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Abstract Nonlinearity and noise play a significant

role in an enormous range of subjects across the entire

spectrum of science and engineering. This paper

considers several research topics that encompass the

area of random dynamical systems (RDS). A general

overview of the problems, the multidisciplinary

methods required for their analysis, and relevant

results achieved in RDS are given with particular

emphasis on developments during the past 25 years.

The first part of this paper focuses on developing

methods to unravel complex interactions between

noise and nonlinearities using a mix of multidisci-

plinary approaches from theory, modeling, and sim-

ulation. Practical applications of these research results

are beginning to appear across the entire spectrum of

mechanics; for example, vibration absorbers, panel

flutter, variable speed machining processes, and

mixing and transport phenomena in fluid mechanics.

The second part of this paper focuses on developing

new algorithms and tools for the collection, assimila-

tion and harnessing of data by threading together ideas

ranging from random dynamical systems to informa-

tion theory. A new particle filtering algorithm that

combines stochastic homogenization with filtering

theory is presented. Importance sampling and control

methods are then used as a basic and flexible tool for

the construction of the proposal density inherent in

particle filtering.

Keywords Stochastic differential equation �
Lyapunov exponents � Invariant measures � Stochastic
stability � Homogenization � Stochastic bifurcation �
Nonlinear filtering � Particle filters � Chaos

1 Introduction

Mathematical models are valuable tools for under-

standing complex systems. However, these models are

considerably uncertain. The uncertainty can be traced

back to: the inability of models to capture important

physical processes; inadequate use of observations to

constrain and initialize the models; and uncertainties

in forcing. An emerging challenge for inference and

prediction of large-scale complex systems is to

efficiently analyze and assimilate the ever-increasing

high dimensional data produced by the vast number of

engineered and natural systems. Tremendous strides

have been made in recent years in uncertainty

quantification, but the enormous complexity of the

problems continues to pose challenges for predicting

interactions among the physical and environmental
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systems. These unique challenges, due to the interac-

tions among uncertainties, nonlinearities, and obser-

vations, will be the focus of this work.

This paper integrates the ideas from random

dynamical systems, homogenization methods, nonlin-

ear filtering and Markov Chain Monte Carlo methods

to develop a general collection of new mathematical

techniques that describe the behavior of complex

dynamical systems, and dynamically assimilate new

data from observations for prediction. As we shall

show, the concept of combining random dynamical

systems, homogenization methods and nonlinear fil-

tering always sounds clear enough at a distance, but

the nearer you get to the proofs the vaguer the

subtleties of these interactions become. Key tools to

explore these issues in a canonical way are explained

in [2, 4, 19, 20, 34]. Novel results, contributions and

their significance in three important areas of research

within RDS are presented below.

The material in this paper is organized as follows.

In Sect. 2, we consider the topic of random dynamical

systems and briefly describe the basic concepts from

invariant measures to Lyapunov exponents, particu-

larly, the maximal Lyapunov exponent, which quan-

tifies the rate of exponential growth or decay of the

solution to a linear stochastic system. Section 3

summarizes the results on the stability in the almost-

sure sense, which is determined by the sign of the

maximal Lyapunov exponent. Since an invariant

measure is the stochastic analogue of a fixed point,

we present results on bifurcations of invariant mea-

sures; the main tool for this analysis is the approxi-

mation by amplitude equations. The reduction

technique, examined in Sect. 4, entails an averaging

result for the fast motion associated with the unper-

turbed dynamics. Then we state the well known results

associated with the martingale problem. Section 5

addresses the effects of the multiscale signal and

observation processes via the study of the Zakai

equation [49]. We describe a lower dimensional

stochastic PDE (Zakai type equation) that was

constructed in a canonical way to addresses the effects

of the multiscale signal and observation processes.

Finally, we incorporate an optimal particle filtering

algorithm that generates the best importance sampling

density. This particle method consists of control terms

in the ‘‘prognostic’’ equations that nudge the particles

toward the observations. We apply the optimal

(optimal nudging) particle filtering algorithm to a

chaotic system.

2 Random dynamical systems

Random dynamical systems are dynamical systems

‘‘corrupted’’ by random perturbations and are tailor-

made to cover a vast number of engineered and natural

systems, in particular those modeled as random and

stochastic differential equations. To start with, define a

probability space ðX;F ;PÞ, where F is a r-algebra of
measurable subsets of X called ‘‘events’’ and P is the

probability measure. Here we restrict ourselves to the

smooth (i.e. C1) case, two-sided continuous time

T ¼ R, and state space Rd. A smooth random

dynamical system consists consist of two ‘‘ingredi-

ents’’ (see Arnold [4]):

1. Model of the noise: By parametrizing the prob-

ability space by time, we are able to connect the

state x 2 X of the random environment at time

t ¼ 0, to it’s state htx 2 X after a passage of time

t. More precisely, a metric dynamical system

denoted as ðX;F ;P; ðhtÞt2RÞ (for short: h), i.e. a

probability space ðX;F ;PÞ with a measurable

flow of measure preserving transformations

ht : X ! X, i.e. h0 ¼ id, htþs ¼ ht � hs for all

t; s 2 R, htP ¼ P, and ðt;xÞ 7! htx measurable.

2. Model of the system perturbed by noise: A system

excited by an external stochastic process for a

single realizationx can be interpreted via the path

htx in X. More precisely, a cocycle u over h of

smooth mappings of Rd, i.e. a measurable

mapping

u : R� X� Rd ! Rd; ðt;x; xÞ 7! uðt;xÞx;

for which ðt; xÞ 7!uðt;xÞx is continuous in (t, x)

and smooth in x, and u satisfies the cocycle

property

uð0;xÞ ¼ id Rd ; x 2 X;

uðt þ s;xÞ ¼ uðt; hsxÞ � uðs;xÞ 8s; t 2 R:

The cocycle property implies that uðt;xÞ�1 ¼
uð�t; htxÞ; i.e. the mapping uðt;xÞ : Rd ! Rd

is a (smooth) diffeomorphism. This framework

allows one to show that, for almost all realizations
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x 2 X, the evolution in the state space Rd of a

stochastic system from time s\t to time t is

described by a two-parameter family of transfor-

mations, starting at time s ¼ 0.

