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Abstract In this paper we investigate different

strategies to overcome the scallop theorem. We will

show how to obtain a net motion exploiting the fluid’s

type change during a periodic deformation. We are

interested in two different models: in the first one that

change is linked to the magnitude of the opening and

closing velocity. Instead, in the second one it is related

to the sign of the above velocity. An interesting feature

of the latter model is the introduction of a delay-

switching rule through a thermostat. We remark that

the latter is fundamental in order to get both forward

and backward motion.

Keywords Scallop theorem � Switching �
Thermostat � Controllability

1 Introduction

The study of locomotion strategies in fluids is

attracting increasing interest in recent literature,

especially for its connection with the realization of

artificial devices that can self-propel in fluids. Theo-

ries of swimming generally utilize either low Rey-

nolds number approximation, or the assumption of

inviscid ideal fluid dynamics (high Reynolds number).

These two different regimes are also distinct in terms

of the mechanism of locomotion [7, 12].

In this paper we focus on swimmers immersed in

these two kind of fluids which produce a linear

dynamics. In particular we study the system describing

the motion of a scallop for which it is well known

[2, 14, 17] that the scallop theorem/paradox holds.

This means that it is not capable to achieve any net

motion performing cyclical shape changes, either in a

viscous or in an inviscid fluid. Some authors tried to

overcome this paradox changing the geometry of the

swimmer, for example adding a degree of freedom,

introducing the Purcell swimmer [17], or the three

sphere swimmer [10]. Others, instead, supposed the

scallop immersed in a non Newtonian fluid, in which

the viscosity is not constant, ending up with a non

reversible dynamics [6, 18]. Inspired by this last

approach, our aim is to propose some strategies which

maintain the swimmer geometry and exploit instead a

change in the dynamics. For example in [8] the authors

modulate the speed of actuation to steer the swimmer
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Università degli studi di Padova, Via Trieste, 63,

35121 Padova, Italy

123

Meccanica (2017) 52:3499–3511

DOI 10.1007/s11012-017-0620-6

http://orcid.org/0000-0001-6659-4268
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-017-0620-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-017-0620-6&amp;domain=pdf


along curved trajectories. Differently from us they

never leave the Stokes regime. Our idea is based on

switching dynamics depending on the angular velocity

of opening and closing of the scallop’s valves. More

precisely we analyze two cases: in the first one we

suppose that if the modulus of the angular velocity is

high, the fluid regime can be approximated by the ideal

one, instead if this modulus is low the fluid can be

considered as completely viscous. These assumptions

are realistic since the Reynolds number changes

depending on the characteristic velocity of the swim-

mer. In the second case we assume that the fluid reacts

in a different way between the opening and closing of

the valves: it facilitates the opening, so that it can be

considered an ideal fluid, and resists the closing, like a

viscous fluid. These last approximations model a fluid

in which the viscosity changes with the sign of the

angular velocity. More precisely we use two constant

viscosities: one high (resp. one very small) if the

angular velocity is negative (resp. positive). Moreover

inspired by [18], where the scallop’s opening and

closing is actuated by an external magnetic field, in

this last case we also introduce an hysteresis mech-

anism through a thermostat, see Fig. 6 (see [19] for

mathematical models for hysteresis), to model a delay

in the change of fluid’s regime. In both cases we

assume to be able to prescribe the angular velocity,

using it as a control parameter and we prove that the

system is controllable, i.e. the scallop is able to move

both forward and backward using cyclical deforma-

tions. Furthermore we prove also that it is always

possible to move between two fixed points, starting

and ending with two prescribed angles.

In the last part of the paper we show also some

numerical examples to support our theoretical predictions.

The plan of the paper is the following. In Sect. 2 we

present the swimmer model and derive its equation of

motion both in the viscous and in the ideal approxima-

tion, proving the scallop theorem. Section 3 is devoted

to the introduction of the switching strategieswhich lead

to the controllability of the scallop system. Finally in

Sect. 4wepresent some numerical simulations showing

different kind of controls that can be used.

2 The scallop swimmer

In this sectionwe are interested in analyzing themotion

of an articulated rigid body immersed in a fluid that

changes its configuration. In order to determine

completely its state we need the position of its center

of mass and its orientation. Their temporal evolution is

obtained solving the Newton’s equations coupled with

the Navier–Stokes equations relative to the surround-

ing fluid. We will face this problem considering the

body as immersed in two kinds of different fluids: one

viscous at low Reynolds number in which we neglect

the effects of inertia, and another one ideal inviscid and

irrotational, in which we neglect the viscous forces in

the Navier–Stokes equations. First of all we recall that

in both cases a swimmer that tries to moves like a

scallop, opening and closing periodically its valves,

does not move at the end of a cycle. This situation is

well known as scallop theorem (or paradox) [2, 17].

In what follows we will consider a planar body

composed by two rigid valves of elliptical shape,

joined in order that they can be opened and closed.

Moreover this body is constrained to move along one

of the Cartesian axes (the ex-axis) and is symmetric

with respect to it. Finally we will neglect the

interaction between the two valves. The configuration

of the system is easily described by the position x of

the juncture point along the ex-axis and by the angle h
that each valve forms with the axis

The possible translation of the system is determined

by the consecutive opening and closingof the valves.Our

aim is to determine the net translation of the body, given

the function of time describing the angular velocity _h.

