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Abstract This paper presents a novel asymmetric

parallel mechanism with three degrees of freedom,

with properties of self-aligning called Triflex II.

Triflex II is composed of three legs: PRRRþ PRRU þ
PRRS that connect a moving platform to the base. This

paper discusses the properties of asymmetry and self-

aligning of the mechanism presenting and discussing

the complete analytical mathematical modeling of

direct and inverse kinematics of position and velocity,

using geometrical approaches. It is presented also a

study of singularities and workspace limits. In order to

validate the developed kinematic modeling a numer-

ical simulation is presented.

Keywords 3-DOF parallel mechanism � Self-
aligning � Asymmetrical kinematic chain � Forward
and inverse kinematics

1 Introduction

The development of parallel mechanisms starts in

early 1950’s with the Stewart–Gough platform. In

1955, Gough built a prototype of a 6-DOF closed-loop

parallel manipulator for positioning and orientation of

a moving platform to test tire wear [14]. In 1965,

Stewart presented a 6-DOF closed-loop parallel

manipulator for use as a flight simulator [1, 14].

Early research on parallel manipulators were con-

centrated primarily on 6-DOF parallel manipulators

based on Stewart–Gough platform. In the 80’s and

90’s, there has been an increasing interest in the

development of parallel manipulators. In the 2000’s

parallel manipulators with fewer than 6-DOF, so

called low-DOF parallel manipulators, have attracted

the attention of industry and academia because several

industrial applications requires motions with less than

6-DOF. A low-DOF parallel manipulator exhibits

interesting features compared to 6-DOF parallel

manipulators such as: simpler mechanical design,

lower manufacturing and operating costs, larger

workspace volume (reducing the legs interference),

and simpler control [4].

Scientific studies on low-DOF parallel manipula-

tors were concentrated primarily on symmetric
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kinematic structures, proving to be one of the main

area of study in the robotics research community. Di

Gregorio and Parenti Castelli [3] presented a 3-DOF

parallel robot with three RRPRR legs. They presented

the kinematic model and the singularity analysis for

this robot. Gosselin and Kong [6] presented a 3-DOF

translational parallel robot, with fully decoupled

input–output equations, in a Canadian provisional

patent application. Kim and Tsai [10] presented a

3-DOF translational parallel manipulator called Carte-

sian Parallel Manipulator with three PRRR legs.

In the last decade, some authors proposed asym-

metrical kinematic structure which exhibit interesting

features when compared to the symmetric one. Toz

and Kucuk [22] designed an asymmetric generalized

Stewart–Gough platform and developed a dimensional

optimization. The condition number and minimum

singular value of the Jacobian matrix are employed to

perform the dexterous workspace optimization. Li and

Huang [12] used the constraint-synthesis method to

develop the type synthesis of 4-DOF parallel manip-

ulators with full-cycle mobility. They enumerated

novel 4-DOF symmetrical and asymmetrical parallel

manipulators. Karouia and Hervé [9], presented the

structural synthesis of asymmetrical non-overcon-

strained 3-DOF spherical parallel mechanisms. They

developed the mobility analysis of the limbs and

analysed the geometrical conditions of the limb

assembly to achieve the spherical motion. Refaat

et al. [15] introduces four families of asymmetrical 3-

DOF rotational-translational parallel-kinematics

mechanisms based on Lie group theory and four novel

mechanisms were presented as representatives of the

four families. Lu and Hu [13], presented a family of

asymmetric 2UPU þ X parallel manipulators. They

analysed the kinematic characteristics, the singulari-

ties and their active/constrained forces for three

asymmetric 3-UPU; 2UPU þ SPR, and 2UPU þ
RPRU parallel manipulators. Gallardo et al. [5]

applied screw theory to investigate the kinematics of

a three-legged parallel manipulator with asymmetrical

limbs and decoupled motions. They developed the

forward kinematics and analyse the velocity and

acceleration of the parallel manipulator.