The flow Ht on X� Rd given by Htðx; xÞ :¼
ðhtx;uðt;xÞxÞ is called the skew product flow corre-

sponding to u.
A real noise here means any stationary stochastic

process ðntÞt2R that can be canonically modeled as a

metric dynamical system with an appropriate state

space. This paper examines a random dynamical

system defined by

_Xt ¼ f ðXt; aÞ þ gðXt; aÞnt; X0 ¼def x 2 Rd; ð2:1Þ

where nt ¼ nðx; tÞ represents stationary stochastic

processes (e.g. white noise, colored noise, etc.). In the

case of additive noise, gðx; aÞ is a constant. The

stability and nonlinear response of such stochastic

systems have become research problems of increasing

interest.

Dynamical systems driven by white noise are

rigorously dealt with in stochastic analysis and are

solutions of (Stratonovich) stochastic differential

equations

dXt ¼ f ðXt; aÞ dt þ gðXt; aÞ � dWt; X0 ¼
def

x 2 Rd;

ð2:2Þ

where f and g are smooth vector fields in Rd . Let us

now consider (2.2), in the context of random dynam-

ical systems. White noise (Wiener process) can be

canonically modeled as a metric dynamical system as

follows: Let X ¼ fx 2 CðR;RdÞ : xð0Þ ¼ 0g;F the

Borel r-algebra of X, and P the Wiener measure, i.e.

the measure generated by the Wiener process (Brow-

nian motion) ðWtÞt2R in Rm. This process has station-

ary independent increments with

Wtþh �Wt �Nð0; jhjIÞ, continuous trajectories, and

satisfies W0 ¼ 0. The shift htxð�Þ :¼ xðt þ �Þ � xðtÞ
leaves P invariant since the increments are stationary.

Then h is an ergodic metric dynamical system on

ðX;F ;PÞ ‘‘driving’’ the stochastic differential equa-

tion (2.2) and Wt ¼ xðtÞ.

Theorem 2.1 (Arnold and Scheutzow [8]) Let

f ; g 2 C1
b . Then the stochastic differential equa-

tion (2.2) has a unique solution x 7!uðt;xÞx which

is a smooth random dynamical system. The Jacobian

Duðt;x; xÞ is a matrix cocycle over H and uniquely

solves the variational equation

dv ¼ Df ðuðt; �ÞxÞ v dt þ Dgðuðt; �ÞxÞ v � dWt: ð2:3Þ

In Eq. (2.3), the dependence of the vector fields f

and g in the parameter a is suppressed.

2.1 Invariant measures

For all further steps we need the notion of an invariant

measure for a random dynamical system. The invari-

ant measures l are defined on the product space X�
Rd and the invariance is with respect to the skew

product flow H so that Htl ¼ l. The projection of l
on X is P while the invariance of l in Rd corresponds

to the use of random probability measures onRd. Letu
be a random dynamical system over h. A random

probability measure x 7! lx on (Rd;Bd), where Bd

represent the space of Borel sets in Rd, is called

invariant under u, if

uðt;xÞlx ¼ lhtx P� a:s: for all t 2 R:

For random dynamical systems whose one-point

motions Rþ 3 t 7!uðt;xÞx are Markov processes

with transition probability Pðt; x;BÞ ¼ P x : uðt;f
xÞx 2 Bg and generator G (for solutions of stochastic

differential equation (2.2)), a measure q on Rd is

called stationary if it satisfies for all t 2 Rþ

qð�Þ ¼
Z
Rd

Pðt; x; �Þ qðdxÞ;

equivalently, if it solves the Fokker–Planck equation

G�q ¼ 0; G ¼ f þ 1

2
g2: ð2:4Þ

Here we have writtenG in the Hörmander form. There

is a one-to-one correspondence between stationary q’s
and those invariant lx’s for u which are measurable

w.r.t. the past F 0
�1 of the noise, via the ‘‘pullback’’

q 7! lx ¼ lim
t!1

uð�t;xÞ�1q; lx 7! El� ¼ q;

ð2:5Þ

(see Arnold [4], Sect. 1.7). The procedure of passing

from a deterministic stationary measure q to a random

invariant measure lx described by (2.5) is called

disintegration of q. However, there are in general,
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more invariant measures lx than those obtained from

stationary measures.

2.2 Lyapunov exponents

The multiplicative ergodic theorem (MET) of Oseledec

[37], which established the existence of finitely many

deterministic exponential growth rates called Lyapunov

exponents, has had a powerful influence upon the study

of stochastic stability. Lyapunov exponents and Osele-

dec spaces provide us with the stochastic analogues of

the real parts of the eigenvalues and eigenspaces of a

deterministic constant matrix. The almost-sure stability

of a solution to an RDS, is determined by the sign of the

maximal Lyapunov exponent.

Let u be a smooth random dynamical system, and

let l be an ergodic invariant measure. From Theo-

rem 2.1, Du is a linear cocycle over H and uniquely

solves the linear variational equation (2.3). Denote by

kðx; x; vÞ :¼ lim
t!1

1

t
log kDuðt;x; xÞvk;

the Lyapunov exponent or the exponential growth rate

of the solution vtðx; vÞ, for the the initial condition v

ðv 6¼ 0Þ in (2.3). According to MET [37], k takes on

one of r fixed, non-random values k1 [ � � � [ kr.
Which ki is realized depends on the initial condition v.
The multiplicities of the Lyapunov exponents sum to

the dimension of the system, d. The maximum of

these, k1, determines the almost-sure stability of the

random dynamical system uðt;xÞ generated by (2.2)

under the stationary measure q.
Rewriting the variational equation (2.3) in polar

coordinates

s ¼ v

kvk 2 Sd�1; r ¼ kvk 2 ð0;1Þ

yields

drt ¼ q0ðxt; stÞrtdt þ q1ðxt; stÞrt � dWt;

dst ¼ h0ðxt; stÞdt þ h1ðxt; stÞ � dWt;
ð2:6Þ

where

h0ðx; sÞ ¼defDf ðxÞs� q0ðx; sÞs; q0ðx; sÞ ¼def hDf ðxÞs; si

h1ðx; sÞ ¼defDgðxÞs� q1ðx; sÞs; q1ðx; sÞ ¼def hDgðxÞs; si;
ð2:7Þ

and hx;yi is the standard scalar product in Rd�1.