2.1 Viscous fluid

Here we focus on the case in which the scallop is

immersed in a viscous fluid. In this regime the viscous

forces dominates the inertial ones that can be

neglected, so the equations governing the dynamics

of the fluid are the Stokes ones:

Dv�rp ¼ 0

together with the incompressibility condition

div v ¼ 0. Let us consider that the ellipses have major

axis 2a and minor axis 2b with b\\a, moreover let

us suppose that h 2 ð0; p
2
Þ so that it remains acute. One

of the main difficulties in computing explicitly the

equation of motion is the complexity of the hydrody-

namic forces exerted by the fluid on the swimmer as a

reaction to its shape changes. Since in our assumptions

the minor axis of the ellipse is very small with respect
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to the major one, i.e. b\\a, we can consider the

swimmer as one-dimensional, composed essentially

by two links of length 2a (see Fig. 1). In the case of

slender swimmers, Resistive Force Theory (RFT) [11]

provides a simple and concise way to compute a local

approximation of such forces, and it has been

successfully used in several recent studies, see for

example [1, 3, 9]. From now on we use this approach

as well, in order to obtain the forces acting on the

swimmer, neglecting the interaction between the

valves. Since the scallop’s density can be assumed to

be comparable to that of the fluid and since the scallop

is immersed in a viscous fluid the inertial forces are

negligible with respect to the viscous ones, then the

dynamics of the swimmer follows from Newton laws

in which both the inertia of the fluid and of the scallop

vanish:

F ¼ 0 ð1Þ

where F is the total force exerted on the swimmer by

the fluid. As already said we want to couple the fluid

and the swimmer, using the local drag approximation

of Resistive Force Theory. We denote by s the arc

length coordinate on the i-th link (0� s� 2a) mea-

sured from the juncture point and by viðsÞ the velocity
of the corresponding point. We also introduce the unit

vectors e1 ¼
cosðhÞ
sinðhÞ

� �
, e?1 ¼ � sinðhÞ

cosðhÞ

� �
, and

e2 ¼
cosðhÞ
� sinðhÞ

� �
; e?2 ¼ � sinðhÞ

� cosðhÞ

� �
in the direc-

tions parallel and perpendicular to each link and write

the position of the point at arc length s as xiðsÞ ¼

x

0

� �
þ sei where x is the coordinate of the joint

between the two valves. By differentiation, we obtain,

viðsÞ ¼
_x

0

� �
þ s _hie

?
i : ð2Þ

The density of the force f i acting on the i-th segment is

assumed to depend linearly on the velocity. It is

defined by

f iðsÞ :¼ �n viðsÞ � eið Þei � g viðsÞ � e?i
� �

e?i ; ð3Þ

where n and g are respectively the drag coefficients in

the directions of ei and e?i measured in N sm�2. We

thus obtain

F ¼
Z 2a

0

f1ðsÞ dsþ
Z 2a

0

f2ðsÞ ds ¼ 0 ð4Þ

Using (2) and (3) and since we are neglecting inertia

we have

Fx¼�4an _xcos2ðhÞ�4ag _xsin2ðhÞþ4a2g _hsinðhÞ¼0

Fy¼0

(

ð5Þ

Observe that Fy vanishes since the scallop is symmet-

ric with respect to the ex axis. From (5) is now easy to

determine the evolution of x

_x ¼ V1ðhÞ _h ¼ ag sinðhÞ
n cos2ðhÞ þ g sin2ðhÞ

_h ð6Þ

2.2 Ideal fluid

While in the previous subsection we faced the problem

of the self-propulsion of the scallop immersed in a

viscous fluid, here we focus on the case in which it is

immersed in an ideal inviscid and irrotational fluid.

Let us make the same assumptions on the parameters a

and b that have been done in the previous section,

moreover let us denote by X the region of the plane

occupied by the swimmer in a reference configuration.

Assigning ðx; hÞ as functions of time let us call

f ðx;hÞ : X ! R2

f 7!f ðx;hÞðfÞ

the function which maps each point of the swimmer

f 2 X in f ðx;hÞðfÞ that is its position in the plane at timeFig. 1 The scallop configuration

Meccanica (2017) 52:3499–3511 3501

123



t. Supposing that h can be assigned and that there are

not other external forces, our aim is to find equations

that describe the motion of x. To this end we call v the

velocity of the fluid, its motion is given by the Euler

equations for ideal fluids

vt þ v � rv ¼ �rp ð7Þ

with the incompressibility condition div v ¼ 0. More-

over we impose a Neumann boundary condition, that

is that the normal component of the velocity of the

fluid has to be equal to the normal component of the

velocity of the body.

v f ðx;hÞ
� �

� of ðx;hÞ

ox
_xþ of ðx;hÞ

oh
_h

� �
; nðx;hÞ

� 	
¼ 0

where
D
�
E

denotes the scalar product, nðx;hÞ is the

external normal to the set f ðx;hÞðXÞ. To find the

evolution of x we should solve the Lagrange equation

d

dt

oTb

o _x
¼ oTb

ox
þ F ð8Þ

where Tb is the kinetic energy of the body and F the

external pressure force acting on the boundary of the

swimmer. As already done in [5, 13, 15] this force F

can be reinterpreted as a kinetic term, precisely thanks

to the fact that we are in an ideal fluid. Therefore the

system body? fluid is geodetic with Lagrangian given

by the sum of the kinetic energy of the body (Tb) and

the one of the fluid (Tf ):

Ttot ¼ Tb þ Tf

The kinetic energy of the body is the sum of the kinetic

energy of the two ellipses, that reads

Tb ¼ m
�
_x2 þ a2 _h2 � 2a _x _h sin h

�
þ I _h2 ð9Þ

with m the mass of the scallop and I is the moment of

inertia.