In 2013, Simoni et al. [19] presented a novel class of

parallel mechanism called Triflex which are 3-DOF

variable-configuration parallel mechanisms with self-

aligning that can change their form (base, legs ormoving

platform)without changing the characteristics ofmotion

of the moving platform. The change in form is managed

by additional passive/null degrees-of-freedom of self-

aligning. The kinematic structure of the Triflex was

inspired by the fully decoupled 3-DOF translational

parallel manipulators introduced by Gosselin and Kong

[6, 11] and Kim and Tsai [10] and it is based on a

symmetrical kinematic chain. Simoni et al. [20] pre-

sented the design and prototyping of a fully decoupled

3-DOF variable-configuration parallel manipulator with

self-aligningcalledTriflex I. Simoni et al. [21] presented

the kinematic analysis of the Triflex I using Davies

method. As presented by Simoni et al. [19–21] this new

class of parallel robots can be portable and they can be

installed in any place because it is only necessary to have

three independent vectors to fix the legs of the robot. The

fixation of the robot can be done by vaccum suckers or

magnetic depending on the material of the floor.

Also in 2013, Simas et al. [18] presented a novel

class of parallel manipulators with self-aligning called

Triflex II. Di Gregorio [2] presented the kinematic

analysis of a single-loop translational manipulator and

Di Gregorio and Simas [7] presented the dimensional

synthesis of the single-loop translational parallel

manipulator PRRR-PRPU inspired on Triflex II.

Simas and Di Gregorio [16] presented a general

technique to evaluate the effects od manufacturing

errors on positioning precision during design and as a

case study they analyses a special case o the Triflex II

with perpendicular axes. Simas and Di Gregorio [17]

also studied the geometric error effects on manipula-

tors’ positioning precision formulating a general

method and applying the method to another special

case of the Triflex II robot.

Up to now, only special cases of the Triflex II robot

were presented. This paper introduce the kinematic

analysis of the general Triflex II. The Triflex II is a

PRRR ? PRRU þ PRRS asymmetrical structure par-

allel mechanism with self-aligning and three transla-

tional degrees of freedom. Its kinematic chain is

asymmetrical and it exhibits interesting features when

compared with the Triflex I [19–21] and the special

cases of Triflex II presented in the literature

[2, 7, 16, 17].

The main feature of the kinematic structure is that

there is no requirement for precision of the bases of the

legs, or, the positioning of the legs, as well as their

orientations will be set in agreement with the
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configuration of the operating environment. Through-

out the paper, the equation for forward and inverse

position and differential kinematics are presented and

discussed, including an analysis of its workspace in

agreement with a study of singularities. Finally, the

forward and inverse kinematic equations proposals are

validated through trajectories defined for the active

joints of the Triflex II mechanism.

2 Triflex II mechanism

This section describes the topological kinematic

design of the Triflex II.

2.1 Conceptual design

Triflex II is a PRRRþ PRRU þ PRRS1 asymmetrical

variable-configuration parallel mechanism with self-

aligning. The design introduces a moving platform

connected to a base by three serial kinematic chains.

Figure 1 shows the conceptual design of the Triflex II.

Figure 2 presents the model of the Triflex II

mechanism developed on a 3D printer where the base

(the black piece) allows the fixing of the legs in

different positions and directions.

Each serial kinematic chain, or leg, receives a

designation in agreement with its last joint.

The first leg, called Lu, is a PRRU subchain fixed

with respect to the reference frame (Oo � xoyozo), by

vector vu. Leg Lu comprises of a prismatic joint Pu,

with displacement du, two rotative joints: ru1 and ru2
and a universal joint Up, centered at point Au, that

connects the leg to the moving platform. The prismatic

joint Pu, the rotative joints ru1 and ru2 and the first

rotation of the Up universal joint are directed accord-

ing to the unitary vector nu. The leg Lu has two links

with length lu1 and lu2.

The second leg, called Ls, is a PRRS subchain fixed

in relation to the reference frame (Oo � xoyozo) by

vector vs. Leg Ls comprises of a prismatic joint Ps with

displacement ds and two rotative joints: rs1 and rs2 and

a spherical joint Sp, centered at point As, that connects

the leg to the moving platform. The prismatic joint Ps

and the rotative joints rs1 and rs2 are directed according

to the vector ns. The leg Ls has two links with length ls1
and ls2.

