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Abstract The paper deals with the axisymmetric

problem of the thermoelastic half-space with temper-

ature dependent properties. The thermal coefficients:

heat conductivity and coefficient of linear expansion

are assumed to be functions of temperature. The

mechanical properties: Young modulus and Poisson

ratio are taken into account as constants. Two cases of

boundary conditions are considered: a normal heat

flux acting on a circle with given radius and two

variants of the boundary conditions on the outside of

the heated region: (1) a thermal insulation, or (2) a

constant temperature, taken as reference. The bound-

ary is assumed to be free of mechanical loadings. The

linear dependences of thermal properties on temper-

ature is considered as a special case. The obtained

exact results are presented in the forms of multiple

integrals and the detailed analysis are derived for

linear dependences of the thermal properties on

temperature.

Keywords Temperature � Heat flux �
Displacements � Stresses � Thermoelasticity �
Temperature dependent properties

1 Introduction

Nonhomogeneous materials, whose material proper-

ties vary continuously, have received considerable

technical interest in the engineering applications. The

design of elements of structures, machines subjected

to extremely high thermal loadings should consider

changes of material properties under temperatures.

The solids, which in the isothermal state are charac-

terized by constant thermal and mechanical parame-

ters, can be treated as homogeneous bodies, but if they

are subjected to high thermal loadings then their

properties are dependent on temperature and indirectly

vary continuously with respect to spatial variables and

time. The thermoelasticity of bodies with temperature

dependent properties was developed by Nowiński

[1–4]. The monograph [4] includes some wide scien-

tific descriptions of the author’s results as well as other

investigators. The papers [5, 6] deal with the problems

of stress distributions in the thermoelastic plate with

temperature dependent properties weakened by a

Griffith crack. The problem of stress distributions in

an elastic layer with temperature dependent properties

caused by concentrated loads is considered in [7]. The

review on thermal stresses in materials with temper-

ature dependent properties for papers published after
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1980 is presented in [8]. The problems of an annular

cylinder based on the finite element method is solved

in [9]. The paper [10] deals with the problem of SH

harmonic wave propagation in an elastic layer whose

shear modulus and mass density are linearly depen-

dent on temperature. In the paper [11] the wave fronts

propagated in thermoelastic bodies with temperature

dependent properties are analysed. Some problems of

thermoelasticity for thermosensitive bodies are inves-

tigated in papers [12–15]. The authors assumed that

the considered problems are axisymmetric or point-

symmetrical, so it is useful to introduce the cylindrical

or spherical coordinates and to reduce the dimensions

of the boundary value problems. Boundary value

problems of thermoelasticity with both thermal and

mechanical properties dependent on temperature are

rather too complicated for analytical approaches in the

two-dimensional or three-dimensional cases. So, in the

paper [12] the stresses caused by thermal loadings in a

layer with only mechanical properties dependent on

temperature are investigated.

In this paper the axisymmetrical problem of thermal

loadings of an elastic half-space with temperature

dependent thermal properties is considered. The

mechanical properties are assumed to be independent

of temperature (Young modulus and Poisson ratio are

taken into account as constants). The elastic half-space

is heated by a given normal heat flux on a circle and

two cases of boundary conditions on the outside of the

heated region: (1�) a thermal insulation, or (2�) a zero

temperature, are investigated. The boundary is

assumed to be free of mechanical loadings. The

considered problem is stationary and axisymmetric.

The problem is solved for arbitrary given a priori

functions dependent on temperature being the thermal

conductivity and coefficient of linear expansion. The

linear dependences of thermal properties on temper-

ature is analysed as a special case. The obtained

numerical results are presented in the form of

figures for both boundary cases. The influence of

parameters that determine the thermal properties of the

half-space on the stress distributions on the boundary

is investigated.

