism actually occurred after

L’Aquila 2009 earthquake: as explained in [50], the

façade could have been subjected to non-uniform

acceleration, as suggested by its rotation around a

vertical axis. The initial NURBS mesh of the panel

surface is composed of sixteen quadrangular elements,

obtained by subdividing the parameters space as

described in Sect. 2 starting from a 5 9 5 lattice of

nodes. Four nodes, corresponding to the extremal

vertexes of the wall are fixed. The genetic algorithm

allows evaluating the optimal position of the remain-

ing twenty-one nodes, in order to minimize the

collapse load multiplier and therefore obtain the actual

failure mechanism. The position of every node is

governed by two parameters, except for edge-nodes

that are ruled by a single parameter. Therefore, the

general problem is governed by a total of thirty

parameters. It must be observed that, for the first load

configuration here considered, symmetry allows to

reduce the number of governing parameters to four-

teen. In the genetic algorithm an initial population of

20 individuals has been chosen, each individual being

a thirty-element vector (fourteen-element vector for

the first load condition). Failure mechanisms obtained

with the proposed GA-NURBS approach are depicted

in Fig. 16e, f.

In the second model, traversal walls have been

considered as well. All the walls are assumed with

fixed constraints at the base (Fig. 17a). A good shear

strength is adopted (fvk0 = 0.3 MPa, as reported in

Table 1), whereas a tensile strength equal to 0.05 MPa

is assumed. Again, the same two load conditions for

the façade have been considered (Fig. 17c, d). In this

case, lateral walls have been subdivided into quad-

rangular elements starting from a 3 9 4 lattice of

Fig. 12 Geometry and load condition for the system of walls

considered in Subsection 5.3
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nodes, but nodes translated by genetic algorithm are

the same of the first one. Figure 17e, f shows the

failure mechanism obtained through the proposed GA-

NURBS limit analysis.

Finally, it should be noticed that there is a good

agreement between the failure mechanism shown in

Fig. 17f (also reported in Fig. 18a) and the actual

collapse mechanism occurred after L’Aquila 2009

earthquake (Fig. 18c), i.e. the local collapse of the

upper left corner of façade. A collapse maximum

pressure kp = 26.09 kN/m2 has been obtained. In

Fig. 18b convergences of the GA towards the optimal

solution are depicted: optimal solution is found by GA

after about ten generations. It should be noted that

peaks in mean fitness shown in Fig. 18b are due to the

random mutations introduced at each generation in

order to improve the ability of the GA to get to the

global minimum. However, best fitness value exhibits

a very good convergence to the solution.

6 Conclusions

A new GA-NURBS based approach for the kinematic

limit analysis of out-of-plane loaded masonry walls

with openings of general shape is presented. The main

Fig. 13 Three walls masonry system: good quality of connec-

tion (ft = fvk0 = 0.3 MPa along interfaces between lateral

walls and façade). a Failure mechanism obtained through the

proposed GA-NURBS procedure with ft = fvk0 = 0.01 in

lateral walls. b Failure mechanism obtained through the

proposed GA-NURBS procedure with ft = fvk0 = 0.2 in lateral

walls. c Dependence of collapse load on tensile and shear

strength of lateral walls
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Fig. 14 Three walls masonry system: good quality of lateral

walls (ft = fvk0 = 0.2 MPa). a Failure mechanism obtained

through the proposed GA-NURBS procedure with ft =

fvk0 = 0.01 along lateral walls to façade connection interfaces.

b Failure mechanism obtained through the proposed GA-

NURBS procedure with ft = fvk0 = 0.2 in border lines.

c Dependence of collapse load on tensile and shear strength

between principal façade and lateral walls

Fig. 15 S. Pietro in

Coppito façade [50] (a) and
geometrical dimensions (b)
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idea consists into exploiting properties of NURBS

functions to develop a computationally efficient

adaptive limit analysis procedure which allows to

quickly evaluate the failure mechanism and collapse

load multiplier of any given out-of-plane loaded

masonry wall starting from its three dimensional

model, which can be obtained with any free form

modeler (e.g. Rhinoceros) natively working with

NURBS entities. It is therefore possible to bridge the

3D modeling environment, which is very popular

among professional engineers and architects, with a

structural limit analysis environment in the most

natural way, thus requiring the least effort to the final

user and providing a high computational efficiency.

One of the main advantages over existing procedures

implemented in commercial software is the fact that a

priori knowledge of the actual failure mechanism is

not required.

Fig. 16 S. Pietro in

Coppito façade, first model.

a Geometry and constraint

conditions. b Rhino 3D-

NURBS model. c First load
condition. d Second load

condition. e Failure
mechanism obtained

through GA-NURBS

procedure for the first load

condition. f Failure
mechanism obtained

through GA-NURBS

procedure for the second

load condition
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Through a number of simulations and comparisons

with both numerical and experimental results, the

approach has shown to be able to well predicting the

load bearing capacity of any arbitrary out-of-plane

loaded masonry wall.

The strength of the method lies in the fact that it is

possible to get accurate results by using very few

elements. Such peculiarity allows to maximize both

accuracy and computational speed.

The proposed GA-NURBS approach could be

further extended following different directions. In

particular, future research work will include the

increasing of the computational efficiency, the

implementation of the capability of accounting for

the presence of FRP reinforcement on both sides of

a given masonry wall and the implementation of an

equilibrium formulation for limit analysis, which

allows for a lower bound estimation of the collapse

load. In fact, a lower bound estimation of the

collapse load can be especially useful since it

would give a precise indication of the accuracy of

the solution determined through the kinematic

(upper bound) formulation discussed in the present

work.

Fig. 17 S. Pietro in

Coppito façade, second

model. a Geometry and

constraint conditions.

b Rhino 3D-NURBS model.

c First load condition.

d Second load condition.

e Failure mechanism

obtained through GA-

NURBS procedure for the

first load condition. f Failure
mechanism obtained

through GA-NURBS

procedure for the second

load condition
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