Since we are dealing with an ideal fluid and thus

inertial forces dominates over the viscous ones, in order

to derive the kinetic energy of the fluidwewillmake use

of the concept of added mass. In fluid mechanics, added

mass or virtual mass is the inertia added to a system

because an accelerating or decelerating bodymustmove

(or deflect) some volume of surrounding fluid as it

moves through it. Added mass is a common issue

because the object and surrounding fluid cannot occupy

the same physical space simultaneously [4]. For

simplicity this can be modeled as some volume of fluid

moving with the object, though in reality ‘‘all’’ the fluid

will be accelerated, to various degrees.

Therefore the kinetic energy of the fluid will be

given by the sum of the kinetic energy of the added

masses of the two ellipses.

Tf ¼ 1

2
vT1M1addv1 þ

1

2
vT2M2addv2 ð10Þ

where Miadd are the added mass matrices relative to

each ellipse which are diagonal, and vi the velocities

of their centre of mass, expressed in the frame solidal

to each ellipse with axes parallel and perpendicular to

the major axis. Finally we can compute the total

kinetic energy of the coupled system body? fluid that

is

Ttot ¼m
�
_x2þa2 _h2�2a _x _hsinh

�
þ I _h2 þm11 _x

2 cos2 h

þm22

�
_x2 sin2 hþa2 _h2�2a _x _hsinh

�
þm33

_h2

ð11Þ

where mii; i ¼ 1. . .3, are the diagonal elements of the

mass matrices.

Following a procedure introduced by Bressan [5],

in order to end up with a control system we perform a

partial Legendre transformation on the kinetic energy

defining

p ¼ oTtot

o _x
¼ 2 _x

�
mþ m11 cos

2 hþ m22 sin
2 h
�

� 2a _h sin hðmþ m22Þ

from which we derive

_x ¼ pþ 2a _h sin hðmþ m22Þ
2ðmþ m11 cos2 hþ m22 sin

2 hÞ
ð12Þ

There is a wide spread literature regarding the com-

putation of added masses of planar contours moving in

an ideal unlimited fluid. We will use in the rest of the

paper the added mass coefficients for the ellipse

computed in [16]: the added mass in the direction of

the major axis is m11 ¼ qpb2, the one along the minor

axis is m22 ¼ qpa2. Notice now that writing the

Hamilton equation relative to p, and recalling (11)

_p ¼ oTtot

ox
¼ 0

thus, if we start with pð0Þ ¼ 0, p remains null for all

times and the evolution of x becomes
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_x ¼ V2ðhÞ _h ¼ a sin hðmþ qpa2Þ
mþ qpb2 cos2 hþ qpa2 sin2 h

_h

ð13Þ

Theorem 1 (Scallop Theorem) Consider a swimmer

dynamics of the type

_x ¼ VðhÞ _h ð14Þ

Then for every T-periodic deformation (i.e. stroke) one

has

Dx ¼
Z T

0

_xðtÞ dt ¼ 0 ð15Þ

that is, the final total translation is null

Proof Define the primitive of V by

FðhÞ ¼
Z h

0

VðrÞ dr ð16Þ

Then using (14)

Dx ¼
Z T

0

VðhðtÞÞ _hðtÞ dt

¼
Z T

0

d

dt
FðhðtÞÞ dt ¼ FðhðTÞÞ � Fðhð0ÞÞ ¼ 0

by the periodicity of t ! hðtÞ. h

Note that the dynamics (6) and (13) are of the type

(14), therefore the scallop theorem is valid either in

the viscous and in the ideal case.

3 Controllability

In this section we will give two different strategies to

overcome the scallop theorem, both based on a

switching mechanism. In particular we produce some

partial and global controllability results for this

switching systems.

3.1 Partial controllability in x

We have previously seen that if our scallop is

immersed either in an ideal fluid or in a viscous one,

if it experiences periodical shape changes it is not able

to move after one cycle. Here we would like to find a

way to overcome this problem. The main idea is to be

able to change the dynamics during one periodical

stroke and see if in this way we obtain a net motion and

in particular some controllability. In order to do this

we have to introduce the Reynolds number, a number

which characterizes the fluid regime. It arises from the

adimesionalization of the Navier–Stokes equations

and it is defined by

Re ¼ VLq
g

¼ VL

m
ð17Þ

where V is the characteristic velocity of the body

immersed in the fluid, L its characteristic length, q the

density of the fluid, g its viscosity and m ¼ g
q is the

kinematic viscosity. The Reynolds number quantifies

the relative importance of inertial versus viscous

effects.

3.1.1 g ¼ gðj _hjÞ

Let us recall that if v(t, x) is a solution of the Navier

Stokes equations, the function uðt; xÞ ¼ vðct; xÞ, c[ 0

is still a solution of the Navier Stokes equations but

with a different viscosity. Now assume that the

absolute value of the speed _h is very high, this means

that rescaling the time of the solution of the Navier

Stokes equations, we end up with a viscosity g that is

very small and therefore the Reynolds number is large.

