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Abstract This study investigates the size-dependent

quasistatic response of a nonlinear viscoelastic micro-

electromechanical system (MEMS) under an electric

actuation. To have this problem in view, the deform-

able electrode of the MEMS is modelled using

cantilever and doubly-clamped viscoelastic microbe-

ams. The modified couple stress theory in conjunction

with Bernoulli–Euler beam theory are used for math-

ematical modeling of the size-dependent instability of

microsystems in the framework of linear viscoelastic

theory. Simultaneous effect of electrostatic actuation

including fringing field, residual stress, mid-plane

stretching and Casimir and van der Waals intermolec-

ular forces are considered in the theoretical model. A

single element of the standard linear solid element is

used to simulate the viscoelastic behavior. Based on

the extended Hamilton’s variational principle, the

nonlinear governing integro-differential equation and

boundary conditions are derived. Thereafter, a new

generalized differential-integral quadrature solution

for the nonlinear quasistatic response of electrically

actuated viscoelastic micro/nanobeams under two

different boundary conditions; doubly-clamped

microbridge and clamped-free microcantilever. The

developed model is verified and a good agreement is

obtained. Finally, a comprehensive study is conducted

to investigate the effects of various parameters such as

material relaxation time, durable modulus, material

length scale parameter, Casimir force, van der Waals

force, initial gap and beam length on the pull-in

response of viscoelastic microbridges and microcan-

tilevers in the framework of viscoelasticity.

Keywords Pull-in instability � Viscoelasticity �
Microbridge � Microcantilever � Intermolecular

forces � Size effect � Modified couple stress theory

1 Introduction

With rapid developments in nanotechnology, nano

structures have been the interest of many researchers

over the past decade due to their several enhanced

properties. Micro/Nanoelectromechanical Systems

(M/NEMS) have become one of the most important

components in constructing develop micro/nano-de-

vices like actuators, switches, biosensors, nanowires,

accelerometer, tweezers, ultra-thin films, etc. This is

due to their low manufacturing cost, batch production,

light weight, small size, durability, low energy con-

sumption, potentials as sensitive and high frequency

devices, and compatibility with integrated circuits

[1–7].

Viscoelastic micro/nano systems exhibit both solid

and liquid time-dependent behaviors together to some

extent. Viscoelastic materials can present interesting
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properties such as high damping characteristics, low

weight, high strength and excellent possibilities to

absorb energy [8]. Such materials are widely used in

some technologies, such as robots, artificial biological

parts, aerospace, automotive and dampers [9]. Exper-

imental observations showed that when the internal

material length scale parameter is in the order of

structural characteristic size such as thickness of

beams, the size effect is urgent and vital in their static

and dynamic behaviors of metals and polymers

[10–13].

A typical beam-type M/NEMS are constructed

from two conductive electrodes where on is movable

and the other is fixed. When direct current voltage is

applied across the two electrodes, the electrostatic

force is generated and the movable electrode is

actuated to deflect towards the substrate. The critical

voltage and the corresponding maximum deflection

which leads the beam to be unstable and pull-in onto

the ground electrode, are known as the pull-in voltage

and pull-in deflection, respectively [14]. Therefore,

predicting the stable actuating range and the pull-in

instability parameters are important issues for design-

ing stable and safe M/NEMS. For example, pull-in

instability should be avoided in micro/nano mechan-

ical resonators and micro-mirrors in order to achieve

stable operations and enhance device sensitivity

[1, 15]. On the other hand, estimation of pull-in

voltage is essential to control the switch on and off

[16].

It is worth noting that as the dimensions of

electromechanical systems reduce, NEMS present

monograph characteristics, which differ greatly from

their predecessor MEMS as the dispersion forces

(Casimir and van der Waals attractions) appear in a

significant contribution to the NEMS behavior

[17, 18]. At micro-separations (typically larger than

a few nanometers while smaller than a few microm-

eters), the attraction between two surfaces could be

described by the Casimir interaction [19]. It represents

attractive force between two flat parallel plates of

solids that arises from quantum fluctuations in the

ground state of the electromagnetic field. On the other

hand, the van der Waals (vdW) force can significantly

influence the NEMS performance if the initial gap

between the two conductive electrodes is typically

below several ten nanometers [19].

Several models are proposed in the literature to

investigate the pull-in instability of electrically

actuated M/NEMS devices. In this regard, the differ-

ent nonclassical continuum theories are employed to

investigate the mechanical performance of

micro/nanostructures, in which material properties

are highly affected by the dimensions and are size-

dependent. These theories include some additional

material constants besides two classical Lame’s con-

stant for isotropic elastic material; the Eringen non-

local elasticity theory which includes one additional

material constant [20, 21], the classical strain gradient,

the strain gradient, the classical couple stress and the

modified couple stress theories of elasticity include

five, three, two and one additional material constants,

respectively [22–25].

Recently, the modified couple stress theory

(MCST) developed by Yang et al. [24] has been

successfully used to investigate mechanical behavior

of microactuated beams as it overcomes the difficul-

ties encountered in determining higher-order material

constants by introducing only one additional material

length scale parameter. Rahaeifard et al. [26]

employed the MCST to study the size effect on the

deflection and static pull-in voltage of silicon micro-

cantilevers. Yin et al. [27] explored analytically the

size effect of electrostatically actuated microbeams by

using the MCST. Kong [28] presented approximate

analytical solutions to the pull-in voltage and pull-in

displacement of the electrostatically actuated

microbeam based on the MCST using the Rayleigh–

Ritz method. Baghani et al. [29] and Rokni et al. [30]

analytically studied the response of electrostatically

actuated microbeams and studied the effect of the

applied voltage on the nonlinear size-dependent

response of the microbeams. Static and dynamic

pull-in instabilities of the functionally graded (FG)

micro-beams subjected to a nonlinear electrostatic

pressure and external heat source based on the MCST

were studied by Zamanzadeh et al. [31]. Shaat and

Mahmoud [32] investigated numerically and analyti-

cally the electrostatic behavior of microactuated

cantilever beam including surface elasticity in the

context of the MCST. Recently, this model was

extended by Shaat and Abdelkefi [33] to study the

effects of the material structure inhomogeneity of an

electrostatically-actuated micro/nano Nc-Si cantilever

beam on its pull-instability and sensitivity to bio-cells

are investigated. Wang et al. [34] analyzed the effects

of surface energy and material length scale parameter

on the pull-in instability and free vibration of
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electrostatically actuated nanoplates considering the

effect of Casimir force. Liang et al. [35] presented a

nonlinear size-dependent model for the electrostati-

cally actuated nanobeams incorporating Casimir force

based on the strain gradient elasticity theory and

Hamilton principle. The governing equations were

solved numerically using the generalized differential

quadrature (GDQ) method. Beni et al. [36] employed

the modified strain gradient theory to study the size

dependent pull-in instability of nano-bridges and

nano-cantilevers, considering the effect of van der

Waals intermolecular force. The Hamilton’s principle

in conjunction with Euler–Bernoulli beam theory was

applied for deriving the governing equation. Noghre-

habadi and Eslami [37] investigated the size-depen-

dent static behavior of clamped–clamped actuators in

liquid electrolytes based on the MCST, where the

effects of van der Waals force, midplane stretching

and residual forces are included. The minimum total

potential energy principle was used to derive the

governing equation.

However, little attention has been paid for model-

ing the pull-in instability of the viscoelastic micro/-

nano devices with size effects. Bethe et al. [38]

showed that for a thin silicon MEMS structure, the

creep phenomenon of silicon became rather significant

and consequently investigation of the viscoelastic

effects in microbeams became necessary. The pull-in

phenomenon of electrically actuated viscoelastic

clamped–clamped microbeam based on the MCST

was studied by Fu et al. [39], Fu and Zhang [40] and

Zhang and Fu [41]. In these papers, the obtained

governing equation was solved using Galerkin method

and although the prescribed function in the space

variable was chosen to satisfy the boundary condi-

tions, it is not guaranteed to satisfy the governing

equation. On the other hand, this approach is compli-

cated if other sources of nonlinearity are added to the

governing equation. Chen et al. [42] studied the

buckling and dynamic stability of a simply supported

piezoelectric viscoelastic nanobeam subjected to van

der Waals forces based on the classical viscoelasticity

theory.

This research study is the first attempt to analyze

the nonlinear size-dependent pull-in instability of

electromechanical viscoelastic micro/nanobeams

including the simultaneous effects of material length

scale parameter, intermolecular Casmir and vdW

forces, electric forcing including fringing field,

residual stress and mid-plane stretching geometric

nonlinearity. To the author’s best knowledge, no

previous studies which cover all these issues are

available. The modified couple stress theory is

employed to express the microstructure effect of

viscoelastic microbeams in the context of linear

viscoelastic theory. The nonlinear governing integro-

differential equations and associated boundary condi-

tions are formulated using the extended Hamilton

principle and Bernoulli–Euler beam theory in con-

junction with the standard solid model of viscoelas-

ticity. Afterwards, a modified generalized differential-

integral quadrature (GDIQ) method is developed to

solve the obtained governing nonlinear equations. The

developed model is verified for both elastic and

viscoelastic benchmarks of microbeams. In the frame-

work of viscoelastic theory, a detailed parametric

study is performed to get an insight into the effects of

intermolecular Casimir and vdW forces, relaxation

time, durable modulus, material length scale param-

eter, initial gap and beam length on the size dependent

pull-in response (instantaneous and durable pull-in

voltages, pull-in time, pull-in deflection and creep

deflection) of electrically actuated viscoelastic micro-

bridges and microcantilevers.