In (2.6), the equation for st is decoupled from the one

for rt, so that the pair (xt; st) forms a Markov process

with state space Rd �Sd�1, whose generator for the

additive noise case simplifies to L¼defGþ h0ðx; sÞ o
os
.

Integrating the equation for the radial process rt
in (2.6) and using the classical ergodic theorem yields

the Furstenberg–Khasminskii formula ([4], Chap. 6)

for the top Lyapunov exponent

k ¼
Z
Rd�Sd�1

Qðx; sÞ mðdx; dsÞ; ð2:8Þ

where Q is some explicitly known function, which for

the additive noise case simplifies to Qðx; sÞ ¼ q0ðx; sÞ
and m is the (to be determined) joint stationary measure

for the Markov process (xt; st) on Rd � Sd�1 with

marginal q onRd. The sign of k in (2.8) is of particular

interest as it determines the stability of the variational

equation (2.3) and in turn the stability of the original

smooth nonlinear random dynamical system generated

by (2.2). Formula (2.8) forms the basis of all asymp-

totic studies of Lyapunov exponents and particularly

the presentation given in this paper.

2.3 Moment Lyapunov exponents

Although sample solutionsmaybe stablewithprobability

one, themean square response of the system for the same

parameter values may grow exponentially. It is well

known that there are parameter values at which the top

Lyapunov exponent k is negative, indicating that the

system is sample stable, while the pth moments grow

exponentially for large p indicating the pth moment

response is unstable. This implies that, although the

system response jjDuðt;x; xÞvjj ! 0 as t ! 1 with

probability one at an exponential rate k, there is a small

probability that jjDuðt;x; xÞvjj is large. This makes

the expected value of this rare event large for large

values of p and results in pth moment instability.

In a manner analogous to the above discussion, the

concept of moment Lyapunov exponents was intro-

duced for linear random dynamical systems by Arnold

[4]. One can define the exponential growth rate of the

pth moment of the solution i.e., EjjXtðx;xÞjjp, by the

moment Lyapunov exponent

gðp; xÞ ¼def lim
t!1

1

t
log EjjXtðx;xÞjjp:

If gðp; xÞ\0, then, by definition, EjjXtðx;xÞjjp ! 0 as

t ! 1 and this is referred to as pth moment stability.
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The exponential growth rate of the pth moment has

proven to be the key to all finer stability properties of a

random dynamical system, in particular, g(p) is a

convex analytic function of p 2 R, with gð0Þ ¼ 0; gðpÞ
p

increasing, and

g0ð0Þ ¼ lim
p!0

gðpÞ
p

¼ k:

The nonzero unique root c (the stability index) (see

Arnold and Khasminskii [7]) of the equation gðpÞ ¼ 0

is connected with the asymptotic behavior. That is, the

stability index controls the probability with which an

almost surely stable system exceeds a threshold. If the

top Lyapunov exponent k ¼ g0ð0Þ\0 and gðpÞ ¼ 0

has a positive root c[ 0, then there exist a K � 1 such

that for d[ 0 and for all x with jjxjj\d

1

K

jjxjj
d

� �c
	P sup

t� 0

jjXtðx;xÞjj[ d

� �
	K

jjxjj
d

� �c

:

On the other hand, if the k ¼ g0ð0Þ[ 0 and gðpÞ ¼ 0

has a negative root c\0, then there exist a K� 1 such

that for d[ 0 and for all x with jxj[ d

1

K

jjxjj
d

� �c
	P inf

t� 0
jjXtðx;xÞjj\d

� �
	K

jjxjj
d

� �c

:

Over the past three decades the work on RDS raised

hard and far reaching questions on stochastic stability

of invariant measures of dynamical systems, stochas-

tic bifurcations, stochastic flows and random attrac-

tors. Answers to these questions have made invaluable

contributions to the modern theory of Lyapunov

exponents based on the multiplicative ergodic theory

of stochastic flows as well as developed a stochastic

version of the center manifold theory and stochastic

normal form theory [6, 31] for random dynamical

systems. These are considered to be landmarks in the

evolution of the field as amply explained in [4]. A

primary goal of this section is to unravel core problems

in the areas of almost sure stability [32, 46], stabi-

lization by noise [35] and stochastic bifurcations

[2, 29] in ways that are far more transparent. The

practical results obtained have a wide range of

applications and some of these results are even

contrary to intuition, such as dissipation induced

instability and stabilization by noise.

3 Stochastic stability and bifurcation

The scope of this section is to emphasize the

challenges associated with the stochastic stability

and stochastic bifurcation problems. As it turns out,

this problem, apart from its obvious practical impor-

tance, requires answering several important asymp-

totic-theoretic questions as well. We first present a

brief survey of the main stochastic stability and

stabilization results for the case of multi-dimensional

systems with critical and stable modes.

3.1 Stochastic stability and stabilization by noise

Let �x ¼def ~xðt;x; aÞ be a stationary solution of Eq. (2.1).
We have shown explicit dependence of x since the

solution is a random process. Then, one asks the

following questions: 
 How do we find ~xðt;x; aÞ? 
 Is
~xðt;x; aÞ stable in some sense? Both almost-sure

stability and pth moment stability have been widely

used in the study of stability of solutions of random

dynamical systems. If a stationary solution ~xðt;x; aÞ,
or simply a fixed point �x of dynamical system (2.1) is

stable either almost-surely or in the pth moment, it is

stable in distribution and in probability, as well. The

challenge was to extend the stochastic techniques for

the analysis of noisy nonlinear systems described

in (2.1) in order to answer these questions. It is this

need and challenge that was addressed by several

researches over the past four decades.