In this case the inertial forces dominates over the

viscous ones, so we can consider the scallop immersed

in an ideal fluid and thus use the dynamics (13). Then

we suppose that at a certain point of the cycle the

absolute value of the angular velocity is very small. In

this case we have a solution of the Navier Stokes

equations with a very high viscosity g. Thus we can

suppose that the scallop is immersed in a Stokes fluid,

since the viscous effects dominates the inertial ones

and use the dynamics (6). This situation is well

represented by a switching system in which the change

of the dynamics is determined by the modulus of the

angular velocity _h: if it is big (i.e j _hj[M withM[ 0)

we use the ideal approximation and the corresponding

dynamics; if it is small (i.e j _hj\M withM[ 0) we use

instead the viscous approximation and the relative

dynamics.The switching rule in Fig. 2 should also

consider what happens when j _hj ¼ M. However in the

sequel we are going to exhibit a function _hwhich stays
in M or �M for only a set of times of null measure.

Our aim is to prove that using this kind of

switching we are able to have a net displacement,
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both forward or backward, using periodic continu-

ous functions _h
According to what said before we can prescribe the

angular velocity _h and thus use it as a control function
u. Therefore we write the system as a control system

that is

_xðtÞ ¼ VwðtÞðhðtÞÞuðtÞ;
_hðtÞ ¼ uðtÞ
wðtÞ ¼ h½u�ðtÞ
xð0Þ ¼ x0; hð0Þ ¼ h0 wð0Þ ¼ w0

8>>><
>>>:
where u is continuous and

h½u� ¼
2 if juj[M

1 if juj\M




Moreover let us call Fi the primitives of the

functions Vi, for i ¼ 1; 2. They are :

F1 ¼
ag arctan hð

ffiffiffiffiffiffi
g�n
g

q
cos hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðg� nÞ
p ;

F2 ¼
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ a2qp

p
arctan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�b2Þqp

p
cos hffiffiffiffiffiffiffiffiffiffiffiffi

mþa2qp
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qpða2 � b2Þ

p

Theorem 2 With the previous switching scheme we

are able to overcome the Scallop paradox, thus to

move both forward and backward. More precisely

there are r[ 0 small enough (see Remark 1), a final

time T [ 0 and a continuous T-periodic control

function u(t), which make the system move between

two fixed points along the x axis, x0 and

xf 2�x0 � r; x0 þ r½, in the time T.

Proof First case uð0Þ[M

In this case we start with the ideal approximation

(i.e w0 ¼ 2)

VwðtÞðhðtÞÞ ¼

V2ðhðtÞÞ 0\t\t1;

V1ðhðtÞÞ t1\t\t2

V2ðhðtÞÞ t2\t\t3

V1ðhðtÞÞ t3\t\t4

V2ðhðtÞÞ t4\t\T

8>>>>>><
>>>>>>:

ð18Þ

with

t1 :¼ inf fT [ t[ 0 j uðtÞ ¼ Mg and

t2 :¼ inf fT [ t[ t1 j uðtÞ ¼ �Mg and

t3 :¼ inf fT [ t[ t2 j uðtÞ ¼ �Mg and

t4 :¼ inf fT [ t[ t3 j uðtÞ ¼ Mg

assuming that inf ð;Þ ¼ þ1. The net motion is then

calculated as

Dx ¼ ðF2 � F1Þðhðt1ÞÞ þ ðF2 � F1Þðhðt3ÞÞ
� ðF2 � F1Þðhðt2ÞÞ � ðF2 � F1Þðhðt4ÞÞ:

ð19Þ

taking into account that hð0Þ ¼ hðTÞ and that ðF2 �
F1ÞðhðtiÞÞ does not appear in the equation if ti ¼ þ1.

We want to prove that we are able to move choosing

a suitable periodic evolution for our control function
_h ¼ u. Let us call the unknowns hi :¼ hðtiÞ, for

i ¼ 1. . .4. First of all we show that Dx as function of

ðh1; h2; h3; h4Þ is surjective in �0; p
2
½��0; p

2
½��0; p

2

½��0; p
2
½.

We are going to prove that

rðDxÞ ¼

�ðV2 � V1Þðh1Þ

ðV2 � V1Þðh2Þ ðV2 � V1Þðh3Þ

ðV2 � V1Þðh4Þ

0
BB@

1
CCA 6¼ 0

in ðh1; h2; h3; h4Þ 2�0;
p
2
½��0; p

2
½��0; p

2
½��0; p

2
½

so that (19) is a submersion and surjective as required.

Recall that the function ðF2 � F1Þð�Þ is always

increasing indeed

ðF2�F1ÞðhÞ
oh

¼
�
� ag

ncos2 hþgsin2 h

þ maþqpa2

mþqpb2cos2hþqpa2 sin2h

�
sinh

¼
sinhcos2h

�
maðg�nÞþqpðna2�gb2Þ

�
ðmþqpb2cos2hþqpa2 sin2 hÞðncos2 hþgsin2hÞ

[0

for h2�0;p
2
½ and b\\a

ð20Þ

Fig. 2 The rule of the classical switching
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From this immediately follows that rðDxÞ 6¼ 0.