Rigid ground plane

Cantilever beam
Dielectric 

spacer

+
- V

L

(a)

Rigid ground plane

Doubly-clamped beamDielectric 
spacer

+
- V

L

(b)

Fig. 1 Schematic representation of electrically actuated. a mi-

cro-cantilever and b micro-bridge
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2 Problem formulation

This section is intended to derive the equations of

motion and associated boundary conditions of an

electrically actuated viscoelastic microbeams given in

Fig. 1. The beam is actuated by a distributed electrical,

fringing field, Casimir and vdW forces between a

flexible and a rigid stationary electrodes. The actuator

is modeled by a long and thin beam with the length L,

width b, uniform thickness h, and an initial gap d0
between the beam and substrate. The x coordinate is

taken along the length, z coordinate is taken along the

thickness, and the ycoordinate is taken along the width

of the beam.

2.1 Modified couple stress theory

in the framework of viscoelasticity

The modified couple stress theory (MCST) proposed

by Yang et al. [24] for an elastic behavior will be

extended to the case of viscoelastic behavior of

microbeams in the framework of linear viscoelastic

theory. The nonclassical viscoelastic constitutive

equations can be obtained based on the classical

Leaderman viscoelastic linear constitutive equations,

Phan-Thien [43], and the modified couple stress

theory, Yang et al. [24], as follows:

rij x; tð Þ ¼ k tð Þ � emm x; tð Þdij þ 2l tð Þ � eij x; tð Þ ð1Þ

mij x; tð Þ ¼ 2l2l tð Þ � vij x; tð Þ ð2Þ

where rij x; tð Þ, eij x; tð Þ, mij x; tð Þ and vij x; tð Þ are the

Cauchy force-stress tensor, the infinitesimal strain

tensor, the deviatoric part of the couple-stress tensor

and the symmetric curvature tensor, respectively, and

dij is the Kronecker delta. The material length scale

parameter lmeasures the effect of the couple-stress on

viscoelastic behavior, Mindlin [22]. For simplicity, the

length scale parameter is assumed to be time-inde-

pendent. k tð Þ and l tð Þ are the time-dependent Lame’s

constants in classical viscoelastic theory. Note that

throughout the paper, the summation convention and

standard index notation are used, with the Latin

indices from 1 to 3.

The components of the infinitesimal strain tensor

and the symmetric curvature tensor are defined as

follows, Yang et al. [24]:

eij x; tð Þ ¼ 1

2
ru x; tð Þð Þ þ ru x; tð Þð ÞT

� �
ð3Þ

vij x; tð Þ ¼ 1

2
rh x; tð Þð Þ þ rh x; tð Þð ÞT

� �
ð4Þ

where u x; tð Þ and h x; tð Þ are the displacement and

rotation vectors, respectively;

hi x; tð Þ ¼ 1

2
r� u x; tð Þ½ � ð5Þ

The time-dependent viscoelastic Lame’s constants

are given by, Phan-Thien [43]

k tð Þ ¼ mE tð Þ
1þ mð Þ 1� 2mð Þ and l tð Þ ¼ E tð Þ

2 1þ mð Þ ð6Þ

where E(t) is the relaxation function and m is the

Poisson’s ratio, which assumed to be time-

independent.

The Stieltjes’s convolution operation symbol ‘*’

appears in Eqs. (1) and (2) is defined as,

C tð Þ �N tð Þ ¼ C0N tð Þ þ
Z t

0

dC t � nð Þ
d t � nð Þ N nð Þdn; C0 � C t ¼ 0ð Þ

ð7Þ

Consequently, Eqs. (1) and (2) can be, respectively,

rewritten as

rij x; tð Þ � reij x; tð Þ þ rvij x; tð Þ
¼ k0ekk x; tð Þdij þ 2l0eij x; tð Þ
� �

þ
Z t

0

_k t � nð Þekk x; nð Þdijdn
�

þ2

Z t

0

_l t � nð Þeij x; nð Þdn
�

ð8Þ

mij x; tð Þ � me
ij x; tð Þ þ mv

ij x; tð Þ

¼ 2l2l0vij x; tð Þ þ 2l2
Z t

0

_l t � nð Þvij x; nð Þdn

ð9Þ

where k0 and l0 are the initial Lame’s constants; i.e. at

t = 0. The superscripts ‘e’ and ‘v’ refer to the current

instantaneous elastic and history due to viscoelastic

behavior, respectively.

2.2 Kinematic and kinetic relations

Based on the Bernoulli–Euler beam hypothesis, the

displacements u; v;wð Þ of an arbitrary point with

coordinates x; y; zð Þ are given by,
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u x; z; tð Þ
v x; z; tð Þ
w x; z; tð Þ

8
<

:

9
=

;
¼

z/ x; tð Þ
0

w x; tð Þ

8
<

:

9
=

;
; / x; tð Þ ¼ �w0 x; tð Þ

ð10Þ

where �ð Þ0 denotes a derivative with respect to the

spatial coordinate x, /(x, t) is the rotation angle of the
centroidal axis of the beam and w x; tð Þ is the uniform
lateral deflection.

From Eqs. (7)–(10), the following non-zero com-

ponents of strain tensor, rotation vector and symmetric

curvature tensor are, respectively, given by

exx x; tð Þ ¼ �zw00 x; tð Þ ð11Þ

hy x; tð Þ ¼ �w0 x; tð Þ ð12Þ

vxy x; tð Þ ¼ vyx x; tð Þ ¼ � 1

2
w00 x; tð Þ ð13Þ

Substituting Eqs. (11) into (8) and Eqs. (13) into

(9), the following nonzero components of classical

force-stress and deviatoric part of the couple-stress

tensors are obtained as

rexx x; tð Þ
reyy x; tð Þ
rezz x; tð Þ

8
<

:

9
=

;
¼ �

C
Cm= 1� mð Þ
Cm= 1� mð Þ

8
<

:

9
=

;
E0zw

00 x; tð Þ

ð14aÞ

rvxx x; tð Þ
rvyy x; tð Þ
rvzz x; tð Þ

8
><

>:

9
>=

>;
¼ �

C

Cm= 1� mð Þ
Cm= 1� mð Þ

8
><

>:

9
>=

>;

�
Z t

0

z _E t � sð Þw00 x; nð Þdn

ð14bÞ

and

me
xy x; tð Þ ¼ l2l0w

00 x; tð Þ ð15aÞ

mv
xy x; tð Þ ¼

Z t

0

l2 _l t � sð Þw00 x; nð Þdn ð15bÞ

For wide beam (b C 5 h), the effective Young’s

modulus can be approximated by the plate modulus,

Osterberg and Senturia [44], such that

C¼ 1

1� m2ð Þ for b�5h; otherwise C¼ 1 ð16Þ

In the present study, the viscoelastic behavior is

simulated using a single element of the standard linear

solid model (generalized Maxwell viscoelastic

model), in which the viscoelastic relaxation modulus

E(t) is given by, Schapery [45]

E tð Þ ¼ E1 þ E2e
�wt and

E0 � E t ¼ 0ð Þ ¼ E1 þ E2

ð17Þ
Fig. 2 Nondimensional instantaneous and durable pull-in

voltages of viscoelastic microbridge when

CF ¼ CR ¼ CC ¼ CvdW ¼ 0
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where w is the reciprocal of the relaxation time, E1 and

E2 are the durable and creep moduli of the material,

respectively and E0 refers to the instantaneous elastic

Young’s modulus.

2.3 Variational formulation

For a viscoelastic continuum, the extended Hamilton

principle is expressed as, Chen et al. [46]

Z tf

ti

dK � dPe þ dWR þ dWS þ dWEð Þ þ dWv½ �dt ¼ 0

ð18Þ

where dK and dPe are the variations of the kinetic

energy and the total elastic strain energy due to

bending incorporating the elastic part of microstruc-

ture effect, respectively. dWR, dWS, dWE and dWv are

the virtual works due to residual stress, nonlinear mid-

plane stretching, external stimuli forces and viscous

dissipative forces including the dissipative part of

microstructure effect, respectively. For the viscoelas-

tic microbeam under consideration, these variations

can be expressed as follows:

dK ¼ d
1

2

Z L

0

Z

A

q _w2 x; tð ÞdAdx¼
Z L

0

qS _w x; tð Þð Þdwdx

ð19Þ

T
a
b
le

1
C
o
n
v
er
g
en
ce

o
f
th
e
li
n
ea
r
an
d
n
o
n
li
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ea
r
p
u
ll
-i
n
v
o
lt
ag
es

(V
)
o
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an
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ec
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tu
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ly
–
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ea
m

w
h
en

C
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C
v
d
W
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0
,
E
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5
1
G
P
a,
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¼

0
:3
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L
¼

5
lm

,
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¼

1
:5
l
m
,
d
0
¼

1
:1
8
lm

,
r 0

¼
6
=
1
�
m

ð
ÞM

P
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an
d
l
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0

L
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P
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el
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Q
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Fig. 3 Linear and nonlinear instantaneous and durable pull-in

voltages of viscoelastic microbridge at different initial gaps
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dPe ¼ d
1

2

Z L

0

Z

A

rexxexx þ 2me
xyvxy

� �
dAdx

¼ 1

2
CIE0 þ Sl2l0
� 	

d
Z L

0

w002 x; tð Þdx
ð20Þ

where q is the mass density, S ¼ bh and I ¼ bh3=12

are is the cross-sectional area and the corresponding

moment of inertia for the cross-section, respectively

and L is the total length of the beam.