The third leg, called Lr, is a PRRR subchain fixed in

relation to the reference frame (Oo � xoyozo) by the

vector vr. Leg Lr consists of a prismatic joint Pr with

displacement dr and two rotative joints: rr1 and rr2 and

a rotative joint Rp that connects the leg to the moving

platform. The prismatic joint Pr and the rotative joints

rr1; rr2 and Rp are directed according to the vector nr.

The leg Lr has two links with length lr1 and lr2 and the

point Ar defined by the intersection between the axis of

the rotative joint Rp and the plane of the moving

platform.

The moving platform is connected to the legs by

three points: Ar where leg Lr is attached, Au where leg

Lu is attached and As where leg Ls is attached. The

Oo

zo

xo yo

dr
Pr

rr1

rr2

Rp

lr1

lr2

Ar

nr

du

Pu

ru1

ru2

Up

lu1

lu2

Au

nu
ds

Ps

rs1

rs2

Sp

ls1

ls2As

ns

vu

vs

vr

β

Bu

Bs

Br

Ee1 e2

e3

Fig. 1 Triflex II asymmetrical and self-aligning parallel

mechanism

Fig. 2 Triflex II model built in a 3D printer

1 P indicates the actuated joint.
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sides of the moving platform have lengths e1 between

the point Ar and Au; e2 between the point Au and As and

e3 between the point As and Ar. On the moving

platform is defined the point E, called the point action,

where the end-effector will be attached.

An important constructive characteristic of the

Triflex II mechanism is the fact that the three points,

Au;As and Ar define a plane (called pr-plane as

detailed in Fig. 4) that has its normal vector, parallel to

the vector nr and containing the leg Lr and the second

rotative joint of the Up joint of the leg Lu.

The differences in the kinematic conception of

each leg, the dimensional independence of the lengths

of links and the sides of the moving platform

characterize the Triflex II mechanism as an asym-

metrical mechanism in agreement with Simoni et al.

[21]. The freedom to positioning and directioning of

the bases of each leg (defined by vectors vi and their

respectives ni, with i ¼ u; s; r) characterizes the Tri-

flex II robot as self-aligning from point of view of its

kinematic chain. The limitations in this self-aligning

will be discussed in the study of singularities in later

sections.

2.2 Geometry of the Triflex II

This section presents the preliminary equation and the

geometric settings for the Triflex II mechanism.

The first relation defines the coordinates of the

action point E on the moving platform. The action

point E is defined as a linear combination of Ar;Au and

As by

E ¼ KuAu þ KrAr þ KsAs ð1Þ

where Ku;Kr and Ks are known scalar values.

Without loss of generality, and in order to

simplify the kinematic modeling, the zo axis of the

reference coordinate system can be chosen parallel to

vector nr and the vector vr will be considered a null

vector. Thus according to these definitions the unitary

vectors nu; ns and nr have the following known

coordinates

nu ¼
nux

nuy

nuz

2
64

3
75 ns ¼

nsx

nsy

nsz

2
64

3
75 nr ¼

0

0

1

2
64

3
75 ð2Þ

and the vectors vu; vs and vr have the following known

coordinates

vu ¼
vux

vuy

vuz

2
64

3
75 vs ¼

vsx

vsy

vsz

2
64

3
75 vr ¼

0

0

0

2
64

3
75 ð3Þ

Considering nr parallel to zo axis, the displacements of

the moving platform is always perpendicular to zo
axis, and the set of four fixed angles: a; b; c and d,
shown in Fig. 3, can be defined in xoyo-plane, where

• a is the angle between xo and the projection of the

vector nu on the xoyo-plane (nuxy), obtained by the

relation: a ¼ Atan2ðnuy ; nuxÞ.
• b is the angle between the line extension of the first

universal joint axis, on leg Lu, and the line

extension of the side e1 on moving platform. The

angle b has a fixed value depending on how was

constructed Triflex II mechanism.