The almost-sure stability is determined by the sign

of the maximal Lyapunov exponent. For a linearized

system perturbed by real noise,

_Xt ¼ A nðtÞð ÞXt; X0 ¼
def

x 2 Rd

dn ¼ v0ðnÞ þ
Xr
i¼1

viðnÞ � dWi; n 2 M
ð3:1Þ

in order to ensure that there is a unique smooth and

positive invariant density m on the compact manifold

M, we assume nðtÞ is strongly elliptic in the sense that
dim LAðX1; . . .;XrÞðnÞ ¼ dimM for all n 2 M where

LA(Z) denotes the Lie algebra generated by the set Z of

vector fields. As before, reverting to polar coordinates

in Rd through the Khas’minskii transformation we

obtain
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k XtðxÞ k¼ k x k exp

Z t

0

qðsÞds
� �

_s ¼ hðnðtÞ; sÞ with hðnðtÞ; sÞ
¼ AðnðtÞÞ � qðtÞIð Þs;

where qðtÞ ¼def qðnðtÞ; sÞ ¼ sTAðnðtÞÞs, and ðn; sÞ
together form a diffusion process on M � Pd�1

(obtained from Sd�1 by identifying s and �s). The

generator of this process is given by

L ¼ Gþ h
o

os
;

where G ¼ X0 þ 1
2

Pr
i¼1 X

2
i is the generator of n

written in Hörmander form. For a fixed n 2
M; hðn; �Þ is a vector field on the projective space. To

avoid degenerate situations for L, we impose the

following ellipticity condition

ðHRÞ dim LA X0 þ hþ o

ot
;X1; . . .;Xr

� �
ðn; s; tÞ

¼ dimM þ d; 8 ðn; s; tÞ 2 M � Pd�1 � R:

Thus, combining the above results the following was

proven by Arnold et al. [1] Assume (HR)

1. Let k ¼
R
M

R
Pd�1 qðn; sÞdl where l is the unique

invariant probability measure of ðn; sÞ on

M � Pd�1. Then k is the maximal Lyapunov

exponent for (3.1), i.e. for x0 6¼ 0

lim
t!1

1

t
log k XtðxÞ k¼ k almost-surely:

2. For p 2 R, let g(p) be the principal eigenvalue of

LðpÞ ¼ L þ pqðn; sÞ acting on CðM � Pd�1Þ.
Then g(p) is the pth moment Lyapunov exponent

for (3.1), i.e. for x 6¼ 0

lim
t!1

1

t
logE k XtðxÞ kp¼ gðpÞ:

Although the top Lyapunov exponent, k, moment

Lyapunov exponent, g(p), and the stability index, c,
are very important characteristics for the analysis of

linear RDS, in general it is impossible to find explicit

expressions for them, except for some special linear

oscillators under parametric white noise excitations:

an exact formula for k is given by Imkeller and

Lederer [21].

The following results discuss the challenges of

evaluating the top and the moment Lyapunov expo-

nents of the stationary measures of noisy dynamical

systems asymptotically, when the noise is weak. The

results on stochastic stability of higher dimensional

problems with one critical mode, broke new ground by

providing a possible mechanism for stabilization by

noise [35]. Naturally, problems of this type frequently

appear in many multi-degree-of-freedom systems

exhibiting Hopf bifurcation and have received con-

siderable attention. A four-dimensional version of this

is

_Xt ¼ AXt þ
ffiffiffiffi
em

p
nðtÞBXt; X0 ¼ x 2 R4; ð3:2Þ

where m represents the intensity of the noise nt,

A ¼

ed1 x1 0 0

�x1 ed1 0 0

0 0 � d2 x2

0 0 � x2 � d2

2
6664

3
7775;

B ¼

K11 K12 M11 M12

K21 K22 M21 M22

N11 N12 L11 L12

N21 N22 L21 L22

2
6664

3
7775;

and the quantity d2 corresponds to the real part of the

eigenvalue of the stable mode, d1 is the unfolding of

the critical eigenvalue which may represent the rate at

which the real part crosses the imaginary axis of the

complex plane or a small detuning damping param-

eter. The Bmatrix is conveniently represented in terms

of four sub-matrices. In the case of white noise the

maximal Lyapunov exponent is

k ¼ e d1 þ e
m
8

ðK12 þ K21Þ2 þ ðK11 � K22Þ2
h

þ 2 ðM11N11 þM22N22 þM12N21 þM21N12Þ�:
ð3:3Þ

This formula contains terms of the type,MijNji, which

represent the contribution from the stochastic compo-

nents in the stable ‘‘heavily damped’’ modes to that of

the ‘‘critical’’ modes. Unlike the two dimensional

linear system, stabilization is possible under stochastic

excitations if at least one of the pairs

ðM11;N11Þ; ðM22;N22Þ; ðM12;N21Þ; ðM21;N12Þ con-

tains elements of opposite signs and the maximal

Lyapunov exponent is negative. These results on
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stabilization by noise showed how to model and

design engineering systems that take advantage of

unavoidable turbulence or noise. These results were

then used to explain on a rigorous theoretical basis the

stabilization by grid generated turbulence of a smooth

circular cylinder reported in Popp and Romberg [42]

by modeling the immersed cylinder as a two-degree of

freedom oscillator and the turbulence as a stochastic

process.