The virtual work due to residual stresses can be

expressed as

dWR ¼ � 1

2
rrSd

Z L

0

w02 x; tð Þdx ð21Þ

where the effective residual stress is given by

rr ¼ 1� mð Þr0, otherwise rr ¼ r0 for narrow beams

(b\ 5 h), where r0 is the initial biaxial residual stress
in the beam, Osterberg and Senturia [44]. In this study,

it is assumed that the cantilever microbeams are free

from residual stresses and hence dWR equals zero.

The virtual work attributed to the nonlinear stretch-

ing force in the case of an elastic microbeam with

immovable ends can be written as, Nayfeh and Emam

[47],

dWe
S ¼ � 1

8

CSE0

L
d
Z L

0

w02 x; tð Þdx
� �2

ð22Þ

Exploiting Eqs. (7), (22) can be extended for a

viscoelastic microbeam as follows:

dWS ¼ �CS
2L

E0d
Z L

0

w02 x; tð Þdx



þ d
Z t

0

Z L

0

_E t � nð Þw02 x; nð Þdxdn
� ð23Þ

Note that the axial resultant force associated with

the mid-plane stretching is not considered in the

cantilever case and therefore the virtual work dWS

equals zero, this is due to that the cantilever beam

possess a movable end.

Considering the distribution of external stimuli

forces per unit length of the microbeam (fext), the virtual

work by these external forces can be expressed as

bFig. 4 Creep of the nondimensional center deflection of

viscoelastic microbridge with and without mid-plane stretching

at different initial gaps

(b) 

(a) 

(c) 
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dWE ¼
Z L

0

fextdw x; tð Þdx �
Z L

0

Helec x; tð Þ½

þHC x; tð Þ þ HvdW x; tð Þ�dw x; tð Þdx
ð24Þ

where fext is the consists of the electrostatic Coulomb

force unit length of the beam including the first order

fringing field effect Helec and the intermolecular

Casimir and van der Waals (vdW) forces per unit

length of the beam, HC and HvdW, respectively. These

forces can be written as the following, Huang et al.

[48] and Gusso and Delben [49]:

Helec x; tð Þ ¼ e0bV2

2 d0 � w x; tð Þ½ �2
1þ 0:65

d0 � w x; tð Þ
b


 �

ð25Þ

HC x; tð Þ ¼ p2�hcb

240 d0 � w x; tð Þ½ �4
ð26Þ

HvdW x; tð Þ ¼ Ab

6p d0 � w x; tð Þ½ �3
ð27Þ

where V is the applied voltage, d0 is the initial is the

initial gap between the movable part and the fixed

ground plane, e0 ¼ 8:854� 10�12C2N�1m2 is the

permittivity of vacuum, �h ¼ 1:0546� 10�34Js is the

reduced Planck’s constant divided by 2p, c ¼ 2:998�
108 m s�1 is the speed of light and A is the Hamaker

constant with values in the range 0:4; 4½ � � 10�19J,
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Fig. 5 Instantaneous and durable pull-in voltages of viscoelas-

tic microbridge for various residual stresses when

CvdW ¼ CC ¼ CS ¼ 0
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Batra et al. [50]. In the present analysis, all other

external forces are assumed to be zero.

The virtual work due to the viscous dissipative

forces including the dissipative part of couple-stress

can be obtained as, Attia and Mahmoud [51]

dWv ¼ �d
1

2

Z L

0

Z Z

A

rvxxexx þ 2mv
xyvxy

� �
dAdx

¼
Z L

0

Z t

0

� CI _E t � nð Þ þ Sl2 _l t � nð Þ
� �

w00

x; nð Þdw00 x; nð Þdndx ð28Þ

Now, by substituting Eqs. (19)–(21), (23), (24) and

(28) into the extended Hamilton’s principle (Eq. (18)),

while invoking the condition of zero variation at times

t ¼ t0 and t ¼ tf , the integro-differential equation of

an electrically actuated viscoelastic microbeam based

on the MCST in the framework of viscoelasticity can

be derived as the following:

qS €w tð Þ þ E0w
0000 tð Þ þ

Z t

0

_E t � nð Þw0000 nð Þdn

� rrSþ
SC
2L

E0

ZL

0

w02 tð Þdx

2

4

þ SC
2L

Z t

0

ZL

0

_E t � nð Þw02 nð Þdxdn

3

5w00 tð Þ �H tð Þ

¼ 0 8x 2 0; L½ �and t 2 ti; tf
� �

ð29Þ

in which

E0 ¼ ICE0 þ Sl2l0; E tð Þ ¼ ICE tð Þ þ Sl2l tð Þ
ð30a; bÞ

H tð Þ ¼ e0bV2

2 d0 � w tð Þ½ �2
1þ 0:65

d0 � w tð Þ
b


 �

þ Ab

6p d0 � w tð Þ½ �3
þ p2�hcb

240 d0 � w tð Þ½ �4
ð30cÞ

under the following boundary conditions:

Either w ¼ ~w or E0w
000 tð Þ þ

Z t

0

_E t � nð Þw000 nð Þdn

� rrSþ
SC
2L

E0

Z L

0

w02 tð Þdx
�

þ SC
2L

Z t

0

Z L

0

_E t � nð Þw02 nð Þdxdn
�
w0 tð Þ ¼ 0

at x ¼ 0; L

ð31aÞ

Either

w0 ¼ ~w0 or E0w
00 tð Þ

þ
Z t

0

_E t � nð Þw00 nð Þdn ¼ 0 at x ¼ 0; L

ð31bÞ

To transform the governing equation and associated

boundary conditions into the nondimensional form,

(a) 

(b) 

Fig. 6 Creep of the nondimensional center deflection of

viscoelastic microbridge at different residual stresses when

CvdW ¼ CC ¼ CS ¼ 0
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the following nondimensional variables are introduced

as

w ¼ ŵ

d0
; x ¼ x̂

L
; and t ¼ t̂

T
ð32Þ

where T is a time scale and b�
� �

denotes a

dimensional quantity and d0 a reference value for the

initial gap. For simplicity, we keep the same notations

for variables having in mind they are in nondimen-

sional form from now on. Substituting Eq. (32) into

Eqs. (29) and (30) and considering no residual stress

or axial stretching for microcantilever, the nondimen-

sional governing equation of viscoelastic microbeam

can be obtained as

C0 €w tð Þ þ w0000 tð Þ � C1

Z t

0

e�
�w t�t0ð Þw0000 t0ð Þdt0

� CR þ CS

Z 1

0

w02 tð Þdx
�

�CS
�w�E2

Z 1

0

Z t

0

e�
�w t�t0ð Þw02 t0ð Þdt0dx

�
w00 tð Þ

� CE

1� w tð Þ½ �2
� CF

1� w tð Þ½ �

� CvdW

1� w tð Þ½ �3
� CC

1� w tð Þ½ �4
¼ 0

8x 2 0; 1½ � and t 2 t0; tf
� �

ð33Þ

and the following boundary conditions:

(a) Microcantilever case (Clamped-Free):

w 0; tð Þ ¼ w0 0; tð Þ ¼ 0; ð34aÞ

� w000 1; tð Þ þ C1

Z t

0

e�
�w t�t0ð Þw000 1; t0ð Þdt0

� �
w0 1; tð Þ ¼ 0

and w00 1; tð Þ � C1

Z t

0

e�
�w t�t0ð Þw00 1; t0ð Þdt0 ¼ 0

ð34bÞ

(b) Microbridge case (Clamped–Clamped):

w 0; tð Þ ¼ w0 0; tð Þ ¼ 0; ð35aÞ

w 1; tð Þ ¼ w0 1; tð Þ ¼ 0 ð35bÞ

In above equations, the dimensionless parameters

are given as follows:

C1 ¼ CI þ Sl2

2 1þ mð Þ ; C0 ¼
I

C1

; C1 ¼ �w�E2;

CR ¼ L2rrS
E0C1

; CS ¼ C
C1

Sd20
2

;

CE ¼ I �V2

C1

; CF ¼ 0:65
d0

b
Ce; CvdW ¼ AbL4

6pd40E0C1

;

CC ¼ p2�hcbL4

240d50E0C1

; �V ¼ VL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0b

2d30E0I

s

;

T ¼ L2

h

ffiffiffiffiffiffiffiffi
12q
E0

r

; �w ¼ wT and �E2 ¼
E2

E0

ð36Þ

The parameter is given by Eq. (16). Again, it

should be noted that for the case of microcantilevers,

the parameters of axial force due to residual stress and

Table 3 Effect of the residual stress on the nondimensional pull-in time and pull-in center deflection of microbridge when

CvdW ¼ CC ¼ CS ¼ 0

Applied voltage (V) Residual stress r 0 (MPa)

100 50 0.0 -15

tPI tssð Þ wc
PI wc

ss

� 	
tPI tssð Þ wc

PI wc
ss

� 	
tPI tssð Þ wc

PI wc
ss

� 	
tPI tssð Þ wc

PI wc
ss

� 	

1.4 (45.8) (0.033) (58.1) (0.054) (85.20) (0.163) 39.35 0.539

1.6 (25.0) (0.043) (40.1) (0.072) (124.10) (0.255) 11.16 0.460

1.8 (33.5) (0.056) (46.7) (0.095) 37.89 0.481 1.64 0.417

2.0 (38.0) (0.071) (77.1) (0.124) 8.19 0.437 – –

2.1 (32.3) (0.079) (96.9) (0.141) 2.99 0.420 – –

2.5 (41.6) (0.121) (78.4) (0.243) – – – –

3.0 (76.5) (0.205) 0.83 0.404 – – – –

3.2 (70.9) (0.262) – – – – – –

3.4 38.4 0.432 – – – – – –
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nonlinear stretching should be omitted from Eq. (33);

i.e. CR ¼ CS ¼ 0.