2 Formulations of the problems

Consider a thermoelastic half-space with temperature

dependent thermal coefficients and mechanical

coefficients being constants. Let ðr;u; zÞ denote the

cylindrical coordinate system, such that the plane z ¼
0 is the boundary surface of the half-space z[ 0. Let T

denote the temperature and q ¼ ðqr; qu; qzÞ denote

the heat flux vector. Let K and a be the thermal

conductivity and the linear expansion coefficients,

respectively. The mechanical properties will be

denoted as follows: E be Young modulus, m be Poisson

ratio. In the paper the thermal and mechanical

properties will be taken into account in the form:

K Tð Þ ¼ K0f Tð Þ; a Tð Þ ¼ a0g Tð Þ; E ¼ const:;

m ¼ const:; ð2:1Þ

where K0; a0 are constants being the thermal proper-

ties of the body in the reference temperature. The

functions f Tð Þ; g Tð Þ are a priori given functions

describing changes of thermal properties under influ-

ence of temperature. The functions are determined

experimentally and are dependent on the kind of

materials [16, 17].

The half-space is heated by a normal heat flux on

the circle with given radius a dependent only on

variable r and two cases of the boundary conditions on

the outside of heated region are considered:

(1�) a thermal insulation, or

(2�) zero temperature.

Moreover, the half-space is assumed to be free of

mechanical loadings. The considered problems are

stationary and axisymmetric, independent on u and

from the boundary conditions and symmetry of equation

it follows that qu = 0. The two following cases of the

thermal boundary conditions will be taken into account:

Problem 1

qz r; 0ð Þ ¼ q0 q� rð Þ; for r\a and qz r; 0ð Þ
¼ 0 for r� a; ð2:2Þ

where q� �ð Þ is a given function, q0 a given constant.

Moreover, the condition qr r; 0ð Þ ¼ 0, qu r; 0ð Þ ¼ 0

that correspond to normal flux vector are considered.

Problem 2

qz r; 0ð Þ ¼ q0 q� rð Þ; for r\ a; and T r; 0ð Þ
¼ 0; for r � a: ð2:3Þ

The solutions of both problems should satisfy the

condition at infinity

2790 Meccanica (2017) 52:2789–2799

123



T r; zð Þ ! 0 for r2 þ z2 ! 1: ð2:4Þ

Denote by u r; zð Þ ¼ ur; 0; uzð Þ the displacement vec-

tor and by r r; zð Þ the stress tensor with nonzero

components rrr; ruu; rzz; rrz. The boundary plane is

assumed to be free of loadings, so the mechanical

boundary conditions can be written:

rrz r; 0ð Þ ¼ 0; rzz r; 0ð Þ ¼ 0; r � 0: ð2:5Þ

The regularity conditions at infinity take the form:

r r; zð Þ ! 0 for r2 þ z2 ! 1: ð2:6Þ

The temperature T and displacements ur; uz besides

the thermal and mechanical boundary conditions and

the conditions at infinity should satisfy the following

equations of thermoelasticity [4]:

(a) the stationary equation of heat conduction

1

r

o

or
K Tð Þr oT

or

� �
þ o

oz
K Tð Þ oT

oz

� �
¼ 0;

r � 0; z [ 0; ð2:7Þ

and

(b) the equilibrium equations

2ð1 � mÞD2
1ur þ ð1 � 2mÞ o

2ur

oz2
þ o2uz

oroz

¼ 2ð1 þ mÞ o

or

ZT

0

a #ð Þd#; r� 0; z[ 0;

ð1 � 2mÞD2
0uz þ 2ð1 � mÞ o

2uz

oz2
þ o

oz
Dur

¼ 2ð1 þ mÞ o
oz

ZT

0

a #ð Þd#; r� 0; z[ 0; ð2:8Þ

where m is Poisson’s ratio and

D2
1 ¼ o2

or2
þ 1

r

o

or
� 1

r2
; D2

0 ¼ o2

or2
þ 1

r

o

or
;

D ¼ o

or
þ 1

r
:

ð2:9Þ

3 Solutions and analysis of results

First, the temperature T satisfying Eq. (2.7) with the

boundary conditions (2.2) and (2.4) (for Problem 1) or

(2.3) with (2.4) (for Problem 2) should be determined.