An asymptotic expansion for the maximal Lya-

punov exponent and the rotation numbers for a general

four dimensional dynamical system (3.2) with two

critical modes, (i.e, d2 ! ed2) driven by a small

intensity real noise process were constructed in

[16, 32]. Results are presented only for the case of

the coupled oscillators [32] described by equations of

motion of the form

€qiþx2
i qiþ 2efxi _qiþ

ffiffi
e

p X2
j¼1

kijqjf ðnðtÞÞ ¼ 0; i¼ 1;2

where the qi’s are generalized coordinates,xi is the ith

natural frequency, and ef represents a small viscous

damping coefficient. It is assumed that the natural

frequencies are noncommensurable. The stochastic

term nðtÞ is a small-intensity, real-noise process on a

smooth connected Riemannian manifold M (with or

without boundary), as in (3.1). In order to make the

problem tractable, the associated infinitesimal gener-

ator G will be assumed to have an isolated simple zero

eigenvalue. Hence, the only solution of Gu ¼ 0 is u �
constant. It follows that the associated adjoint operator

G� also has zero as a simple, isolated eigenvalue and

the normalized invariant measure satisfies

G�vðnÞ ¼ 0.

Let’s define pij ¼
def kij

xi
and define ki; i ¼ 1; 2; a and b

in terms of cosine spectra at 2xi and X
 ¼ x1 
 x2

as,

ki ¼ �di þ
1

8
p2iiSð2xiÞ; i ¼ 1; 2

a ¼ 1

16

X2
i¼1

p2iiSð2xiÞ �
1

4
p21p12SðXþÞ

b ¼ 1

16

X2
i¼1

p2iiSð2xiÞ þ
1

4
p21p12SðX�Þ;

ð3:4Þ

with SðxÞ ¼ 2
R1
0

RðsÞ cosxs ds, where RðsÞ is the
correlation function. Then the maximal Lyapunov

exponent in terms of coefficients of the stochastic

terms is

ke ¼ e
2

k1 þ k2ð Þ þ k1 � k2ð Þ coth k1 � k2ð Þ
2

bðp
2
Þ

� ��

1

2
p12p21 SðXþÞ � SðX�Þ½ �

�
;

ð3:5Þ

where

b
p
2

	 

¼

1ffiffiffiffiffi
ab

p ln

ffiffiffi
a

p
þ

ffiffiffi
b

p
ffiffiffi
a

p
�

ffiffiffi
b

p
����

���� if ab[ 0;

2

aþ b
if ab ¼ 0;

1ffiffiffiffiffiffiffiffiffi
�ab

p tan�1 2
ffiffiffiffiffiffiffiffiffi
�ab

p

aþ b

 !
if ab\0:

8>>>>>>>><
>>>>>>>>:

The extension of these almost-sure asymptotic stabil-

ity results to infinite dimensional systems [25] was

achieved for delay differential equations (DDEs),

where the time derivative can depend on both past and

present values of the variable. Application of these

results to cutting-tool chatter in turning and milling

processes demonstrated rigorously the potential effec-

tiveness of spindle speed variation (fluctuating) to

eliminate chatter. The model of interest is a second-

order delay differential equation for the position q of a

point on a machine tool which is cutting material from

a shaft which is rotating with a time period of

revolution r. The effects of small random perturba-

tions in structural parameters of a delay differential

oscillator is of interest, that is,

€qðtÞ þ 2f _qðtÞ þ qðtÞ ¼ �j qðtÞ � qðt � rÞ½ �

þ erðnðtÞÞ jqðt � rÞ½ �:
ð3:6Þ

The term rðnðtÞÞ represents small random perturba-

tions, for example, in the natural frequency, the term

j qðtÞ � qðt � rÞ½ � in (3.6) represents the assumption

that the force acting on the tool is proportional to width

of the chip being cut, and the width is the difference

between the present position q(t) of the tool and its

position one revolution earlier qðt � rÞ. It is known

that, for a fixed r, there exists a critical jc such that the
amplitude q of the oscillator decreases exponentially if

j\jc and increases exponentially if j[ jc. When
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j ¼ jc oscillations of constant amplitude persist with

frequency xc. In machining, this oscillatory behavior

is called chatter. Chatter—the self-excited relative

vibration between workpiece and cutting tool—is a

common problem in the machining process. Chatter

occurs with greater rate of cut or with larger depth of

cut, resulting in poor surface finish. Our results

showed that stabilization is possible by the noise in

(3.6). That is, by suitably selecting the parameters in

the equation (3.6), it is possible to have k negative. For
such a selection of parameters, it might be possible to

increase j slightly from the critical value without

undergoing chatter.

Now we present some results of asymptotic

stability of nonlinear systems (forces derivable from

a potential) with noise, which describe a host of

physically interesting problems in random vibra-

tions, from simple oscillators [5] to noisy autopara-

metric systems [30]. It is well known that such

systems, under the assumptions that niðtÞ’s are

uncorrelated Gaussian processes, and the ratio of the

spectral density of each excitation, niðtÞ, to the

corresponding damping, bi, is the same, have station-

ary probability densities. However, there are no

concrete results on the sign of the top Lyapunov

exponents corresponding to these stationary measures.

Hence, their stability is not known.

It is well-known that the two point motion of a one

dimensional nonlinear stochastic system is unique.

More precisely if a noisy one dimensional equation,

_Xt ¼ f ðXtÞ þ
X2
i¼1

giðXtÞniðtÞ; X0 ¼ x 2 R; ð3:7Þ

with g2ðxÞ ¼def ðg21 þ g22ðxÞÞ[ 0 for all x, has a station-

ary invariant measure with density

gðxÞ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg21 þ g22ðxÞÞ

q

provided p(x) is normalizable, then the Lyapunov

exponent is

k ¼ �2

Z 1

0

2f 2ðxÞ þ 1
2
g02

2ðxÞ g21
	 


ðg21 þ g22ðxÞÞ
pðxÞ dx: ð3:8Þ

The Lyapunov exponent is always negative provided

f ðxÞ 6¼ 0 [23].