• c is an angle between x0 axis to the line extension

of the moving platform side e1. c can be computed

by the relation: c ¼ aþ b.
• d is the angle between the line extension of the

moving platform side e1 and the line of the moving

platform side e2. d is constant and depend on how

was constructed Triflex II mechanism.

2.3 Mobility analysis of the Triflex II

In agreement with Kong and Gosselin [11] the

instantaneous mobility of a parallel manipulator is

given by2

γ

β

δ

α
xo

yo

E

nuxy

Up
e1

e2

e3

Ar

As

Au

Fig. 3 Set of angles of the Triflex II moving platform

2 The notation of this follows Kong and Gosselin [11].
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M ¼ 6� cþ
Xm
i¼1

Ri ð4Þ

where, c is the order of wrench system of the moving

platform and Ri ¼ f i � 6þ ci is the redundant DOF of

leg i; moreover, f i and ci are the DOF and the wrench

system of leg i, respectively.

The Triflex II has a ðPRRRÞ þ ðPRRUÞ þ ðPRRSÞ
kinematic chain. The wrench system of each leg is

given by

• (PRRR): 2-f1-system;

• (PRRU): 1-f1-system;

• (PRRS): 0-system.

The wrench system of the Triflex II moving

platform is a 3-f1-system because, for parallel

manipulators, the wrench system is given by

W ¼
Xm
i¼1

W i ð5Þ

whereW i ¼
Tf i

j¼1 W i
j andW i

j is the wrench system of

joint j in leg i.

The redundant DOF of each leg of the Triflex II is

given by

• ðPRRRÞ : Ri ¼ 4� ð6� 2Þ ¼ 0;

• ðPRRUÞ : Ri ¼ 5� ð6� 1Þ ¼ 0;

• ðPRRSÞ : Ri ¼ 6� ð6� 0Þ ¼ 0.

Thus, the mobility of the Triflex II is given by

M ¼ 6� cþ
Xm

i¼1
Ri:

M ¼ 6� 3þ 0

M ¼ 3

As the wrench system of themoving platform is a 3-f1-

system, the twist system is 3-n0-system and Triflex II

has three translational degrees of freedom. The set of

actuated joints are Pu;Ps and Pr as indicated in Fig. 1.

3 Inverse and forward kinematics

This section presents the closed-form solution of the

inverse and forward kinematics of the Triflex II

mechanism. The procedure is based on algebraic

method and geometric analysis and some geometrical

entities needed, are defined below.

Considering three planes: pu; ps and pr, depicted on
Fig. 4, defined respectively by the vectors nu; ns and nr

and the points Bu;Bs and Br. Note that nu; ns and nr are

parallel with respect to the prismatic joints of legs

Lu; Lr and Lr respectively, and Bu;Bs and Br are the

respective displacement of such prismatic joints.

The pu-plane contains the point Au, the ps-plane
contains the point As and the pr-plane contains the

points Au;As;Ar;E and the whole moving platform.

In agree with the definitions above and Fig. 4, let us

to consider

• fu ¼ BuAu
��! ! on the pu-plane;

• fs ¼ BsAs
��! ! on the ps-plane and

• fr ¼ BrAr
��! ! on the pr-plane.

It is interesting to note that according to the

geometry of the Triflex II mechanism, for i ¼ u; s; r,

the links li1 and li2 of each leg Li are contained in pi-
plane, therefore the positions of the passive rotative

joints ri2 can assume angular values with positive or

negative signs. In other words, for each leg, two poses

are always possible. Combining the number of poses

for each leg we have a total of 23 ¼ 8 possible poses

for the Triflex II.

Based on these geometrical definitions of the

Triflex II mechanism, the inverse and forward kine-

matics models can be obtained in analytical way.

3.1 Inverse kinematics

The objective of the inverse kinematics is to compute

du; ds and dr displacements, as shown in Fig. 1, as

function of a desired coordinates of the point E on the

moving platform.

Ar

AsAu

πu
πs

πrBr

Bs

Bu

nr

ns

nu

E

fu
fs

fr

Fig. 4 Geometrical definitions to Triflex II mechanism
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In agreement with Eq. (1), the point E can be

computed as a linear combination of the points Au;As

and Ar.