3 Solution procedure

Due to the high nonlinearity encountered in the

governing equations and associated boundary condi-

tions, analytical solutions for such integro-differential

equations is cumbersome. Consequently, an approx-

imate numerical solution is developed through a

proposed generalized differential-integral quadrature

(GDIQ) method, which is a combination of the well-

known generalized differential quadrature (GDQ)

method and a new developed generalized integral

quadrature (GIQ) method. In this study, the GDQ

method is employed to discretize the governing

equation and associated boundary conditions in the

space variable. Based on the fact that an indefinite

integral of a function is its anti-derivative, a new

generalized integral quadrature (GIQ) method is

developed as the pseudo-inverse of GDQ method.

The proposed GIQ method is applied to approximate

the definite integrals included in the integro-differen-

tial equation (Eq. (33)). The proposed GDIQ dis-

cretization results in a system of ordinary differential

equations that can be solved by Runge–Kutta method.

(a)

(b)

Fig. 7 Effect of the intermolecular Casimir and vdW forces on

the instantaneous and durable pull-in voltages at different initial

gaps

(b)

(a)

Fig. 8 Effect of the intermolecular Casimir and vdW forces on

the instantaneous and durable pull-in voltages at different

lengths of the microbeam
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3.1 Generalized differential quadrature method

To render the article self-contained, the formulas of

the GDQmethod, Shu [52] is briefly introduced in this

section. The shifted Chebyshev–Gauss–Lobatto grid

points are used to generate grid points in xi direction

xi ¼
1

2
1� cos

i� 1

N � 1
p


 � �
; i ¼ 1; 2; . . .;N

ð37Þ

By this method,m -th derivative of a function f x; tð Þ
is discretized by series as follows:

dm

dxm
¼
XN

j¼1

a
mð Þ
ij f xj; t

� 	
ð38Þ

The weighting coefficients aij
(m) for the m-th

derivative are dependent on the distribution of grid

points only and can be obtained from the recursive

formula,

a
mð Þ
ij ¼ m a

1ð Þ
ij a

m�1ð Þ
ii �

a
m�1ð Þ
ij

xi � xj

 !

;

a
mð Þ
ii ¼ �

XN

j¼1;j 6¼i

a
mð Þ
ij ; i; j 2 1; 2; . . .;Nf g

ð39Þ

In matrix form, let the discrete values of fi = f(xi) at

nodes i ¼ 1; 2; . . .;N, be given as a vector

f ¼ f1; f2; � � � ; fn½ �T , then

F mð Þ ¼ A mð Þf � A 1ð ÞA m�1ð Þf ð40Þ

In this work only homogeneous boundary condi-

tions represented by Eqs. (34) and (35) are considered

and hence its implementation is straight forward, see

Shu [52].

3.2 Generalized integral quadrature method

Consider a differentiable function f xð Þ defined on the

interval 0	 x	 1,

df

dx
¼ F xð Þ;

Z x

0

F xð Þdx ¼ f xð Þ � f 0ð Þ ð41a; bÞ

bFig. 9 Effect of Casimir and vdW forces on the creep of the

nondimensional center deflection of viscoelastic microbridge at

different initial gaps

(b) 

(c) 

(a) 
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Using a pseudo-inverse algorithm such that the

matrix B is pseudo-inverse of A 1ð Þ; one can rewrite

Eq. (41a, b) as f 1ð Þ ¼ BF 1ð Þ and consequently the

definite integral between two nodes xi and xj can be

approximated as

Z xj

xi

F xð Þdx ¼ f xj
� 	

� f xið Þ ffi
XN

k¼1

R ij½ �Fk;

k ¼ 1; 2; . . .;N

ð42Þ

Note that the row vector R ij½ � ¼ Bjk � Bik is the

difference between the jth and ith rows ofB. Thus, the

integral
R 1
0
w02dx included in Eq. (33) can be approx-

imated using both GDQ and GIQ methods as follows:

Z 1

0

w02dx ffi R 1N½ � A 1ð Þw
� ��2
 �

; R ij½ � ¼ Bjk � Bik

ð43Þ

where the symbol 0�0 denotes element by element

operator. Note that matrix multiplication of the row

R 1N½ � by the vector A 1ð Þw
� 	�2

produces a scalar value

approximating the definite integral.

3.3 GDIQ method for viscoelastic analysis

Following Attia and Mohamed [53], the following

definitions are firstly introduced:

I1 ¼
Z t

0

e�
�w t�t0ð Þw0000 t0ð Þdt0 ð44aÞ

I2 ¼
Z 1

0

Z t

0

e�
�w t�t0ð Þw02 t0ð Þdt0dx ð44bÞ

Applying the Leibniz rule for differentiation under

the integral sign, one can obtain

_I1 ¼ w0000 x; tð Þ � �wI1 and _I2 ¼ g x; tð Þ � �wI2
ð45a; bÞ

where

g tð Þ ¼
Z 1

0

w02 tð Þdx ð46Þ

bFig. 10 Effect of Casimir and vdW forces on the creep of the

nondimensional tip deflection of viscoelastic microcantilever at

different initial gaps

(a) 

(c) 

(b) 
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Neglecting the inertia term for quasistatic analysis,

then differentiation of Eq. (33) with respect to t in

light of Eqs. (45a, b) yields to

_w0000 tð Þ�C1
_I1� CRþCS g tð Þ� �w �E2I2

� �� �
_w00

�CS _g tð Þ� �w�E2
_I2

� �
w00

¼ 2CE

1�w½ �3
þ CF

1�w½ �2
þ 3CvdW

1�w½ �4
þ 4CC

1�w½ �5

( )

_w tð Þ

8x2 0;1½ � and t2 ti; tf
� �

ð47Þ

To this end, it is required to reduce Eq. (47) to a

system of ODEs using GDQ and GIQ methods. GDIQ

method is used to discretize the x-domain and

approximate the partial derivatives with respect to x.

At arbitrary time t, let w ¼ w1;w2; � � �wN½ �T and

_wf g ¼ _w1; _w2; . . .; _wN½ �T be, respectively, the vectors

of discrete values of deflection and velocity at the

discrete points x1; x2; . . .; xN of the microbeam.

Employing the GIQ method defined by Eq. (43) and

using Eq. (46), _g tð Þ yields to a scalar value as follows

_g tð Þ¼
Z 1

0

2w0 x; tð Þ _w0 x; tð Þdx¼ 2R 1N½ � K1wð Þ � K1 _wð Þð Þ

ð48Þ

Consequently, _g tð Þw00 can be obtained using GDQ

method as follows:

K2w _g tð Þ ¼ S _w; S ¼ 2K2wR 1N½ �Q ð49a; bÞ

where Kl denotes the coefficients matrix correspond-

ing to the l-th derivatives modified by appropriate

application of the boundary conditions. Q is an N-

square matrix obtained from matrix K1 by multiplying

each element in its i-th row by the corresponding i-th

element in vector w0 ¼ K1w. Finally, Eq. (47) can be

rewritten

M _w ¼ Pw� Cð Þ ð50Þ

where

M ¼ K4 � CR þ CS g tð Þ � �w�E2I2
� �� �

K2 � CSS

� 2CE

1� w½ �3
þ CF

1� w½ �2
þ 3CvdW

1� w½ �4
þ 4CC

1� w½ �5

 !

ð51aÞ

bFig. 11 Effect of Casimir and vdW forces on the creep of the

nondimensional center deflection of viscoelastic microbridge at

different microbeam lengths

(a)

(b)

(c)
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P ¼ C1K4 � �w �E2CS g� �wI2
� 	

K2 ð51bÞ

C ¼ �wC1I1 ð51cÞ

It is important to refer to that Eqs. (45a, b) and (50)

form the coupled system of ODEs obtained from

Eq. (47) using GDIQ method. This system is solved

using Runge–Kutta method. However, the initial

conditions have to be computed first by substituting

t ¼ 0 into Eq. (33),

w0000 � CR þ CS

Z 1

0

w02dx

� �
w00 � CE

1� w½ �2
� CF

1� w½ �

� CvdW

1� w½ �3
� CC

1� w½ �4
¼ 0 8x 2 0; 1½ �

ð52Þ

which can be solved using Newton’s iterative method

to obtain w0.

4 Numerical results and discussion

In this section, the proposed model is verified by

comparing the obtained results with those of available

numerical and analytical methods in the literature.