The surjectivity ensures us that for any fixed Dx in a
neighborhood of zero we are always able to find a

ðh1; h2; h3; h4Þ which realize the desired displacement.

Moreover, thanks to the symmetry properties of the

function defining the displacement, also each of the

4-uplets ðh1; h4; h3; h2Þ, ðh3; h4; h1; h2Þ and ðh3; h2; h1;
h4Þ realizes the same displacement. Supposing Dx[ 0

and recalling that the function ðF2 � F1Þð�Þ is increas-
ing, then the angles ðh1; h2; h3; h4Þ will have a

suitable order that can or not be coherent with the

switching rule and the periodicity of _h. If their sorting

is appropriate we will choose a control _h ¼ u such that

hðtiÞ ¼ hi. Otherwise at least one of the 4-uplets above

will be right. Thus defining ðh0

1; h
0

2; h
0

3; h
0

4Þ this latter
uple, we take a control u such that hðtiÞ ¼ h

0

i. This

choice of the control will lead us to obtain the desired

positive displacement.

For example suppose that the uplet ðh1; h2; h3; h4Þ
which realizes the desired positive displacement,

satisfy h3 [ h4 [ h1 [ h2. Indeed

ðF2 � F1Þðh1Þ � ðF2 � F1Þðh2Þ[ 0

¼) Dx[ 0

ðF2 � F1Þðh4Þ � ðF2 � F1Þðh3Þ\0

To respect the switching scheme in the time interval

ðt2; t3Þ the function _h should decrease and thus

h2 [ h3. The latter is not satisfied by ðh1; h2; h3; h4Þ,
but taking ðh0

1; h
0

2; h
0

3; h
0

4Þ ¼ ðh3; h4; h1; h2Þ,we have

the same Dx and the switching scheme is now

respected (Fig. 3).

Analogous arguments can be used if Dx\0.

Second case �M\uð0Þ\M

In this case we start form the viscous approximation

(i.e w0 ¼ 1). Using arguments similar to the ones used

before to compute Dx and to prove its surjectivity, and
redefining accordingly the times ti for i ¼ 1. . .4. we

have that

Dx ¼ ðF2 � F1Þðhðt2ÞÞ þ ðF2 � F1Þðhðt4ÞÞ

� ðF2 � F1Þðhðt1ÞÞ � ðF2 � F1Þðhðt3ÞÞ:
ð21Þ

going on as before, exploiting the surjectivity and the

symmetry of the last function, we are able to find a

control u that realizes the desired displacement.

Third case uð0Þ\�M

This case is analogous to the first one.

In conclusion we have proved that wherever we

start on the switching diagram we are able to achieve a

net displacement either positive or negative and then

we have the controllability. h

Remark 1 Note that the value of r in the the last

theorem is the maximal value that the function

jDxðh1; h2; h3; h4Þj can assume in �0; p
2
½��0; p

2
½��0;

p
2
½��0; p

2
½. Thus the constant r is independent from x

and h.
To cover distances jDxj � r we should divide the

spatial interval in N subintervals of length less than r,

each one realized by a u of period T
N
. RepeatingN times

this control u we are able to reach the desired

displacement.

3.1.2 g ¼ gðsignð _hÞÞ

While in the previous subsection we supposed that the

change in the fluid regime was linked to the magnitude

of the modulus of the angular velocity, here we would

like to link the two fluids approximations to the sign of
_h. This can be represented by a switching scheme as in

Fig. 3 This figure shows a possible choice of hðtÞ which

realizes a positive displacement and respects the switching

scheme Fig. 4 The rule of the classical switching
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Fig. 4. If the valves are opening ( _h[ 0) we suppose

that the scallop is immersed in an ideal fluid; instead

when the valves are closing ( _h\0) we assume the

scallop immersed in a viscous fluid. This idea is

inspired by [6] where the fluid has a pseudoelastic

nature that helps the valve opening but resist the valve

closing. While [6] shows that only the moment of the

scallop is subject to this pseudo-elastic dependence,

we suppose instead that the forces are affected by this

dependence, since we are not considering the moment

equation. Despite the less physical evidences then [6],

we conjecture that the model describes a different

response of the fluid to the opening and closure of the

scallop’ valves, since it is not difficult to immagine the

following situation. We suppose that during the valves

closure the fluid opposes a greater resistance due to its

compression. Instead when the valves are opening, the

fluid assists this movement, and thus we have a small

resistance. Therefore, according to our assumption the

viscosity of the fluid changes between the opening and

the closing of the valves, switching from one constant

value to another one. This model is also mathemati-

cally interesting because it is an important example of

discontinuous hybrid switching system.

The system can be written as a control system, in

which the control function u(t) is the angular velocity _h:

_xðtÞ ¼ VwðtÞðhðtÞÞuðtÞ;
_hðtÞ ¼ uðtÞ
wðtÞ ¼ h½u�ðtÞ
xð0Þ ¼ x0; hð0Þ ¼ h0 wð0Þ ¼ w0

8>>><
>>>:
where the control u is continuous and now

h½u� ¼
2 if u[ 0

1 if u\0




Theorem 3 With the classical switching scheme (see

Fig. 4) we are able to overcome the scallop theorem

but moving only forward. That is, there are r[ 0

small enough, a time T [ 0 and a continuous T-

periodic control function, which make the system move

between two fixed configurations x0 and xf with

xf 2 ½x0; x0 þ r½, in the time T.