Note that the coordinates of the point Au and As can

be written as function of the coordinates of the point Ar

and the angles c and d by

Au ¼ Ar þ e1

cosðcÞ
sinðcÞ
0

2
64

3
75 ð6Þ

and

As ¼ Ar þ e1

cosðcÞ
sinðcÞ
0

2
64

3
75þ e2

cosðcþ dÞ
sinðcþ dÞ

0

2
64

3
75 ð7Þ

Substituting Eqs. (6) and (7) on Eq. (1), we have

Ar ¼
1

Ku þ Ks þ Kr

E � F1 � F2ð Þ ð8Þ

where

F1 ¼ e1

cosðcÞ
sinðcÞ
0

2
64

3
75ðKu þ KsÞ ð9Þ

and

F2 ¼ e2

cosðcþ dÞ
sinðcþ dÞ

0

2
64

3
75Ks ð10Þ

The coordinates computed to the point Ar are used to

compute the coordinates of the points Au and As by

Eqs. (6) and (7).

Note also from Fig. 4 that

nu � fu ¼ 0

ns � fs ¼ 0

nr � fr ¼ 0

ð11Þ

and

f i ¼ Ai � Bi for i ¼ u; s; r ð12Þ

where Bi coordinates are given by

Bi ¼ vi þ dini ð13Þ

Substituting Eqs. (12) and (13) in Eq. (11), du; ds and

dr can be computed by

du ¼ nu � ðAu � vuÞ
ds ¼ ns � ðAs � vsÞ
dr ¼ nr � ðAr � vrÞ

ð14Þ

3.2 Forward kinematics

The objective of the forward kinematics is to compute

the coordinates of the point E as function of the

displacements du; ds and dr.

The coordinates of the point E can be obtained from

the coordinates of the points Au;As and Ar using some

geometric relations, as pointed on Eq. (1).

Consider the coordinates of the points Au;As and

Ar, written in their respective vectors

Au ¼
Aux

Auy

Auz

2
64

3
75

As ¼
Asx

Asy

Asz

2
64

3
75

Ar ¼
Arx

Ary

Arz

2
64

3
75

ð15Þ

Once the moving platform lies in the pr-plane (see

Figs. 1, 4), Auz ;Asz and Arz are given by

Auz ¼ Asz ¼ Arz ¼ vr þ drnrð Þ � zo ð16Þ

Using the definitions for nr and vr from Eqs. (2) and

(3) it is obtained that

Auz ¼ Asz ¼ Arz ¼ dr ð17Þ

The next step consists in computing the coordinates x

and y of the points Au;As and Ar.

From Eqs. (11) and (12), it is known that

nu � Au � Buð Þ ¼ 0 ðaÞ

ns � As � Bsð Þ ¼ 0 ðbÞ

nr � Ar � Brð Þ ¼ 0 ðcÞ

ð18Þ

and from Eq. (13), it is known that
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Bu ¼ vu þ dunuð Þ ðaÞ

Bs ¼ vs þ dsnsð Þ ðbÞ

Br ¼ vr þ drnrð Þ ðcÞ

ð19Þ

Combining Eqs. (17), (18b) and (18c) with Eqs. (19b)

and (19c) we have

nuxAux þ nuyAuy ¼ du � nuzAuz þ nu � vu
nsxAsx þ nsyAsy ¼ ds � nszAsz þ ns � vs

ð20Þ

From Eqs. (6) and (7), Asx and Asy can be written as

function of Auy and Auy by

Asx ¼ Aux þ e2 cosðcþ dÞ
Asy ¼ Auy þ e2 sinðcþ dÞ ð21Þ

Substituting Eq. (21) in Eq. (20) the following

matricial form is obtained

M
Aux

Auy

" #
¼ N and

Aux

Auy

" #
¼ M�1N ð22Þ

where

M ¼
nux nuy

nsx nsy

" #
ð23Þ

and

N ¼

du þ nu � vu � nuzAuz

ds þ ns � vs � ns �
e2 cosðcþ dÞ
e2 sinðcþ dÞ

Auz

2
64

3
75

2
6664

3
7775 ð24Þ

With the computed values of the coordinates Aux and

Auy , the coordinates of the points As and Ar are

obtained using Eqs. (6) and (7), as following

Ar ¼ Au � e1

cosðcÞ
sinðcÞ
0

2
64

3
75 ð25Þ

As ¼ Au þ e2

cosðcþ dÞ
sinðcþ dÞ

0

2
64

3
75 ð26Þ

Then by Eq. (1)