For this aim to a linearization of the considered

problems the integral Kirchhoff’s transform will be

applied (see [22])

W ¼
ZT

0

K #ð Þ
K0

d#: ð3:1Þ

Substituting (3.1) into (2.7) the thermal potential W
should satisfy the linear partial differential equation

1

r

o

or
r
oW
or

� �
þ o2W

oz2
¼ 0: ð3:2Þ

Because the components of heat flux qr, qz are

expressed by the potential W as follows

qr ¼ �K
oT

or
¼ �K0

oW
or

;

qz ¼ �K
oT

oz
¼ �K0

oW
oz

;

ð3:3Þ

the boundary conditions (2.2)–(2.4) can be rewritten in

the form:

Problem 1

�K0

oW r; 0ð Þ
oz

¼ q0q
� rð ÞH a� rð Þ; ð3:4Þ

and

Problem 2

�K0

oW r; 0ð Þ
oz

¼ q0q
� rð Þ;

for 0� r\a; W r; 0ð Þ ¼ 0; for r [ a;
ð3:5Þ

with the condition at infinity

W r; zð Þ ! 0; for r2 þ z2 ! 1: ð3:6Þ

The boundary value problems for potential W take

the same form as for the well-known problem of

temperature in the case of linear theory of heat
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conduction [19]. The solution of Problem 1 takes the

form

W r; zð Þ ¼ q0

K0

Z1

0

�q� sð Þe�szJ0 srð Þds; ð3:7Þ

where

�q� sð Þ ¼
Za

0

rq� rð ÞJ0 srð Þdr: ð3:8Þ

Problem 2 is the well-known mixed boundary value

problem which can be reduced to dual integral

equations and next, to the Abel integral

equation [20]. The final solution for potential W is

given by

W r; zð Þ ¼
Z1

0

A sð Þe�szJ0 srð Þds; ð3:9Þ

where

A sð Þ ¼
Za

0

g tð Þ sin stð Þdt; ð3:10Þ

and

g tð Þ ¼ 2

p
q0

K0

Z t

0

xq� xð Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p : ð3:11Þ

The displacements ur, uz should satisfy Eqs. (2.8)

together with conditions (2.5) and (2.6). The problem

for displacements is linear, so the solution can be

written in the form

ur r; zð Þ ¼ uer r; zð Þ þ uthr r; zð Þ;
uz r; zð Þ ¼ uez r; zð Þ þ uthz r; zð Þ:

ð3:12Þ

where uer , uez are the components of displacement

vector for the problem of elasticity (under assumption

that the temperature is zero—general solution) and uthr ,

uthz are the displacements being a special solution of

Eq. (2.8).

The general solution of the homogeneous equations

[Eq. (2.8) with the right hand side equals zero] takes

the form [18, p. 40]:

2uer r;zð Þ¼�
Z1

0

2þd1�d1szð Þa1 sð Þþ2a2 sð Þsf gJ1 srð Þ

�exp �szð Þds;

2uez r;zð Þ¼
Z1

0

d1za1 sð Þ�2a2 sð Þf gsJ0 srð Þexp �szð Þds;

rerr r;zð Þ
l

¼�
Z1

0

2d1þ1�d1szð Þa1 sð Þþ2a2 sð Þsf gsJ0 srð Þ

�exp �szð Þdsþ1

r

Z1

0

2þd1�d1szð Þa1 sð Þf

þ2a2 sð ÞsgJ1 srð Þexp �szð Þds;

reuu r;zð Þ
l

¼
Z1

0

1�d1ð Þa1 sð Þf gsJ0 srð Þexp �szð Þdsþ

�1

r

Z1

0

2þd1�d1szð Þa1 sð Þþ2a2 sð Þsf g

�J1 srð Þexp �szð Þds;