Proof Let us suppose to start with the ideal approx-

imation, so that we are opening the valves

uð0Þ[ 0 and w0 ¼ 2;

VwðtÞðhðtÞÞ ¼
V2ðhðtÞÞ 0\t\t1;

V1ðhðtÞÞ t1\t\t2;

V2ðhðtÞÞ t2\t\T:

8><
>: ð22Þ

with

t1 :¼ inf fT [ t[ 0 j uðtÞ ¼ 0g and

t2 :¼ inf fT [ t[ t1 j uðtÞ ¼ 0g

with inf ð;Þ ¼ þ1. The net motion can be computed

as

Dx ¼ F2ðhðt1ÞÞ þ F1ðhðt2ÞÞ � F1ðhðt1ÞÞ � F2ðhðt2ÞÞ:
ð23Þ

recalling as before that hð0Þ ¼ hðTÞ. We want to prove

that we are able to move choosing a suitable periodic

evolution for our control function _h ¼ u. Let us call

h1 :¼ hðt1Þ and h2 :¼ hðt2Þ, first of all we show thatDx
as function of ðh1; h2Þ is surjective in �0; p

2
½��0; p

2
½.

Like before we prove that

rðDxÞ ¼
ðV2 � V1Þðh1Þ

ðV1 � V2Þðh2Þ

 !
6¼ 0

in ðh1; h2Þ 2�0;
p
2
½��0;p

2
½

hence (23) is a submersion and surjective as required.

Notice that

Dx ¼ ðF2 � F1Þðh1Þ � ðF2 � F1Þðh2Þ

If we chose a control such that h1 [ h2 then Dxwill be
positive, while if h1\h2 then Dx will be negative. But
since we need to respect the switching rule the last

case could not be achieved because after t1 _h ¼ u\0

and thus we are closing the valves therefore hðt2Þ ¼ h2
will be necessarily less than hðt1Þ ¼ h1.

The case where uð0Þ\0 is analogous to the

previous one.

In conclusion we have proved that for every choice

of w0 we are able to achieve a net displacement but

only forward. h

Thermostatic-like case In this section we introduce

a mathematical variant of the previous switching in

order to be able to move both forward and backward

and therefore have a result of partial controllability in

x. Our approach is to relate the variation of u ¼ _h 2 R

to the fluid regime, by a delayed thermostat, an
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operator with memory, introduced rigorously in [19],

consisting of two different thresholds for passing

separately from one edge to the another one and vice-

versa. This idea was inspired by [18] in which the

Scallop opening and closing is actuated by an external

magnetic field, and thus a delay mechanism is

reasonable. More precisely we consider (like in [18])

that an external magnetic field (H) is able to determine

the opening and the closure of the valves, therefore the

sign of _h as in Fig. 5a. Composing it with the

switching of Fig. 4 we obtain the graph of Fig. 5b,

which is the same of Fig. 4 if signðHÞ ¼ signð _hÞ, and
this is a natural assumption for example in the linear

relation _h ¼ cH with c[ 0. Then it is natural to

consider an hysteresis phenomena between H and

sgnð _hÞ as in Fig. 5c. Composing this relation with the

dynamics switching introduced before (Fig. 4), we get

Fig. 5d. Subsequently, still supposing _h ¼ cH or more

generally _h ¼ f ðHÞwith f increasing and f ð0Þ ¼ 0, we

will end up with a delay phenomena on the type of

fluid regime (see Fig. 6).

We suppose that the dynamics V depends on the

angle h 2�0; p
2
½, and also depends on a discrete variable

w 2 1; 2f g, whose evolution is governed by a delayed

thermostatic rule, subject to the evolution of the

control u. In Fig. 6 the behavior of such a rule is

explained, correspondingly to the choice of a fixed

threshold parameter e[ 0. The output w 2 f1; 2gmay

jump from 2 to 1 only when the input u is equal to �e,
and must jump when U coming from the right (i.e.

from values larger than or equal to �e), possibly goes

below the threshold �e; it may jump from 1 to 2 only

when u is equal to e, and must jump when it comes

from the left (i.e. from values smaller than or equal to

e) possibly goes above the threshold e. In all other

situations it remains locally constant in time. In

particular, when u[ e then w is equal to 2, and when

u\� e then w is equal to 1.

The controlled evolution is then given by

_xðtÞ ¼ VwðtÞðhðtÞÞuðtÞ;
_hðtÞ ¼ uðtÞ
wðtÞ ¼ he½u�ðtÞ
xð0Þ ¼ x0; hð0Þ ¼ h0 wð0Þ ¼ w0

8>>><
>>>:

ð24Þ

where he �½ � represents the thermostatic delayed rela-

tionship between the input u and the output w. Note

that the initial valuew0 2 1; 2f gmust be coherent with

the thermostatic relation: w0 ¼ 2 (resp. w0 ¼ 1)

whenever _h0 [ e (resp. _h0\� e).
We start now to analyse the value of the displace-

ment Dx depending of the value of u proving the

following result:

Theorem 4 Let xf 2�x0 � r; x0 þ r½ with r[ 0 small

enough. Then, there always exits a time T [ 0 and a

continuous T-periodic control function _h ¼ u (hence a

periodic h) such that one can move from x0 to xf in time

T when the delayed thermostat is taken into account.