E ¼ KuAu þ KrAr þ KsAs:

4 Singularities analysis

The singular configuration of the Triflex II mecha-

nism, depends on the existence of linear dependence

between rows or columns, or the presence of rows or

columns of zeros on the matrix M, as it can be seen in

Eq. (22) where the coordinates of point Au depends on

the inversion of the matrix M.

Geometrically the singularities of the Triflex II

mechanism occur when the vectors nu; ns and nr are

coplanar, or parallel two by two, the controlled

platform displacements are restricted to planes. If the

three vectors nu; ns and nr are parallel the controlled

platform displacements are restricted in one direction,

or the direction of these vectors.

Analytically, the linear dependence between rows

and columns of the matrix M means the parallelism

between the vectors nu and ns, depicted as example in

the Fig. 5. The presence of zeros in the first row of the

matrix M means that the vector nu is parallel with the

vector nr, whereas a line of zeros in the second row of

M means that ns is parallel to nr. If the first column of

M is composed by zeros it means that nu; ns and nr
belong to the yozo-plane, whereas if the second column

ofM are zeros it means that nu;ns and nr belong to the

xozo-plane, restricting the platform movement to yozo-

Oo

zo

xo yo

dr
Pr

rr1

rr2

Rp

lr1

lr2

Ar

nr

du

Pu

ru1

ru2

Up

lu1

lu2

Au

nu
ds

Ps

rs1

rs2

Sp

ls1

ls2

As

ns

vu
vs

vr

β

Bu

Bs

Br

Ee1 e2

e3

Fig. 5 Singular configuration: nu is parallel to ns
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plane or xozo-plane respectively. If the vectors nu;ns
and nr can be written as a linear function

f ðnu; ns; nrÞ ¼
Xaini
i¼u;s;r

¼ 0

where ai are constant values, they are coplanar and lie

to a pc-plane
3

Besides of the singularities from the vectors nu;ns
and nr, there are also singular configurations in the

limits of the distances between points Ai and Bi, for

i ¼ u; s and r. In this case the solutions to the forward

and inverse kinematics exist if the inequalities

presented on Eq. (27) are satisfied

kAu � Buk\lu1 þ lu2

kAs � Bsk\ls1 þ ls2

kAr � Brk\lr1 þ lr2

ð27Þ

In this way, the Triflex II mechanism workspace is

bounded by inequalities presented in Eq. (27), as well

as the limits of displacements for prismatic joints

du; ds and dr of each leg.

5 Differential kinematics

The differential kinematics model determines the

relationship between velocities of the moving plat-

form and the velocities of the robot actuators [8, 23].

Triflex II differential kinematics model is obtained

by differentiating Eq. (14) for each leg i.e.

_du¼ nu � _Au

_ds¼ ns � _As

_dr¼ nr � _Ar

ð28Þ

The moving platform linear velocities are obtained by

differentiating Eq. (1)

_E ¼ Ku
_Au þ Ks

_As þ Kr
_Ar ð29Þ

As discussed above the moving platform moves in

agreement with the prismatic linear movement defined

by the direction of the vectors nu; ns and nr. Triflex II

mechanism is not able not change the orientation of

the moving platform, in other words, the angular

velocities of the moving platform is even 0 in the

direction x, y and z with respect to reference frame

Oo � xoyozo. Thus, differentiating Eqs. (6) and (7), it is

noted that all points belonging to the moving platform

have only linear displacements with the same magni-

tudes and directions i.e.