rezz r;zð Þ
l

¼
Z1

0

1�d1szð Þa1 sð Þþ2a2 sð Þsf gsJ0 srð Þ

�exp �szð Þds;

rerz r;zð Þ
l

¼
Z1

0

1þd1�d1szð Þa1 sð Þþ2a2 sð Þsf gsJ1 srð Þ

�exp �szð Þds; ð3:13Þ

where d1 ¼ 1
1�2m, l—shear modulus, and J0(�), J1(�) are

the Bessel functions of first kind, a1(s), a2(s) are

unknowns which will be determined from mechanical

boundary conditions (2.5).

To obtain a special solution of Eqs. (2.6) the

following thermoelastic potential U is introduced [19]:

uthr ¼ oU
or

; uthz ¼ oU
oz

: ð3:14Þ
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The following relations for the stress tensor com-

ponents and potential U can be written

rthzz r; zð Þ ¼ �2l
1

r

o

or
r
oU r; zð Þ

or

� �
;

rthrz r; zð Þ ¼ 2l
o2U r; zð Þ
oroz

� �
:

ð3:15Þ

Substituting (3.14) into Eqs. (2.8) we obtain

DU r; zð Þ ¼ 1 þ m
1 � m

ZT

0

a #ð Þd#: ð3:16Þ

where D ¼ o2

or2 þ 1
r
o
or
þ o2

oz2.

Special solution of Eq. (3.16) takes the form

U r; zð Þ ¼ 1 þ m
1 � m

Z1

0

J0 srð Þds
Z1

z

�T� s; nð Þ sinh s n� zð Þ½ �dn;

ð3:17Þ

where �T� s; nð Þ is the Hankel transform of the zero

order of function
RT
0

a #ð Þd#, so

�T� s; nð Þ ¼
Z1

0

xJ0 sxð Þdx
ZT x;nð Þ

0

a #ð Þd#: ð3:18Þ

Knowing potential U displacements uthr , uthz being

the special solution of Eq. (2.6) can be determined by

using (3.14) and (3.15). Substituting obtained radial

and normal displacements uthr , uthz into (3.12) and using

(3.13)–(3.15) and (3.17) from the boundary conditions

(2.5) we obtain the unknown functions a1 sð Þ, a2 sð Þ
which are given in the general solution (3.13):

a1 sð Þ ¼ �2 1 � 2mð Þs 1 þ m
1 � m

Z1

0

�T� s; nð Þ exp �snð Þdn;

a2 sð Þ ¼ 1 þ m
1 � m

Z1

0

�T� s; nð Þ 1 � 2mð Þ exp �snð Þ � sinh snð Þf gdn:

ð3:19Þ

The Hankel transforms of the first order in the case

of radial displacement ur and zero order for normal

displacement uz representing the final solution (after

summing uer and uthr as well as uez and uthz ) take the

following form

�ur s; zð Þ ¼ 1 þ m
1 � m

exp �szð Þ
Zz

0

�T� s; nð Þ sinh snð Þdnþ sinh szð Þ

8<
:

Z1

z

�T� s; nð Þ exp �snð Þdnþþ 2 1 � mð Þ � sz exp �szð Þð Þ

Z1

0

�T� s; nð Þ exp �snð Þdn

9=
;;

�uz s; zð Þ ¼ 1 þ m
1 � m

exp �szð Þ
Zz

0

�T� s; nð Þ sinh snð Þdn� cosh szð Þ

8<
:

Z1

z

�T� s; nð Þ exp �snð Þdn� 1 � 2mþ szð Þ exp �szð Þ

Z1

0

�T� s; nð Þ exp �snð Þdn

9=
;:

ð3:20Þ

The displacements ur, uz can be obtained from (3.20)

by using inverse Hankel transforms of first and zero

order, respectively.