Also, a comprehensive parametric study is conducted

to investigate the different viscoelastic material and

geometrical parameters as well as the intermolecular

forces on the quasistatic pull-in response of electri-

cally actuated viscoelastic doubly-clamped micro-

bridges and clamped-free microcantilevers in the

framework of viscoelasticity.

4.1 Comparative study

Since, there is no available well-defined bench-

marks to validate the present model for electrically

actuated viscoelastic microbeams including the

combined effects of length scale parameter, fring-

ing field, residual stresses, mid-plane stretching and

Casimir and vdW forces. Therefore, based on the

bFig. 12 Effect of Casimir and vdW forces on the creep of the

nondimensional tip deflection of viscoelastic microcantilever at

different microbeam lengths
(a)

(b)

(c)
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Table 4 Effect of the Casimir and vdW forces on the nondimensional pull-in time and pull-in maximum deflection

Initial gap d0 lmð Þ Applied voltage (V) Intermolecular forces

CC = CvdW = 0 with CC (CvdW = 0) with CvdW (CC = 0) with CC and CvdW

tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ

Viscoelastic microbridge, wc
PI wc

ss

� 	

0.07 0.4 (20.2) (0.122) (158.3) (0.240) (91.2) (0.163) 39.85 0.382

0.45 (99.5) (0.167) 43.75 0.390 (112.4) (0.225) 15.85 0.364

0.5 (122.4) (0.235) 15.6 0.386 123.2 0.473 6.15 0.363

0.525 (144.6) (0.291) 9.5 0.377 41.45 0.461 3.1 0.350

0.55 105.95 0.496 5.4 0.366 22.75 0.462 0.856 0.337

0.6 19.9 0.462 0.21 0.348 7.75 0.437 – –

0.65 5.94 0.437 – – 0.982 0.388 – –

0.075 0.5 (103.7) (0.168) (195.6) (0.298) (131) (0.210) 39.95 0.411

0.55 (121.3) (0.228) 33.5 0.407 (182.9) (0.307) 16.05 0.384

0.6 (281.8) (0.371) 13.1 0.389 36.55 0.477 6.4 0.375

0.65 27.7 0.484 4.55 0.383 13.15 0.429 1.17 0.351

0.675 16.35 0.457 1.915 0.371 7.86 0.422 – –

0.7 9.7 0.440 – – 4.17 0.408 – –

0.75 2.23 0.421 – – – – – –

0.08 0.55 (93.5) (0.167) (121) (0.234) (108.4) (0.198) 242.45 0.431

0.6 (113.5) (0.220) 83.3 0.449 (145.6) (0.269) 33.35 0.412

0.65 (165.3) (0.315) 24.8 0.444 63.05 0.479 14.4 0.417

0.7 39.35 0.483 10.4 0.391 20.8 0.482 5.85 0.417

0.75 14.5 0.447 3.65 0.426 8.2 0.415 1.08 0.368

0.8 5.2 0.453 0.37 0.312 2.12 0.409 – –

0.82 2.82 0.411 – – – – – –

Viscoelastic microcantilever, wt
PI wt

ss

� 	

0.60 0.2 (137.8) (0.208) (133.8) (0.217) (108.2) (0.249) (116.5) (0.262)

0.225 (148.2) (0.318) (190.6) (0.343) 97.75 0.537 61.55 0.524

0.25 32.7 0.532 26.4 0.530 17.3 0.503 14.35 0.479

0.275 8.35 0.498 6.9 0.486 4.09 0.458 3.1 0.446

0.75 0.3 (133.1) (0.262) (121.9) (0.266) (183.4) (0.285) (145.2) (0.290)

0.325 (191.1) (0.393) (356.1) (0.427) 99 0.555 81.8 0.536

0.35 31.83 0.544 29.58 0.535 24.13 0.513 22.59 0.507

0.375 12.12 0.522 11.4 0.539 9.5 0.524 8.85 0.479

0.4 3.89 0.470 3.55 0.465 2.62 0.469 2.335 0.457

0.9 0.425 (173.7) (0.375) (177.7) (0.381) (453.3) (0.430) 337.3 0.566

0.45 46.1 0.534 44.27 0.534 38.79 0.535 37.5 0.533

0.475 20.25 0.542 19.8 0.535 17.93 0.519 17.47 0.520

0.5 9.81 0.503 9.55 0.490 8.68 0.483 8.47 0.519

0.525 4.055 0.492 3.905 0.477 3.39 0.471 3.26 0.465

0.55 0.493 0.448 0.413 0.451 – – – –
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quasi-elastic method proposed by Schapery [54],

the current results of the nondimensional instanta-

neous and durable pull-in voltages ( �VPI) at times

t ¼ 0 and 1; respectively, of a doubly-clamped

microbridge viscoelastic microactuator are compared

with those reported by Zhang and Fu [41], in which

E0 ¼ 169GPa, �E1 ¼ 0:6; m ¼ 0:22, L ¼ 150 lm,

b ¼ 10 lm, h ¼ 2 lm and d0 ¼ 1:2h. For the purpose

of comparison, the effects of the fringing field,

residual stresses and Casimir and vdW forces are

neglected; i.e. CF ¼ CR ¼ CC ¼ CvdW ¼ 0, while the

effect of mid-plane stretching is included. As shown in

Fig. 2, it is found that the present results are in good

agreement with those in the work of Zhang and Fu [41]

for different values of nondimensional length scale

parameter l=h.

Table 5 Effect of the Casimir and vdW forces on the nondimensional pull-in time and pull-in maximum deflection

Beam length L lmð Þ Applied voltage (V) Intermolecular forces

CC = CvdW = 0 with CC (CvdW = 0) with CvdW (CC = 0) with CC & CvdW

tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ

Viscoelastic microbridge, wc
PI wc

ss

� 	

150 0.8 38.32 0.489 27.18 0.468 28.86 0.462 21.27 0.454

0.85 16.01 0.479 12.06 0.436 12.73 0.451 9.61 0.439

0.9 6.71 0.440 4.76 0.445 5.09 0.421 3.46 0.412

0.92 4.36 0.428 2.81 0.404 3.07 0.407 1.78 0.396

0.95 1.645 0.406 0.575 0.388 0.765 0.421 – –

200 0.4 (118.8) (0.254) 84.8 0.465 148.8 0.487 27.72 0.422

0.42 (190) (0.331) 34.96 0.457 42.41 0.466 16.39 0.410

0.45 38.32 0.489 14.81 0.418 17.18 0.450 7.24 0.393

0.48 15.12 0.453 6.08 0.397 7.22 0.427 2.1 0.375

0.5 8.27 0.435 2.58 0.383 3.33 0.411 – –

0.52 3.9 0.424 0.165 0.376 0.647 0.390 – –

250 0.18 (78) (0.093) (93.6) (0.160) (98.9) (0.166) 48.82 0.380

0.2 (75.6) (0.120) (138.6) (0.209) (132.2) (0.211) 23.26 0.367

0.22 (95.6) (0.155) 162.85 0.419 (201.1) (0.291) 12.09 0.359

0.25 (140.22 (0.232) 21.72 0.395 29.25 0.437 3.375 0.341

0.3 20.98 0.468 1.48 0.362 2.8 0.384 – –

0.32 8.31 0.448 – – – – – –

Viscoelastic microcantilever, wt
PI wt

ss

� 	

200 1.1 (144) (0.334) (170.8) 0.3350 (170.9) 0.337) (152) (0.337)

1.2 37.5 0.544 37.3 0.546 36.7 0.563 36.5 0.528

1.3 12 0.510 11.9 0.494 11.8 0.510 11.8 0.496

1.4 3.05 0.472 3 0.476 2.95 0.467 2.9 0.457

400 0.275 (143.9) (0.334) (200) 0.341) (228.8) 0.388) (320.6) (0.408)

0.3 37.4 0.530 35.2 0.526 27.8 0.527 26.4 0.516

0.325 11.98 0.507 11.41 0.497 9.37 0.539 8.9 0.495

0.35 2.99 0.469 2.75 0.459 1.845 0.454 1.66 0.456

500 0.19 45.1 0.548 38.3 0.565 21.85 0.501 19.5 0.489

0.2 20.6 0.528 18.3 0.499 11.4 0.480 10.15 0.468

0.21 10.41 0.503 9.27 0.498 5.42 0.472 4.7 0.456

0.22 4.63 0.485 3.93 0.454 1.62 0.452 1.2 0.458

0.23 1.015 0.456 0.615 0.446 – – – –
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Also, convergence of the present numerical method

is verified as demonstrated in Table 1 which displays

and compares the linear (without mid-plane stretch-

ing) and nonlinear (with mid-plane stretching) pull-in

voltages of elastic microbridge of different lengths

with varying total number of grid points N. As

observed, the proposed numerical GDIQ method

yields convergent results when N C 21. Moreover, it

is seen from Table 1 that the present results are in a

good agreement with those obtained using numerical,

analytical and experimental methods. Based on these

results, all the following numerical results are obtained

using N = 21.