_E ¼ _Au ¼ _As ¼ _Ar ð30Þ

Replacing Eq. (30) in Eq. (28) we have

_du
_ds
_dr

2
64

3
75 ¼

nux nuy nuz

nsx nsy nsz

nrx nry nrz

2
64

3
75

_Ex

_Ey

_Ez

2
64

3
75 ð31Þ

or

_du
_ds
_dr

2
64

3
75 ¼ J

_Ex

_Ey

_Ez

2
64

3
75 ð32Þ

where J is the Jacobian matrix which map the moving

platform linear velocities to the linear velocities of the

active prismatic joint of each leg.

The relationship shown in Eq. (31) allows us to

obtain an inverse map of the differential kinematics by

_Ex

_Ey

_Ez

2
64

3
75 ¼ J�1

_du
_ds
_dr

2
64

3
75 ð33Þ

Using nr ¼ 0 0 1½ �T , as proposed in Eq. (2), the inverse
Jacobian J�1 is given by

Oo

zo

xo yo

dr
Pr

rr1

rr2

Rp

lr1

lr2

Ar

nr

du

Pu

ru1

ru2

Up

lu1

lu2

Au

nu

ds

Ps

rs1

rs2
Sp

ls1

ls2

As

ns

vu vs

vr

β

Bu

Bs

Br

Ee1 e2

e3

πc−plane

Fig. 6 Singular configuration: nu; ns and nr are coplanar

3 This singularity represents the linear dependence of the

general Triflex II Jacobian and will be presented in the Eq. 31,

Sect. 5, and depicted in the Fig. 6.
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J�1 ¼ 1

Jj j

nry �nuy nsznuy � nsynuz

�nsx nux �nsznux þ nsxnuz

0 0 nsynux � nsxnuy

2
64

3
75 ð34Þ

The singularity analysis of the Triflex II mecha-

nism given by Eqs. (31) and (34) are in agreement

with the singularities discussed in Sect. 4, and it

allows the avoidance of singularities in the

displacements computed in the direct and inverse

kinematics.

6 Numerical simulation results

The previously sections presented a set of analytical

equations in order to compute the relationship between

the moving platform and joints position and velocity

of the Triflex II mechanism. In order to validate the

analytical results, this section will present a numerical

simulation of the Triflex II mechanismmovements for

a given spatial trajectory. The simulation environment

is shown in Fig. 7.

6.1 Design parameters

Triflex II mechanism was set with the following

parameters in order to perform the desired trajectory.

• nu ¼ 0:8 0:6 0½ �T

• ns ¼ �0:09901475 0:9901475 � 0:09901475½ �T

• nr ¼ 0 0 1½ �T

• vu ¼ �0:2 � 0:10 0:01½ �T m
• vs ¼ 0:3 � 0:40 0:01½ �Tm
• vr ¼ �0:4 0:2 � 0:01½ �T m
• Ku ¼ 0:3;

• Ks ¼ 0:5;

• Kr ¼ 0:2;

• e1 ¼ 0:4m;

• e2 ¼ 0:35m;

• b ¼ 0:3 rad;

• d ¼ 1:74329 rad.

• For leg Lu :
lu1 ¼ 0:55m
lu2 ¼ 0:40m

�

• For leg Ls :
ls1 ¼ 0:45m
ls2 ¼ 0:55m

�

• For leg Lr :
lr1 ¼ 0:32m
lr1 ¼ 0:35m

�

6.2 Trajectory proposed

The proposed kinematic modeling is tested for a

desired trajectory presented below. The displacements

for each leg were defined as following:

• Simulation time set to 10 s with Dt ¼ 0:01 s.

• To the prismatic joint Pu of the leg Lu:

• Positive displacement from du ¼ 0:40m to

du ¼ 0:60m, from time 0 s to time 2:5 s;

• Maintain the position du ¼ 0:60m until time

7:5 s;

• Negative displacement to initial position, from

du ¼ 0:60m to du ¼ 0:40m from time 7:5 s to

time 10:0 s.

• To the prismatic joint Ps of the leg Ls:

• Maintained on ds ¼ 0:05m from time 0 s to

time 2:5 s;

• Positive displacement from ds ¼ 0:05m to

du ¼ 0:15m from time 2:5 s to time 5:0 s;

• Maintain the position ds ¼ 0:15m until time

7:5 s;

• Negative displacement to initial position, from

ds ¼ 0:15m to ds ¼ 0:05m from time 7:5 s to

time 10:0 s.