In the future analysis we focus considerations on

the stresses and displacements on the boundary plane

z ¼ 0. For this reason from Eq. (3.20) and inverse

transforms it follows that

ur r; 0ð Þ ¼ 2 1 þ mð Þ
Z1

0

sJ1 srð Þds
Z1

0

exp �snð Þdn

Z1

0

xJ0 sxð Þdx
ZT x;nð Þ

0

a #ð Þd#;

uz r; 0ð Þ ¼ �2 1 þ mð Þ
Z1

0

sJ0 srð Þds
Z1

0

exp �snð Þdn

Z1

0

xJ0 sxð Þdx
ZT x;nð Þ

0

a #ð Þd#:

ð3:21Þ

Because rzz r; 0ð Þ ¼ 0, rrz r; 0ð Þ ¼ 0 we confine on the

calculation of ruu r; 0ð Þ and rrr r; 0ð Þ. Assuming that

rzz r; 0ð Þ ¼ 0 from the constitutive relations [4] for z ¼
0 we have
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1

2l
rrr r; 0ð Þ ¼ 1

1 � m
our

or
þ m

1 � m
ur

r
� 1 þ m

1 � m

ZT

0

a #ð Þd#;

1

2l
ruu r; 0ð Þ ¼ m

1 � m
our

or
þ 1

1 � m
ur

r
� 1 þ m

1 � m

ZT

0

a #ð Þd#:

ð3:22Þ

From Eq. (3.22) it follows that the stress components

rrr r; 0ð Þ and ruu r; 0ð Þ are based on the displacement

ur. Taking into account Eq. (3.21) and introducing the

following notation

K r; x; nð Þ ¼
Z1

0

sJ1 srð ÞJ0 sxð Þ exp �snð Þds; ð3:23Þ

the radial displacement ur r; 0ð Þ can be written in the

form

ur r; 0ð Þ ¼ 2 1 þ mð Þ
Z1

0

dn
Z1

0

x

ZT x;nð Þ

0

a #ð Þd#

0
B@

1
CAK r; x; nð Þdx:

ð3:24Þ

The integral in Eq. (3.23) is calculated from the

relation

K r; x; nð Þ ¼ � o

or

Z1

0

J0 srð ÞJ0 sxð Þ exp �snð Þds:

ð3:25Þ

The integral in (3.25) has the form [21]

Z1

0

J0 srð ÞJ0 sxð Þ exp �snð Þds

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ r2 þ x2

p F
3

4
;
1

4
; 1;

4x2r2

n2 þ x2 þ r2
� �2

 !
;

ð3:26Þ

where F(�,�;�;�) is the hypergeometric function.

Substituting (3.26) into (3.25) we obtain

K r; x; nð Þ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ r2 þ x2
� �3

q F
3

4
;
1

4
; 1;

4r2x2

n2 þ r2 þ x2
� �2

 !

� 3

2

rx2 n2 þ x2 � r2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ x2 þ r2
� �7

q F
7

4
;
5

4
; 2;

4r2x2

n2 þ r2 þ x2
� �2

 !
:

ð3:27Þ

The derivative our
or

will be calculated numerically. The

above presented solutions are derived for arbitrary

forms of a Tð Þ and K Tð Þ.

4 Special case

In the further analysis and numerical calculations the

following coefficients of heat conduction and linear

expansion are taken into account:

a ¼ a0ð1 þ cTÞ; K ¼ K0ð1 þ bTÞ; ð4:1Þ

where a0, c, K0, b are given constants.