(a)

(b)

Fig. 13 Effect of the nondimensional durable modulus �E1 on

the viscoelastic instantaneous and durable pull-in voltages

(c)

(b)

(a)
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4.2 Parametric study

The developed model is used to investigate the

nonlinear size-dependent quasistatic pull-in response

of electrically actuated viscoelastic microbridges and

microcantilevers based on the MCST. Combined

effect of electrostatic actuation, fringing field, mid-

plane stretching, residual stresses and Casimir and

vdW forces are considered. Effect of mid-plane

stretching, residual stresses, initial gap, beam length,

Casimir force, vdW force, durable modulus, relaxation

time, and material length scale parameter on the

viscoelastic pull-in parameters; i.e. instantaneous and

durable pull-in voltages, viscoelastic creep deflection,

pull-in time and pull-in deflection, will be compre-

hensively studied in the next sections.

Material parameters of both doubly-clamped

microbridge and clamped-free microcantilever are

E0 = 77 GPa, �E1 ¼ 0:6, �w = 0.1, m = 0.33, l ¼
0:25h and the residual stress r0 is taken 100 MPa for

the case of doubly-clamped microbeam. Geometrical

parameters are taken as L ¼ 100 lm, b ¼ 50 lm, h ¼
1 lm and d0 ¼ 0:08 lm for the microbridge and

L ¼ 300 lm, b ¼ 50 lm, h ¼ 1 lm and d0 ¼
0:15 lm for the microcantilever. These material and

geometrical parameters are hold constant except the

parameter being studied, which is varied with larger or

smaller value.

4.2.1 Effect of mid-plane stretching

It is worth noting that for the geometrical nonlinearity

caused by mid-plane stretching to be significant, the

beam ends must be immovable, Nayfeh and Mook

[55]. Also, it is noticed from Eq. (36) that this source

of nonlinearity is proportional to the square of the

initial gap. The effect of mid-plane stretching on the

instantaneous and durable pull-in voltages of the

doubly-clamped microbridge for different initial gaps

is presented in Fig. 3, using the quasi-elastic analysis.

The results are obtained corresponding to both linear

and nonlinear analyses based on the MCST for l=h ¼
0:25 and ignoring the effects fringing field, residual

bFig. 14 Effect of the nondimensional durable modulus �E1 on

the creep of the nondimensional center deflection of viscoelastic

microbridge

(a)

(b)

(c)
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stresses and intermolecular Casimir and vdW forces;

i.e. CF ¼ CR ¼ CvdW ¼ CC ¼ 0. According to these

results, it is observed that as the initial gap increases,

the instantaneous and durable pull-in voltages for both

linear (without mid-plane stretching effect ‘‘CS = 0’’)

and nonlinear (with mid-plane stretching effect ‘‘with

CS’’) responses are significantly increased. Also, it is

revealed that the nonlinear pull-in voltage is larger

than that obtained from linear analysis and therefore

ignoring nonlinearity due to mid-plane stretching

leads to underestimation of both instantaneous and

durable pull-in voltages especially at large initial gaps.

Creep of the linear and nonlinear nondimensional

center deflection for different initial gaps and applied

voltages is studied in Fig. 4. Here and throughout the

paper, the solid line denote that the microactuator

behaves stable when the applied voltage is lower than

the durable one (V\VPI t ¼ 1ð ÞÞ, i.e. the microactu-

ated beam will not collapse at any time instant. Both

dash and dash-dot lines represent that the microactu-

ator behaves in the durable region when

VPI t ¼ 1ð Þ\V\VPIðt ¼ 0). Some selected numeri-

cal values for the nondimensional pull-in time (tPI)

and the corresponding nondimensional pull-in center

deflection of microbridge (wc
PI) are provided in

Table 2. This Table and next tables throughout the

paper can be recognized to three different regions

according to the status of the microactuator response;

namely stable, durable, and invisible regions. The

stable region, where the beam will not collapse any

time, is identified by nondimensional time elapsed by

the microbeam to reach the steady-state response tssð Þ
and corresponding nondimensional steady-state center

deflection wc
ss

� 	
, which appear with parentheses. The

durable region reports the values of the nondimen-

sional pull-in time (tPIÞ and the corresponding nondi-

mensional pull-in center deflection wc
PI

� 	
just before

collapse. The third region presents the unstable or

invisible one, which is filled by the symbol ‘‘–’’, to

indicate that no response exists. Noting that instanta-

neous pull-in (at no time) occurs in the transition

between the durable and invisible regions

(V [VPI t ¼ 0ð ÞÞ, while the durable pull-in occurs

between the durable and stable regions.

From the results presented in Fig. 4 and Table 2, it

is noticed that the difference between linear and

nonlinear responses of viscoelastic microbridge

becomes more significant at large values of the initial

gap. Also, at large initial gaps, including the nonlinear

mid-plane stretching effect may drive the microbridge

to behave in the durable region instead of the

unstable one. It is also detected that for large initial

gaps and applied voltages, the nondimensional pull-in

time and nondimensional pull-in center deflection are

bFig. 15 Effect of the nondimensional durable modulus �E1 on

the creep of the nondimensional tip deflection of viscoelastic

microcantilever

Table 6 Effect of the nondimensional durable modulus �E1 on the nondimensional pull-in time and pull-in maximum deflection

Applied voltage (V) Nondimensional durable modulus �E1 ¼ E1=E0

0.6 0.5 0.4 0.3 0.2

tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ

Viscoelastic microbridge, wc
PI wc

ss

� 	

1.1 (58.3) (0.191) (69.4) (0.207) (99.6) (0.228) (111.8) (0.257) (271.1) (0.314)

1.2 (95.61) (0.262) (117.9) (0.300) 68.55 0.412 31.54 0.424 21.92 0.417

1.25 (121.4) (0.342) 30.4 0.413 18.65 0.408 13.81 0.412 11.02 0.409

1.3 13.75 0.400 9.47 0.394 7.25 0.395 5.9 0.394 4.97 0.397

1.35 2.515 0.390 1.955 0.383 1.605 0.389 1.36 0.388 1.18 0.390

Viscoelastic microcantilever, wt
PI wt

ss

� 	

0.25 (95.6) (0.168) (223.6) (0.220) (322.2) 0.348) 77.6 0.639 45.8 0.633

0.3 (199) (0.295) 80.05 0.581 36.3 0.563 24.8 0.578 18.95 0.559

0.35 21.64 0.518 14.03 0.508 10.51 0.532 8.44 0.538 7.03 0.509

0.375 8.45 0.488 6.23 0.481 4.96 0.497 4.1 0.482 3.51 0.477

2410 Meccanica (2017) 52:2391–2420

123



underestimated while the nondimensional instanta-

neous center deflection (at t ¼ 0) is overestimated

when the mid-plane stretching effect is neglected, i.e.

d0 ¼ 1 lm. If the microbridge behaves in the stable re-

gion for both linear and nonlinear analysis (d0 ¼ 1 lm
and V ¼ 29V), a remarkable decrease in the nondi-

mensional steady-state time and nondimensional

steady-state deflection is obtained when the mid-plane

stretching is considered.

4.2.2 Effect of residual stresses

Depending on the fabrication sequences of the MEM

actuators, the residual stresses can be tensile or

compression, Kahn and Heuer [56]. Figure 5 illus-

trates the variation of the instantaneous and durable

pull-in voltages of viscoelastic microbridge with the

residual stress considering the fringing field effect

when d ¼ 0:15 lm, l=h ¼ 0:25 and

CvdW ¼ CC ¼ CS ¼ 0. It is clear that increasing the

residual stress from compressive towards tensile

direction results in a significant increase in both

instantaneous and durable pull-in voltages of the

microbridge. Consequently the size of the stable region

is increased, whilst the sizes of the durable and

unstable regions are decreased. This is because that the

tensile residual stress stiffens microbridges but con-

versely compressive residual stress softens them.

Also, it is worth noting that varying the compressive

residual stress has a more pronounced influence on the

pull-in voltages rather than varying the tensile residual

stress. As the residual stress is varied from -3.2 to

-20 MPa, the instantaneous and durable pull-in

voltages are decreased by 18.18 and 35.09% respec-

tively. Changing the residual stress from 4 to

20.8 MPa shows a 13.22 and 20.61% increase in the

instantaneous and durable pull-in voltages,

respectively.

Effect of the residual stress on the creep of the

nondimensional center deflection of viscoelastic

microbridge is shown in Fig. 6 and selected values

of the nondimensional pull-in time and pull-in center

deflection for various residual stresses are provided in

Table 3. It is clear that as the tensile residual stress is

bFig. 16 Effect of the nondimensional relaxation time �W on the

creep of the nondimensional center deflection of viscoelastic

microbridge

(a)

(b)

(c)
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increased, the nondimensional steady-state (durable)

center deflection and time required to reach it are

significantly decreased; this response is represented by

the solid lines in Fig. 6 and the values appear

with parentheses in Table 3. From the obtained

results, it is noticed that compressive residual stress

shows a distinct increase in the nondimensional

instantaneous center deflection, while the nondimen-

sional pull-in time and corresponding nondimensional

pull-in center deflection are obviously decreased. In

other words, compressive residual stress makes the

microbridge state to be converted from the stable re-

gion to the durable or invisible one.