In other words the system (24) is partially controllable

in x.

Proof First case

�e\uð0Þ\e and w0 ¼ 1

then we have

(a) (b)

(c) (d)

Fig. 5 Relation between the magnetic field and the angular

velocity Fig. 6 The thermostatic approximation
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VwðtÞðhðtÞÞ ¼
V1ðhðtÞÞ 0\t\t1

V2ðhðtÞÞ t1\t\T:



ð25Þ

where t1 is the first time for which u goes through e, i.e.

t1 :¼ inf fT [ t[ 0 j uðtÞ ¼ eg

and T is the final time. The displacement is then

Dx ¼ F1ðhðt1ÞÞ � F1ðhð0ÞÞ þ F2ðhð0ÞÞ � F2ðhðt1ÞÞ:
ð26Þ

recalling as before that hð0Þ ¼ hðTÞ.
We call hðt1Þ ¼ h1 and we want to prove that we

able to obtain Dx ¼ c; 8 jcj\r using a suitable peri-

odic control function. In order to do this we show that

Dxðh1Þ is surjective in a neighborhood of zero. First of
all we compute the derivative and show that it is

different from 0 and negative.

oDx
oh1

¼ V1ðh1Þ � V2ðh1Þ ¼
�

ag sin h1
n cos2 h1 þ g sin2 h1

� ðmaþ qpa2Þ sin h1
mþ qpb2cos2h1 þ qpa2 sin2 h1

�

¼
sin h1 cos2 h1

�
� maðg� nÞ � qpðna2 � gb2Þ

�
ðmþ qpb2cos2h1 þ qpa2 sin2 h1Þðn cos2 h1 þ g sin2 h1Þ

6¼ 0

for h1 2�0;
p
2
½

Notice also that since in our assumptions b is

negligible with respect to a, i.e b\\a, we have that

gb2\\na2 and thus the derivative is always negative
and consequently the Dx is decreesing. We are

interested in h1 2�0; p2 ½. Since the derivative of the

function defining the displacement is different from 0

in �0; p
2
½, (26) is locally invertible. Thus, since the

inverse image of 0 is h0 then the inverse image of a

neighborhood of 0 is a neighborhood of h0. Finally,
recalling that Dx is decreasing, we can conclude that

(26) can be positive or negative i.e. if we chose a

control such that h1\h0 the displacement will be

positive instead if h1 [ h0 it will be negative. In both

cases the switching rule is respected thanks to the

presence of the thermostat (Fig. 7).

Second case

�e\uð0Þ\e and w0 ¼ 2

then we have

VwðtÞðhðtÞÞ ¼
V2ðhðtÞÞ 0\t\t1

V1ðhðtÞÞ t1\t\T:



ð27Þ

where t1 is the first time for which u goes through �e

t1 :¼ inf fT [ t[ 0 j uðtÞ ¼ �eg

and T the final time. The displacement is

Dx ¼ F2ðhðt1ÞÞ � F2ðhð0ÞÞ þ F1ðhðTÞÞ � F1ðhðt1ÞÞ:
ð28Þ

Calling again hðt1Þ :¼ h1 also in the case we verify the
surjectivity showing that the derivative of the dis-

placement is different from zero.

Hence (28) is locally invertible and the inverse image

of a neighborhood of 0 is a neighborhood of h0. We can

conclude as in the previous case that (28) can be either

positive or negative choosing a suitable control.

Third case

uð0Þ[ e and w0 ¼ 2;

VwðtÞðhðtÞÞ ¼
V2ðhðtÞÞ 0\t\t1;

V1ðhðtÞÞ t1\t\t2;

V2ðhðtÞÞ t2\t\T:

8><
>: ð29Þ

with

t1 :¼ inf fT [ t[ 0 j uðtÞ ¼ �eg and

t2 :¼ inf fT [ t[ t1 j uðtÞ ¼ eg

The net motion is

Dx ¼ F2ðhðt1ÞÞ þ F1ðhðt2ÞÞ � F1ðhðt1ÞÞ � F2ðhðt2ÞÞ:
ð30Þ

recalling that hð0Þ ¼ hðTÞ.
Also in this case we want to prove that we are able

to move both forward or backward. Therefore we

Fig. 7 A possible choice of hðtÞ starting from 0\uð0Þ\e
which realizes a positive displacement
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show that Dx is surjective in �0; p
2
½��0; p

2
½ as in the non

hysteretic case. We compute the gradient and show

that it is never null

rðDxÞ ¼
ðV2 � V1Þðh1Þ
ðV1 � V2Þðh2Þ

� �
6¼ 0

in ðh1; h2Þ 2�0;
p
2
½��0; p

2
½

hence (30) is a submersion and surjective as required.

Notice that

Dx ¼ ðF2 � F1Þðh1Þ � ðF2 � F1Þðh2Þ

and recall that the function ðF2 � F1Þð�Þ is always

increasing. Hence, if we use a control such that

h1 [ h2 the Dx will be positive, while if h1\h2 then

Dx will be negative. Also in this case both the

alternatives can be achieved respecting the switching

rule. Therefore we are able to obtain the desired

displacement.

Fourth case The case where uð0Þ\� e is analo-
gous to the previous one.