From Eq. (4.1) and (3.1) it follows that

1

1

1

1

1

1
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2 : 0.0005 ;
3 : 0 ;
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0.0005

β K
β K
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−

= −
= −
=
=
=

=

2
3

1

54

ρ ρ

1
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β K
β K
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−
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Fig. 1 The dimensionless

stress tensor component r�rr
on boundary surface z ¼ 0

as a function of parameter b
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W ¼
ZT

0

K #ð Þ
K0

d# ¼ T þ bT2

2
: ð4:2Þ

Knowing potential W from Eq. (4.2) we obtain

bT2 þ 2T � 2W ¼ 0; ð4:3Þ

and

T ¼ �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2bW

p

b
: ð4:4Þ

Having temperature and using (4.1) the following

integral can be determined

ZT

0

a #ð Þd# ¼ a0 T þ c
T2

2

� �
: ð4:5Þ

Remark It can be observed that in the case when

c ¼ b; ð4:6Þ

then

ZT

0

a #ð Þd# ¼ a0W; ð4:7Þ

what it means that the considered case presents the

analogical problem to the temperature and stresses

distributions for a homogeneous half-space investi-

gated within the framework of the linear theory of

thermal stresses with boundary conditions given in

(2.2)–(2.6).
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Fig. 3 The dimensionless

stress tensor component r�rr
on boundary surface z ¼ 0

as a function of parameter b
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stress tensor component r�uu
on boundary surface z ¼ 0

as a function of parameter b
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For further calculations the following heat flux

q� rð Þ is taken for both problems [boundary conditions

(3.4)—Problem 1, and (3.5)—Problem 2]:

q� rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

a2

r
: ð4:8Þ

From Eqs. (4.8) and (3.7) it follows that [21]:

Problem 1

W r; 0ð Þ ¼ q0a

K0

p
4

1 � 1

2

r2

a2

� �
; r\a

a

3r
F

1

2
;
1

2
;
5

2
;
a2

r2

� �
; r[ a;

8>><
>>:

ð4:9Þ

and

Problem 2 From Eqs. (3.9)–(3.11) and (4.8), using

the following integral [21]:

Z t

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p dx ¼ 1

2
at þ a2 � t2

2
ln
aþ t

a� t

� �
; ð4:10Þ

we obtain

W r; 0ð Þ ¼ q0

K0

1

p

Za

r

t þ a2 � t2

2a
ln
aþ t

a� t

� �
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p :

ð4:11Þ

The integral in (4.11) will be calculated numeri-

cally by using dimensionless variable q ¼ r
a
, so

potential given in (4.11) can rewritten in the form

W q; 0ð Þ ¼ q0a

K0

1

p

Z1

q

t þ 1 � t2

2
ln

1 þ t

1 � t

� �
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � q2
p ;

q ¼ r

a
; ð4:12Þ

and the following algorithm is applied to separate a

singular (logarithmic) part of integral (4.12)

1

p

Z1

q

f tð Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � q2

p ¼ 1

p
f qð Þ

Z1

q

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � q2

p

þ 1

p

Z1

q

f tð Þ � f qð Þð Þ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � q2

p

¼ 1

p
f qð Þ ln 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2

p� �
� ln q

h i

þ 1

p

Z1

q

f tð Þ � f qð Þð Þ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � q2

p :

ð4:13Þ
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Knowing potential W from Eq. (4.4) we have

temperature T, what leads to determination of

RT
0

a #ð Þd# from (4.5). Next, using (3.24), (3.27) and

(3.12) after numerical calculations the results obtained

for dimensionless stress components r�rr q; 0ð Þ,
r�uu q; 0ð Þ, where

r�rr; r
�
uu

� �
¼

rrr; ruu
� �

2l 1 þ mð Þa0100K
; ð4:14Þ

are presented in the form of figures.

Further analysis of stresses will be derived numer-

ically. For this aim it can be concluded that the

dimensionless stress components are dependent on

four parameters q�0 ¼ q0a=K0; b; c and m for calcula-

tions it will be taken m ¼ 0:3 and q�0 ¼ 500 (for Figs. 1,

2, 3, 4).

Problem 1 Figure 1a presents the dimensionless

stress component r�rr on the boundary plane z ¼ 0 for

b ¼ �0:001; �0:0005; 0; 0:0005; 0:001 K�1 and

c ¼ 0:0005 K�1. It can be observed that the values of

r�rr decrease together with decrease of parameter b.