4.2.3 Effect of Casimir and vdW forces

Since the intermolecular forces are the spontaneous

attractive forces between the flexible beam and the

fixed substrate, the flexible beam will attach the fixed

substrate even without an electrostatic attraction if the

intermolecular Casimir and vdW forces reach certain

critical values. It is clear from Eq. (36) that the

Casimir and vdW parameters,CC and CvdW are

inversely proportional to, respectively, the fourth and

fifth power of the initial gap and both CC and CvdW are

directly proportional to the fourth power of the beam

length. Consequently, this section is intended to

explore the effects of the intermolecular Casimir and

vdW forces on the size-dependent pull-in stability by

considering the following two case studies: (1) varying

the initial gap d0 while keeping other material and

geometrical parameters as constants and (2) varying

the beam length L while holding other material and

geometrical parameters as constants. For both cases,

the results are obtained for both viscoelastic micro-

bridge and microcantilever with and without the

effects of Casimir and vdW forces at l ¼ 0:25h when

the fringing field, mid-plane stretching and residual

stress are neglected; i.e. CF ¼ CS ¼ CR ¼ 0 .

Effect of the intermolecular Casimir and vdW

forces on the instantaneous and durable pull-in

voltages of viscoelastic microbridge and microcan-

tilever is plotted in Fig. 7 for different values of the

bFig. 17 Effect of the nondimensional relaxation time �W on the

creep of the nondimensional tip deflection of viscoelastic

microcantilever

(a)

(b)

(c)

2412 Meccanica (2017) 52:2391–2420

123



initial gap and Fig. 8 for various values of the beam

length. As seen in Fig. 7, the instantaneous and

durable pull-in voltages for both viscoelastic micro-

bridge and microcantilever are decreased as the initial

gap decreases. For a specific beam length, the

difference between the critical initial gaps (dcr) with

and without considering intermolecular Casimir and

vdW forces indicates the intermolecular forces signif-

icantly affect the value of the critical initial gap. Also,

at small values of the initial gap d	 dcrð Þ, Casimir and

vdW forces drive the microactuator to be collapsed at

no time without applied voltage. It is evident in Fig. 8

that for both microbridge and microcantilever,

increasing length of the microactuators results in a

decrease in the instantaneous and durable pull-in

voltages and consequently the region of stable re-

sponse is decreased. For a constant initial gap, the

maximum beam length such that the collapse will

occur at no time at lengths just larger than it L� LDð Þ
in the absence of applied voltage, is known as the

detachment length LD. It is clear that including the

Casimir and vdW forces shows a remarkable decrease

in the detachment length for both microbridge and

microcantilever.

Moreover, it is detected that for viscoelastic

microbridge and microcantilever, including the Casi-

mir and vdW forces results in a noticeable decrease in

the instantaneous and durable pull-in voltages. Also, it

is observed that for large values of the initial gap or

small values of the microactuator length, the pull-in

voltage obtained with and without Casimir and vdW

forces are identical. Comparing Fig. 7 with 8, it is

found that the effect of decreasing the initial gap on the

contribution of Casimir and vdW forces is more

noticeable than that of increasing the microactuator

length. Additionally, one can find that the effects of the

initial gap and beam length are more pronounced for

doubly-clamped microbridge.

Creep of the nondimensional pull-in center and

tip deflections of the viscoelastic microbridge and

microcantilever with and without the effect of

Casimir and vdW forces is illustrated in Figs. 9–

12. Figures 9 and 10 present the results for various

initial gaps and Figs. 11 and 12 correspond to

different values of beam length. Selected numerical

values for the nondimensional pull-in time and

crossponding nondimensional pull-in deflections

with and without Casimir and vdW forces are

provided in Tables 4 and 5 for various values of the

initial gap and beam length, respectively.

According to the obtained results, for the same

applied voltage, accounting for the intermolecular

Casimir and vdW forces shows an increase in the

nondimensional instantaneous deflection and a

decrease in the nondimensional pull-in deflection,

especially at small gap values or large lengths of the

microactuator. This remark is for both viscoelastic

microbridge and microcantilever.

At low applied voltages, the state of the beam lies in

the stable region without and with the influence of

Table 7 Effect of the nondimensional relaxation coefficient �W on the nondimensional pull-in time and pull-in maximum deflection

Applied voltage (V) Nondimensional durable modulus �W ¼ 1= �W

20 10 5 3.33 2.5

tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ

Doubly-clamped microactuator, wc
PI wc

ss

� 	

1.25 V (244.2) (0.342) (121.4) (0.342) (60.6) (0.342) (40.4) (0.342) (30.4) (0.342)

1.28 49.15 0.399 24.64 0.408 12.3 0.402 8.21 0.404 6.15 0.401

1.3 27.46 0.395 13.75 0.400 6.87 0.394 4.58 0.403 3.43 0.394

1.32 15.7 0.394 7.845 0.399 3.92 0.390 2.64 0.405 1.96 0.390

1.35 5.015 0.388 2.515 0.390 1.26 0.387 0.845 0.397 0.625 0.380

Cantilever microactuator, wt
PI wt

ss

� 	

0.3 V (244.6) (0.294) (199) (0.295) (99.4) 0.295) (66.4) (0.295) (50) (0.295)

0.325 148.68 0.540 74.41 0.554 37.11 0.540 24.77 0.538 18.56 0.530

0.35 43.23 0.504 21.64 0.518 10.81 0.523 7.22 0.529 5.43 0.518

0.375 16.9 0.504 8.45 0.488 4.21 0.493 2.810 0.492 2.11 0.494
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Casimir or vdW forces (solid lines in Figs. 9–12 and

values with parentheses in Tables 4 and 5) and both

the viscoelastic instantaneous and durable (steady-

state) deflections are significantly increased. However,

the combined influence of Casimir and vdW forces

may tend the microbeam to behave in the durable or

invisible region instead of stable one and a remarkable

increase in the instantaneous and pull-in deflections

are detected. In the durable region, it is noted that the

individual or combined effect of Casimir and vdW

forces leads to a distinct decrease in the nondimen-

sional pull-in time and nondimensional pull-in deflec-

tion. Consequently, ignoring the individual or

combined effect of Casimir and vdW forces may lead

(a)

(b)

Fig. 18 Effect of the nondimensional material length scale

parameter l=h on the viscoelastic instantaneous and durable

pull-in voltages

(a)

(b)

(c)
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to considerable errors in the estimation of the

viscoelastic pull-in parameters.

Effects of the intermolecular Casimir and vdW

forces on the pull-in are compared when investigating

the pull-in instability parameters of viscoelastic

microbridge and microcantilever, as shown in

Tables 4 and 5. Interestingly, the contribution of

Casimir and vdW forces depends on the type of

boundary conditions of the microactuator besides the

initial gap and microactuator length. For doubly-

clamped microbridge, Casimir force has greater effect

on the pull-in time pull-in maximum deflection than

those of vdW force. In the case of clamped-free

microactuator, the pull-in time, crossponding pull-in

maximum deflection are highly influenced by vdW

force rather than Casimir force. These contributions of

Casimir and vdW forces are also detected to steady-

state time and crossponding steady-state maximum

deflection. However, the difference between effects of

Casimir and vdW forces on the pull-in instability

parameters increases as the initial gap decreases and

length of the microactuator increase

4.2.4 Effect of the durable modulus

Since the residual stress, Casimir and vdW parame-

ters, CR, CC and CvdW, respectively, depend on the

initial Young’s modulus E0. Investigating the effect of

the durable modulus of elasticity E1ð Þ on the vis-

coelastic pull-in response is performed considering the

simultaneous effect of microstructure, electric forcing

including fringing field, mid-plane stretching, residual

stress and Casimir and vdW forces. The geometrical

and material parameters of the viscoelastic micro-

bridge and microcantilever are taken as those stated in

Sect. 4.2 except E1 is varied in the range from 0:2E0 to

0:75E0. Figure 13 illustrates the effect of nondimen-

sional durable modulus �E1 ¼ E1=E0 on the instanta-

neous and durable pull-in voltages of viscoelastic

microbridge and microcantilever. For both micro-

bridge andmicrocantilever, it is noticed that there is no

effect of �E1 on the instantaneous pull-in voltage and so

the size of the invisible (unstable) region is unchanged

bFig. 19 Effect of the nondimensional material length scale

parameter l=h on the creep of the nondimensional center

deflection of viscoelastic microbridge
(a)

(b)

(c)
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by varying �E1. On the contrary, as �E1 increases, the

durable pull-in voltage is significantly increased and

therefore a noticeable increase and decrease in the

stable and durable regions, respectively, are obtained.

Creep of the nondimensional center and tip deflec-

tions of microbridge and microcantilever is shown,

respectively, in Figs. 14 and 15 for various values of
�E1. Effect of �E1 on the nondimensional pull-in time

and corresponding nondimensional maximum deflec-

tion is provided in Table 6. Again, it is noticeable that
�E1 has no effect on the instantaneous deflection for all

applied voltages. In the stable region (solid lines in

Figs. 14 and 15 and values with parentheses in

Table 6), the time required to attain the steady-state

response (tss) and crossponding steady-state deflection

(wss) are distinctly increased by decreasing �E1.

Moreover, in the durable region, decreasing �E1 leads

to a significant decrease in the pull-in time (tPI), while

the predicted pull-in deflection (wPI) is negligibly

changed. This is because of the decrease in the beam

rigidity by decreasing �E1.