In conclusion we have proved that for every choice

of w0 we are always able to find a periodic and

continuous control _h ¼ u that allows us to obtain the

desired displacement. The system (24) is then partially

controllable in x. h

Remark 2 The introduction of the thermostat is

essential because allows us to achieve displacements

of every sign and thus the controllability result in x.

This fact is strictly linked to the presence of the

thresholds, indeed we are allowed to move between

them without changing dynamics and therefore obtain

values h1\h2 either h1 [ h2, and thus move both

forward and backward.

Remark 3 Note that the maximal value of r in the last

theorem is jDxðp
2
Þj if �e\uð0Þ\e, and jDxðp

2
; 0Þj if

�e\uð0Þ or uð0Þ[ e. Thus it is always independent
from x and h.

To cover distances jDxj � r we should divide the

spatial interval in N subintervals of length less than r,

each one realized by a u of period T
N
. RepeatingN times

this control u we are able to reach the desired

displacement.

3.2 Global controllability result

In this subsection we are interested in studying

whether it is feasible for the system of the scallop to

move between two fixed configurations (ðx0; h0Þ and
ðxf ; hf Þ). This part add something to the previous one,

since we are prescribing both the initial and final

positions and angles. The following holds:

Theorem 5 Let A and B be two fixed positions along

the x-axis and h0; hf two fixed angles. Then, we are

always able to find a suitable control function u(t) such

that the scallop systemmoves between A and B passing

from hð0Þ ¼ h0 to hðTÞ ¼ hf , where T is a suitable big

enough final time. Moreover such function u(t)

respects the switching rules modeling the dependence

of the viscosity g from j _hj (Fig. 2) and from signð _hÞ
with the thermostat, (Fig. 6). In other words the system

(24) is controllable.

Proof Let u(t) the periodic function that makes the

system move between A and B with final angle h0
during a time t

0
. We have proved the existence of such

a function with both switching rules, in the previous

subsection. Now whatever wðt0 Þ we open or close the

valves respecting the switching rule in Figs. 2 or 6

respectively until we reach the desired angle hf . We

call t
00
the time in which we have hf and C the point in

which we are arrived. Now starting from C with wðt00 Þ
we move to B using another periodic u(t) (hence hðtÞ
periodic), whose existence is ensured from Theorem 4

(Fig. 8). h

4 Numerical examples

In this section we will show, through numerical

simulations, that our theoretical predictions on the

controllability of the Scallop along x are good.

Moreover we will also describe how it is possible to

obtain the same results removing the continuity

hypothesis on _h. In what follows the pictures are all

relative to the controllability result which follows the

thermostatic switching scheme (see Fig. 6) that is the

most interesting one. Similar results can be obtained

Fig. 8 This figure represents one of the cases considered in the

proof of Theorem 5
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analogously using the other switching described in

Fig. 2.

Let us suppose to start with wð0Þ ¼ 2 which means
_hð0Þ[ e, the following pictures show a possible

choice of the control _h to obtain a displacement

Dx ¼ 1 cm, using the following parameters: a ¼ 2 cm,

b ¼ 0:1 cm, g ¼ 2Nsm�2, n ¼ 1Nsm�2 m ¼ 1 g and

q ¼ 1 gcm�3. More precisely in these simulations we

decided to use a periodic polynomial control hðtÞ that
can be uniquely determined imposing the following

constraints.

_hð0Þ ¼ _h0 _hðt1Þ ¼ �e _hðt2Þ ¼ e _hðTÞ ¼ _h0

hð0Þ ¼ h0 hðt1Þ ¼ h1 hðt2Þ ¼ h2 hðTÞ ¼ h0

ð31Þ

where h1 and h2 are determined by the numerical

inversion of the function Dx (26) and we chose

t1 ¼ 2 s, t2 ¼ 6 s and T ¼ 7 s.

It is easy to see that (since we want a positive

displacement h1 [ h2) _h respects the thermostatic

switching rule and that after a time T ¼ 7 s we have

gained the desired displacement of 1 cm.

Starting from these simulations we want to build a

piecewise constant control, instead of a continuous

one, to obtain the same displacement. We note that in

the case of delayed thermostat a discontinuous input is

in general not allowed due to the presence of memory.

The main difficulty of using a discontinuous control is

to chose the switching times. Having in mind the

previous simulations we can take the switching times

of the continuous control and build a piecewise

constant control which satisfies the constraints (31).

Referring to the simulations in Fig. 9 we get.

These simulations actually prove that the displace-

ment does not depend on the whole control trajectory

but only on the values that the angle h and its

derivative _h assume in the switching times.

5 Conclusions

In this paper we analyze the system of a scallop

proposing some strategies to overcome the famous

scallop theorem. The main idea is to introduce a

switching in the dynamics related to the variation of

the angular velocity. This is done in two different

ways, fact that helps to brake the reversibility of the

equation of motion producing a net displacement.

Original tool is also the introduction of the thermostat

to model a delay in the change of fluid regime, and we

show that it is crucial to gain both forward and

backward motion. Moreover numerical simulations

suggest also a way to use the switching schemes

without necessarily using a continuous control input.

Namely they show that it is possible to obtain the

same displacement using a piecewise constant control

(see Fig. 10) and choosing the switching times

according to the ones used in the continuous case

(see Fig. 9).
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