The biggest differences between the values of r�rr are

in the centre of heating, for q ! 1 the values of r�rr
tend to zero. Figure 1b shows r�rr q; 0ð Þ for b ¼
�0:001; �0:0005; 0; 0:0005; 0:001 K�1 and c ¼
�0:0005 K�1. It is seen that for b ¼ �0:001 K�1 we

have the smallest values of r�rr . Comparing Fig. 1a

with Fig. 1b we observe some increase of r�rr for the

same b and small values of c.

The dimensionless stress component r�uu is shown

in Fig. 2. Figure 2a presents r�uu for b ¼
�0:001; �0:0005; 0; 0:0005; 0:001 K�1 and c ¼
0:0005 K�1, Fig. 2b for c ¼ �0:0005 K�1. We
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observe analogical behaviour of r�uu as r�rr in the

heating centre. For q[ 1 the differences between the

curves for different values of b are very small and

r�uu ! 0 for q ! 1.

Problem 2 The results for the mixed boundary value

problem are presented in Figs. 3 and 4. Figures 3a, b

presents dimensionless stress component r�rr for b ¼
�0:001; �0:0005; 0; 0:0005; 0:001 K�1 and c ¼
0:0005 K�1 as well as c ¼ 0:0005 K�1, respectively.

The greater differences between the curves for

adequate different values of b are observed in the

heating region and r�rr ! 0 for q ! 1.

Figures 4a, b shows the dimensionless stress com-

ponent r�uu on the boundary plane for b ¼
�0:001; �0:0005; 0; 0:0005; 0:001 K�1 and c ¼
0:0005 K�1 (Fig. 4a) or c ¼ 0:0005 K�1 (Fig. 4b). In

these cases r�uu changes sign for q 	 0:9 and achieves

maximal value for q ¼ 1 (on the boundary of heated

region). Moreover r�uu tends to zero for q ! 1.

The dependences of r�max ¼ 100r�uu 1; 0ð Þ=Tmax

with respect of Tmax ¼ T 0; 0ð Þ are shown in Fig. 5a,

b, c. Figure 5a presents the dimensionless stresses

r�max for a c ¼ �0:0005 K�1; b ¼ �0:001; �0:0005;

0; 0:0005; 0:001 K�1 as a function of Tmax. The

dependences are almost linear and the highest values

are obtained for b ¼ 0:001 K�1. Figure 5b shows the

dimensionless stresses r�max for the same values of

parameter b as Fig. 5a, but different value of param-

eter c, namely c ¼ 0K�1, as well as Fig. 5c where it

assumes that c ¼ 0:0005 K�1. From these figures it

can be observed small differences of values r�max for

the same values of b.

5 Final remarks

The axisymmetric problems of the thermoelastic half-

space heated by a normal heat flux acting on a circle on

the boundary plane are considered. Two cases of the

boundary conditions on the outside of heated region

are assumed: the thermal insulation or zero tempera-

ture. The second case leads to the mixed boundary

values problem.

The half-plane is the body with thermal conductiv-

ity and coefficient of linear expansion in the form of

given functions of temperature as well as constants of

Young modulus and Poisson ratio. The problems are

solved for arbitrary forms of dependency of heat

conductivity on temperature and arbitrary form of the

boundary heat flux. The obtained stress components in

the half-space are presented in the exact forms by

multiple integrals. The detailed analysis of stresses on

the boundary is presented for linear forms of depen-

dencies of a and K on temperature and the boundary

heat flux given by (4.8). For this case the multiple

integrals are calculated partially analytically and by

using numerical methods and the results are presented

in the form of graphics. It can be underlined that in the

case of thermal conductivity K proportional to the

coefficient of linear expansion the temperature and

stresses distributions are analogous to the correspond-

ing problems of homogenous half-space within the

framework of the linear theory of thermal stresses.
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