4.2.5 Effect of the relaxation time

Effect of the nondimensional relaxation time �W ¼
1= �W on the creep response of maximum deflections of

viscoelastic microbridge and microcantilever is plot-

ted in Figs. 16 and 17, respectively, accounting for the

combined influences of microstructure, electric forc-

ing including fringing field, mid-plane stretching,

residual stress and Casimir and vdW forces. All

geometrical and material parameters of the beams are

the same as those stated in Sect. 4.2 except �W is varied

in the range from 0.05 to 100. The nondimensional

pull-in time and corresponding maximum deflection

are displayed in Table 7 for different values of the

relaxation time. It is depicted that as the relaxation

time tends to zero ( �W tends to 1), the predicted

response is exactly identical with elastic one and the

microbeam reaches its final response at almost no time

(i.e. at �W ¼ 0:01 : tss ¼ 0:121 for microbridge at V ¼
1:25V and tss ¼ 0:198 for microcantilever at

V ¼ 0:3V). Also, the results show that there is no

effect of the relaxation time on the instantaneous and

final (steady-state or pull-in) deflection. In other

words, both instantaneous and durable pull-in voltages

are unaffected and consequently the microactuator

bFig. 20 Effect of the nondimensional material length scale

parameter l=h on the creep of the nondimensional tip deflection

of viscoelastic microcantilever

Table 8 Effect of the nondimensional material length scale parameter l=h on the nondimensional pull-in time and pull-in maximum

deflection

Applied voltage (V) Nondimensional length scale parameter l=h

0.0 0.25 0.50 0.75 1.0

tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ tPI tssð Þ wPI wssð Þ

Viscoelastic microbridge, wc
PI wc

ss

� 	

1.2 (121.6) (0.312) (95.7) (0.262) (60) (0.195) (60.2) (0.144) (52.5) (0.107)

1.25 15.26 0.400 (121.4) (0.342) (81.2) (0.224) (75.8) (0.161) (54.8) (0.118)

1.275 6.65 0.386 29.21 0.401 (76) (0.241) (71.3) (0.170) (58) (0.124)

1.3 1.905 0.379 13.75 0.400 (147.9) (0.262) (81) (0.180) (9115) (90.131)

1.5 – – – – 2.24 0.386 (119) (0.319) (89.5) (0.194)

1.7 – – – – – – 3.43 0.404 (146.8) (0.337)

1.8 – – – – – – – – 7.63 0.412

Viscoelastic microcantilever, wt
PI wt

ss

� 	

0.3 35.48 0.524 (199) (0.295) (83.4) (0.142) (94) (0.080) (94.2) (0.050)

0.35 3.41 0.489 21.6 0.513 (124.2) (0.215) (70.8) (0.112) (57.6) (0.068)

0.4 – – 2.09 0.464 (185.2) (0.367) (120.2) (0.156) (80.2) (0.091)

0.5 – – – – 3.69 0.482 (179.4) (0.316) (103.6) (0.157)

0.6 – – – – – – 11.67 0.501 (150.2) (0.271)

0.7 – – – – – – – – 28.31 0.536

2416 Meccanica (2017) 52:2391–2420

123



response is unchanged from one region to another

(stable, durable and unstable) by varying �W.

The crucial role of the relaxation time is that it

controls the time required to reach the final response of

the microactuator; i.e. for a constant applied voltage,

increasing the nondimensional relaxation time, the

required time to attain the final response is increased.

Interestingly, for the same applied voltage, the time

required to reach the final response is almost directly

proportional to the nondimensional relaxation time.

4.2.6 Effect of the length scale parameter (size effect)

To study the size effect induced by couple-stress,

effect of the nondimensional material length scale

parameter on the instantaneous and durable pull-in

voltages, creep of the maximum deflection, pull-in

time and pull-in deflection are investigated in the

presence of the fringing field, mid-plane stretching,

residual stress and Casimir and vdW forces. The

viscoelastic material and geometrical parameters of

microbridge and microcantilever are the same as those

described in Sect. 4.2 except the nondimensional

length scale parameter l=h is ranged from 0 to 1.

The instantaneous and durable pull-in voltages

predicted by the present model (with size effect) are

compared with the corresponding ones by the classical

model (without size effect) as illustrated in Fig. 18. As

could be seen in this figure, increasing the size scale

l=h shows a significant increase in both instantaneous

and durable pull-in voltages while the classical theory

l ¼ 0ð Þ yields constant pull-in voltages. For large

values of the size scale l=h, a significant difference

between pull-in voltage predicted by the MCST and

classical beam theory is obtained. For small size scales

l=h, the results of MCST theory converge to those of

classical theory. This behavior is attributed to that the

microstructure effect (size effect) which presented by

the material length scale parameter is modeled by an

additional contribution on the rigidity of the

microbeam.

Figures 19 and 20 show, respectively, size depen-

dency of the creep of the nondimensional center and

tip deflections of microbridge and microcantilever by

considering different l=h. Table 8 gives some numer-

ical values of the nondimensional pull-in time and

crossponding nondimensional maximum deflection at

various values of l=h. According to these results, at a

given applied voltage the nondimensional instanta-

neous deflection is distinctly decreased by increasing

the size scale l=h due to the fact that increase of l=h

increases the microbeam rigidity.

Also, it is worth noting that the viscoelastic pull-in

response is size dependent. As the size scale l=h

increases, the state of the microactuator may be

changed from the unstable or durable region to the

stable one. If the microbeam behaves in the stable re-

gion, increasing size scale l=h, the time required to

reach the steady-state response (tss) and crossponding

steady-state maximum deflection (wss) are noticeably

decreased and the creep rate of the maximum deflec-

tion is increased (at V ¼ 1:3V and V ¼ 0:35V for

microbridge and microcantilever, respectively when

l=h� 0:5). On the other hand, at large applied voltage

(V ¼ 1:5V and V ¼ 0:5V for microbridge and micro-

cantilever, respectively), the region of the microactu-

ator is changed from unstable region to durable or

stable one by increasing the size scale l=h.

5 Conclusions

This paper investigates the size-dependent pull-in

instability of nonlinear viscoelastic microcantilevers

and microbridges subjected to the simultaneous

effects of electrostatic actuation including fringing

field, intermolecular Casimir and vdW forces, residual

stress and mid-plane geometrical nonlinearity. Size

effect is captured by employing the MCST in the

context of linear viscoelasticity. The nonlinear inte-

gro-differential equation and boundary conditions of

viscoelastic microactuators are established using the

extended Hamilton principle in conjunction with

Bernoulli–Euler beam theory. A modified generalized

differential integral quadrature (GDIQ) method is

developed for solving the governing equation together

with boundary conditions. Both quasi-elastic and

fully-viscoelastic solutions are obtained. The pro-

posed model is verified against elastic and viscoelastic

benchmarks and a very good agreement with previous

published results is obtained. Effects of the various

material and geometrical parameters on the size-

dependent pull-in instability parameters of viscoelas-

tic microbridge and microcantilever are discussed in

detail in the framework of the MCST and linear

viscoelastic theory. It can be concluded that:
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• The viscoelastic microbridge nonlinear model

considering the mid-plane stretching effect gives

smaller instantaneous and durable pull-in voltages

than those of linear model. Also, accounting for the

mid-plane stretching effect shows a distinct

increase in the pull-in time and pull-in center

deflection, while a significant decrease in the

steady-state (durable) center defection and

crossponding durable time is detected. Generally,

the mid-plane stretching effect is increased as the

initial gap increases.

• Accounting for the tensile residual stress causes an

increase in the instantaneous and durable pull-in

voltages of the viscoelastic microbridge. Tensile

residual stress shows a decrease in the durable

center defection and durable time. On the other

hand, compressive residual stress has opposite

effects.

• The neglect of intermolecular Casimir and/or vdW

forces may result in an overestimation of pull-in

parameters of viscoelastic microbridges and

microcantilevers. Such overestimation becomes

much crucially with decreasing the initial gap and

increasing the microactuator length. The instanta-

neous maximum deflection is underestimated

while the pull-in time and crossponding pull-in

maximum deflection are overestimated when the

intermolecular forces are ignored.

• Comparing the influences of Casimir and vdW

forces shows that, in the case of microbridge,

Casimir force has the dominant influence on the

parameters of pull-in instability, while vdW force

becomes the dominant in the case of

microcantilever.

• Accounting for the intermolecular forces leads to

an increase in the minimum critical gap and a

decrease in the detachment length of the viscoelas-

tic microactuators.

• Without or with considering intermolecular forces,

decreasing the initial gap or increasing the

microactuator length shows a remarkable reduc-

tion in the instantaneous and durable pull-in

voltages, pull-in time and pull-in maximum

deflection while a significant increase in the

steady-state time and crossponding maximum

deflection is obtained.

• Increasing the durable modulus of the microactu-

ator shows increases in the durable pull-in voltage,

steady-state time and crossponding maximum

deflection, a distinct decrease in the pull-in time,

a slight decrease in the pull-in maximum deflection

and no effect on the instantaneous pull-in voltage

and instantaneous deflection.

• Sizes of stable, durable and unstable regions of the

microactuator behavior are unaffected by varying

the microactuator relaxation time. The time

elapsed by the microactuator to attain the steady-

state or pull-in response is almost linearly propor-

tional to the relaxation time.

• As the size scale parameter increases, the instan-

taneous and durable pull-in voltages are signifi-

cantly increased. In the durable region, the pull-in

time is obviously increased and the pull-in max-

imum deflection is slowly increased as the size

scale parameter increases. Regardless the region of

behavior, a pronounced decrease in the instanta-

neous deflection is detected by increasing the size

effect.
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