• To the prismatic joint Pr of the leg Lr:

• Maintained on dr ¼ 0:20m from time 0 s until

time 5:0 s;

• Positive displacement from dr ¼ 0:20m to

dr ¼ 0:35m from time 5:0 s to time 7:5 s;

• Negative displacement to initial position from

dr ¼ 0:35m to dr ¼ 0:20m from time 7:5 s to

time 10:0 s.

Figure 8depicts the profile of eachprismatic displacement.

Using the specified sampling time: Dt ¼ 0:01 s, the

desired velocities of each prismatic joint of each leg

were computed by 1st order approximation and the

results is shown in Fig. 9.

6.3 Simulation

With the Triflex II parameters, and in agreement with

the desired displacement to the prismatic joints, the

position and differential kinematics to the point Ewere

computed by proposed direct kinematics equations.
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Using Eqs. (1), (22), (25) and (26) were computed

the coordinates of the point E. The simulation profiles

of the coordinates of the point E, are shown in Fig. 10.

The respective velocities to the point E were

computed using Eq. (33), and the resultant profiles

for each coordinate are shown in Fig. 11.

The proposed inverse kinematics equations were

validated computing the profiles of position to du; ds
and dr of the prismatic joints for each leg, applying as

input the resultant profiles of the coordinates of the
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E

x-axis
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Fig. 7 Triflex II simulation environment
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Fig. 10 Displacements simulated to the coordinates of the point
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Fig. 11 Velocities simulated to the point E
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point E (see Fig. 10) and using Eqs. (6), (7), (8) and

(14). The inverse differential kinematics equation was

validated computing the profiles of velocities to _du; _ds

and _dr of the prismatic joints for each leg, applying as

input the resultant profiles of the coordinates of

velocities of the point E (see Fig. 11), on Eq. (31).

The results of the inverse kinematics equation are

similar to the profiles of the positions and velocities of

the prismatic joint displacements du; ds and dr
depicted on Figs. 8 and 9 respectively. Using a

discrete version of the IAE criterion (Integral of the

absolute magnitude of the error) the profiles were

compared and resulted on IAE\10�15, indicating that

the proposed modeling is correct, because the IAE has

magnitude sufficiently small compared to the dimen-

sions of the links of the robot.

7 Conclusion

This paper presented a parallel mechanism with

asymmetrical kinematic structure and variable con-

figuration called Triflex II mechanism.

The main features of the Triflex II mechanism are

its asymmetric kinematic structure and its self-align-

ing characteristics. Additional degrees of freedom that

do not interfere in the motion of the moving platform

gives to Triflex II dexterity to adapt the prismatic

joints in any position on the base, these additional

degrees of freedom are called by Simoni et al. [20, 21]

self-aligning degrees of freedom.

The complete kinematics model equations to posi-

tion and velocities was developed and presented,

allowing the research of new application to Triflex II.

The singurities and the limits of workspace were also

explored and presented.

The validation of the developed model and equa-

tions were performed using a desired profiles of

positions and velocities for prismatic joint where the

moving platform position and velocities were com-

puted and vice-versa. Using the kinematic models, it

was developed a computational simulation and the

results obtained were satisfactory. The experiments

were performed using different dimensions for links,

moving platform and different positions and directions

to the prismatic joints of each leg, aiming to explore

the properties of asymmetry and self-aligning of the

Triflex II robot.

Triflex II proved to be feasible and promising,

encouraging researches and developments of new

concepts of parallel mechanisms with asymmetric

configuration properties and self-aligning. Another

motivation to develop parallel mechanisms like Tri-

flex are the applications. Like Triflex I (see Simoni

et al. [19–21]) Triflex II is also a portable robot, so it

can be installed in any place to develop any task. For

example, the Triflex robot can be applied to recover

rotor blades in hydroelectric power plants because it

can work in the confined space of the rotor and it can fit

to the complex geometry of the blades.

As further works it is intended to develop a

functional prototype of the Triflex II mechanism.
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