The challenge was to explicitly evaluate the top

Lyapunov exponent of higher (d� 2) dimensional

nonlinear systems with noise, and in particular addi-

tive white noise. The analytical study of asymptotic

stability of nonlinear systems with noise, initiated in

Arnold et al. [5], opened the door to a host of

physically interesting problems in random vibrations,

from simple oscillators to noisy auto-parametric

systems. It was shown analytically in [5] that the top

Lyapunov exponent of a nonlinear oscillator under

additive noise is positive, for small noise and small

dissipation. Their work was devoted to the effect of

noise on the Duffing oscillator

€xt þ e _xt þ U0ðxtÞ ¼
ffiffiffiffiffi
2e

p
nðtÞ; ð3:9Þ

where UðxÞ ¼ a
2
x2 þ b

4
x4; a; b[ 0. It was shown that

the top Lyapunov exponent is positive, i.e.,

kðeÞ[ 0 for e not too large:

Schimansky-Geier and Herzel [43] were the first to

consider numerically the Lyapunov exponents of a

two dimensional nonlinear double-well potential with

UðxÞ ¼ � a
2
x2 þ b

4
x4; a; b[ 0, which was studied by

Kramers in his celebrated work (e.g., [19, 43]). It was

shown that the top Lyapunov exponent is positive for

small e. The top Lyapunov exponent is determined by

the simultaneous behavior of two neighboring orbits,

or the two-point motion of the noisy nonlinear

oscillators. The positivity of the top Lyapunov expo-

nent is significant, because it implies that while for

each initial condition the solution trajectory asymp-

totically approaches the volume element in the state

space giving rise to a nontrivial stationary measure,

the distance between any two initial conditions will

grow at an exponentially fast rate. Hence, an additive

noise in (3.9) induces an unstable stationary measure.

A result of Baxendale and Goukasian [11] showed that

the top Lyapunov exponent is positive for small e for a
multiplicative noise in (3.9). Namachchivaya et al.

[30] extended these results to study the single mode

solution of two degree-of-freedom noisy auto-para-

metric systems. The unique properties of auto-para-

metric systems, and Diliberto transformations were

used to reduce the problem to two uncoupled two

dimensional nonlinear systems. As the noise intensity

was increased, these questions were examined by

developing a sequence of averaging and computa-

tional procedures that were uniquely adapted to study

noisy auto-parametric systems.

2982 Meccanica (2016) 51:2975–2995

123



3.2 Stochastic bifurcation

Stochastic bifurcations are those where small changes in

noisy parameters play an important role, and they result

in large uncertainty about the system’s dynamical

behavior. Stochastic bifurcation theory studies the

qualitative changes in parameterized families of random

dynamical systems, e.g. those generated by a family of

stochastic differential equations. We study such bifur-

cations for the reduced systems, but also investigate how

bifurcation interacts with a separation of scales. How are

the qualitative changes of probability densities of the

reduced model connected to the phenomenological

changes of the original noisy systems?

It is important to study how these invariant

measures can bifurcate as the system parameters are

varied. The invariant measures, in other words, the

solutions of the Fokker–Planck equation

L�
a pa ¼ 0 ð3:10Þ

arising from a nonlinear system depending upon a

parameter amay, for example, exhibit transitions from

one-peak to two-peak or crater-like densities. These

have been observed experimentally, numerically and

analytically. The number and locations of the extrema

of the stationary densities have been carefully studied.

This concept can be formalized based on the ideas

of Zeeman [50], according to which two probability

densities p, q are called equivalent, p� q, if there are

two diffeomorphisms a; b such that p ¼ a � q � b.
Then the family pa is structurally unstable at a ¼ a0
since, in each neighborhood of a0, there are non-

equivalent densities. Hence, a ¼ a0 can rightly be

called a ‘‘phenomenological’’, or ‘‘P-bifurcation

point’’, and we shall call a phenomenon like this a

‘‘P-bifurcation’’. Even though there are many draw-

backs to such a phenomenological approach, they are

clearly of engineering importance since they are what

one would observe experimentally or numerically in

the original system.

On the other hand, a dynamical approach studies

bifurcations of invariant measures which represent the

stochastic analogues of fixed points. The parameter

values for which the maximal Lyapunov exponent

(corresponding to a known invariant measure) van-

ishes are known as D-bifurcation points, provided

there is a nontrivial invariant measure branching from

the known measure (see Baxendale [10]).

These new techniques captured the essence of the

stochastic Hopf bifurcation phenomenon that contains

several novel features, including phenomenological

and dynamical stochastic bifurcation scenarios. These

theoretical results were applied to several practical

engineering systems, including the dynamics of a flat

panel in a supersonic flow with boundary-layer

turbulence, vibro-impact systems, and noisy auto-

parametric systems. It is convenient to transfer these

problems into a first order vector form:

dZt

dt
¼ AðlÞZt þ FðZt; lÞ þ mGðlÞZt nt;

Z0 ¼ z 2 Rn; l 2 R;

ð3:11Þ

where A and G are n� n matrices depending on a

system parameter l; m represents the intensity of the

noise nt, which we shall assume to be white, and F

satisfies: Fð0; lÞ � DzFð0; lÞ � 0. Equation (3.11)

can be written as the following Itô equation:

dZt ¼ AðlÞZt þ FðZt; lÞ þ
m2

2
G2ðlÞZt

� �
dt

þ mGðlÞZt dWt:

ð3:12Þ

We assume that at the critical system parameter

l ¼ lc, the matrix A has the following block diagonal

form:

AðlcÞ ¼
B 0

0 C

" #
; where B ¼

0 � x0

x0 0

" #
;

x0 2 Rþ

and C is an ðn� 2Þ � ðn� 2Þ matrix whose eigenval-

ues, ki; i ¼ 1; 2; . . .; n� 2, have negative real parts.

Due to the block diagonal form of AðlcÞ, it is

convenient to write the matrices A0ðlcÞ and GðlcÞ as

A0ðlcÞ ¼
D E

H J

" #
; GðlcÞ ¼

K M

N L

" #
;

with B, D, K being 2� 2 matrices; E, M being 2�
ðn� 2Þmatrices;H, N being ðn� 2Þ � 2 matrices and

C, J, L being ðn� 2Þ � ðn� 2Þ matrices.

Putting Zt ¼ ðXt; YtÞ; z ¼ ðx; yÞ 2 R2 � Rn�2, and

FðzÞ ¼ ðf 3ðx; yÞ; g3ðx; yÞÞ 2 R2 � Rn�2, where f ð3Þ

and gð3Þ are homogeneous polynomials of degree 3.

Results for more general homogeneous polynomials of
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degree j, are given in [33]. The essential dynamic

behavior of the multi-dimensional system (3.11) is

determined by the evolution of the ‘‘critical’’ modes.

When the rest of the modes are ‘‘heavily damped’’,

trajectories are rapidly attracted to some low-dimen-

sional invariant manifold, which may be parameter-

ized by the amplitudes of the critical modes. Hence

defining the amplitude and phase of the critical mode

as

r ¼ RðzÞ ¼def kxkR2 ; h ¼ HðzÞ ¼def arctan x2

x1

� �
;

ð3:13Þ

the goal is to study the behavior ofRðZeÞ in the small

vicinity of lc and for small values of noise. It was

shown in [33], that in the small vicinity of lc for small

values of noise, the law of fRðZe
t Þ; t� 0g converges

to the law of f�rt; t� 0g, where �r is the solution of the

SDE

d�rt ¼ bRð�rtÞ dt þ rRð�rtÞ dWt; with �r0 ¼ RðzÞ :
ð3:14Þ

As shown in [33], a straightforward evaluation of

terms in (3.14) reveals that the averaged diffusion is

given by

r2RðrÞ ¼
m2

8
2 K11 þ K22ð Þ2 þ K11 � K22ð Þ2
h

þ K12 þ K21ð Þ2
i
r2;

ð3:15Þ

which contains only the stochastic effects from the

‘‘critical’’ modes. The averaged drift coefficient

in (3.14) is given by

bRðrÞ ¼
m2

8
K11 þ K22ð Þ2þ 3

2
K11 � K22ð Þ2

h�

þ K12 þ K21ð Þ2
io

r þ m2

4
MIJNJI½ � r

þ a
2

D11 þ D22ð Þr þ 3

8
bf ð3Þ1111 þ bf ð3Þ1122

n

þbf ð3Þ2112 þ bf ð3Þ2222gr3; a ¼def l� lc:

The averaged drift coefficient contains two distinct

components: (1) terms of the type, MijNji, which

represent the contribution from the stochastic compo-

nents in the stable ‘‘heavily damped’’ modes to that of

the ‘‘critical’’ modes, as well as (2) the nonlinear

terms. In [33], the difficult task of including the

quadratic nonlinearities as well as the stochastic

parametric terms was rigorously implemented in the

stochastic averaging context—derived using the

martingale approach in a consistent formulation that

proves limit theorems for stochastic averaging for

systems with rapidly oscillating and decaying com-

ponents. Now that we have identified the appropriate

asymptotic law ofRðZtÞ (see for example [44] for the

real noise case), we can use this information to study

its qualitative properties for computing standard

statistical measures of stability, exit time laws, and

stationary solutions. The work [27] extended the

stochastic averaging results for delay differential

equations using the powerful martingale methods of

Papanicolaou et al. [38]. When the trivial stable fixed

point 0 becomes unstable, and a new (stable) random

invariant measure appears, it is important to know

whether or not this new measure is stable. To this end,

in [12] the stochastic averaging was carried out for the

n-point motions of the stochastic differential equations

(stochastic averaging for stochastic flows), as opposed

to the standard stochastic averaging which is most

commonly done just for the one-point motion. In

particular the law of the linearized process of the non-

trivial measure and it’s top Lyapunov exponent along

trajectories (top Lyapunov exponent of invariant

measures under stochastic averaging) was uniquely

determined. The work [32] presented the results for

one specific second order equation (known as the noisy

Duffing–van der Pol oscillator), which were general-

ized in [44].

4 Dimensional reduction and homogenization

The analytical core of this part of the work is

dimensional reduction. In large complex systems,

non-linearities of the governing physical processes

allow energy transfer between different scales, and

many aspects of this complex behavior can be

represented by stochastic models. In such problems

with scale separation, one of most studied models of

random perturbations is represented by a diffusive

Markov process Xe
t whose semigroup of transition

operators T e is generated by Le, which is a second
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order elliptic (partial) differential operator as

explained in [19]. High dimensional multi-scale

stochastic systems often behave like a smaller,

reduced-order model; however, the reduced-order

model is not known a priori. In these problems,

extracting coarse-grained dynamics is at heart a

problem of weak convergence of stochastic processes,

or more exactly weak convergence of the laws of

Markov processes. One of the preeminent modern

frameworks for considering convergence of the laws

of Markov processes is that of the martingale problem

[17, 38, 45], which was used in [29, 34, 44] to develop

the reduced models.

Efficient utilization of the low-dimensional models

is a necessary component of simulations in large-scale

settings. The goal of stochastic dimensional (or model)

reduction is to extract the essential dynamics of large,

complex, and noisy systems as accurately as possible;

this is done by reducing the number of state variables

under consideration. In order to understand their

effects, one should look for a reduced model which

encodes the structure of the unperturbed dynamical

system but which allows one to look at the quantities

of interest on an appropriate time scale. Homogeniza-

tion yields a lower-dimensional model by averaging

out the fast stochastic dynamics. The lower-dimen-

sional model is strictly valid only in the limit of

infinitesimally small noise. Nonetheless, the stochas-

tically averaged models provide qualitatively useful

results and are helpful in developing inexpensive

lower-dimensional computational models as shown in

[36]. These reduced models can be used in place of the

original complex models, either for state estimation

and prediction or real-time control as described below.

The starting point for this work will be the

stochastic version of a multi-scale dynamical system,

where Ze and Xe represent the fast and slow variables,

respectively.

dX�
t ¼ bðX�

t ; Z
�
t Þdt þ rðX�

t ; Z
�
t ÞdBt;

dZ�
t ¼

1

�
f ðX�

t ; Z
�
t Þdt þ

1ffiffi
�

p gðX�
t ; Z

�
t ÞdWt;

ð4:1Þ

where X�
t 2 Rm; Z�

t 2 Rn;Wt 2 Rl and Bt 2 Rk are

independent standard Brownian motions, b : Rmþn !
Rm; r : Rmþn ! Rm�k; f : Rmþn ! Rn; g : Rmþn !
Rn�l. All the functions above are assumed to be Borel-

measurable. For fixed x 2 Rm, define

dZx
t ¼ f ðx; Zx

t Þdt þ gðx; Zx
t ÞdWt: ð4:2Þ

Then the solution Zx of (4.2) with X� ¼ x fixed is

ergodic and converges rapidly to its unique stationary

distribution p1ðx : �Þ For simplicity, let’s consider a

Markov process fe ¼def fðX�
t ; Z

�
t Þ; t� 0g with generator

Le ¼ 1

e
LF þLS;

where LF and LS represent generators of fast and

slow variables. The primary objective is to derive the

self-contained description of the coarse-grained

dynamics without fully resolving the dynamics

described in fast scales. We show that the limiting

process as e (scaling parameter) tends to zero is simply

a Markov process �X with the generator Ly:

Ly ¼
Xm
i¼1

�biðxÞ
o

oxi
þ 1

2

Xm
i;j¼1

�aijðxÞ
o2

oxioxj
; ð4:3Þ

where

�bðxÞ ¼
Z

bðx; zÞp1ðx; dzÞ; �aðxÞ ¼
Z

ðrrTÞðx; zÞp1ðx; dzÞ:

In general, the low-dimensional models will take their

values in a reduced space M. The geometry of this

space is found from the the coarse-grained dynamics

as shown in a series of papers [29, 36] on stochastic

dimensional reduction.

Consider the following simple signal model [41] to

illustrate the effect of homogenization (advective time

scale)

_Ze
t ¼ � 1

e
ðZe

t � Xe
t Þ þ

1ffiffi
e

p _Wt; Z
e
0 ¼ z0 ð4:4aÞ

_Xe
t ¼ �ðZe

t Þ
3 þ sinðptÞ þ cosð

ffiffiffi
2

p
ptÞ; Xe

0 ¼ x0

ð4:4bÞ

For a fixed Xe
t ¼ x, (4.4a) becomes the Ornstein–

Uhlenbeck process in which stationary density is

lðzjxÞ ¼ 1ffiffiffi
p

p expf�ðz� xÞ2g:

As e ! 0, one can show that [47] Xe
t ! X0

t strongly,

where X0
t satisfies
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_X
0

t ¼ �ðX0
t Þ

3 � 3

2
X0
t þ sinðptÞ þ cosð

ffiffiffi
2

p
ptÞ; ð4:5Þ

with X0
0 ¼ x0. Figure 1 compares the Homogeneous

Multi-scale Method (HMM) solution [47] with the

analytical solution (4.5).

4.1 Nonstandard reduction

In the previous section, physical reasoning helped

identify the time scales present in the dynamical

system (4.1). Within this framework, multiple time

scales constituted another type of special structure that

specified a class of models whose generic properties

were determined.

In general, the models are described in a high

dimensional state space, say Rn, without explicit time

scales. The dynamics of interest fe � fet ; t� 0
� 


of the

time evolving system take place in a subspace, say

M � Rn. The primary objective of this section is to

predict the self-contained description of this dynamics

in a stratified space M (manifolds that are required to

fit together in a certain way).

For simplicity, let’s consider a four dimensional

Markov process fe ¼def ffet ; t� 0g with generator

Le ¼ LF þLS. The operator LFuðfÞ ¼
ð �rH;ruÞðfÞ is the vector field generating an inte-

grable Hamiltonian andLS is a second-order operator

corresponding to the diffusive and dissipative pertur-

bations. In the absence of dissipation and random

perturbations, system is integrable. The interesting

part of the analysis is near bifurcations, where the

structure of the fast orbits changes. To perform such an

analysis, the original state space is decomposed into a

collection of open subsets fA1;A2. . .Ang of R4 or

R2 � Rþ � S1which are separated by hyperbolic

invariant manifolds. Defining p : R4 ! M to be the

mapping, we have pðAiÞ ¼def Ci 2 M. Inside any of the

Ai’s, the structure of the fast orbits are diffeomorphic

and pðAiÞ ¼ Ci is a smooth manifold with a boundary.

In the absence of resonance and away from a

homoclinic orbit c, the invariant measure on the orbit

can be written as a Lebesgue measure on a torus. In the

Ai’s, in the absence of resonance, standard stochastic

averaging (see [34]) should lead to asymptotic

dynamics of the law of pðfeÞ; which should be

diffusive as long as they remain on one of the planes

of the arrowhead, Ci in Fig. 2.

At the line pðcÞ (mapping of the homoclinic

manifold) where the planes of the arrowhead meet,

gluing conditions define the behavior of the process.

The glueing conditions roughly mean that when the

process hits pðcÞ, it flips a coin to decide where to

make the next excursion. When fe leaves one of the

Ai’s, the gluing conditions essentially give a proba-

bilistic way to select an ‘‘adjacent’’ Aj into which pðfeÞ
should (in an asymptotic sense) make an excursion.

These gluing conditions in some sense define a

(possibly unfair) three-sided ‘‘coin’’. Informally, each

time the process hits the line, this coin is flipped to

decide on which plane the next excursion will occur.

To better understand the nature of the glueing

conditions, let’s assume that fe starts at z in the

normally hyperbolic invariant manifold, c. Assuming

that the generatorLS is sufficiently nondegenerate, f
e

should make infinitely many excursions into different

Ai’s based upon the diffusivity ofLS in the directions

normal to the invariant manifold c. The effective

behavior of the asymptotic reduced model should

involve a combination of the normal diffusivity and

the fast tangential motion. Noting that Le has a large

drift component of order 1=e and a small noisy part, we

see that the stochastic dimensional reduction is a

singular perturbation problem. The general theory of

singular perturbations suggests a rescaling in the

direction normal to the hyperbolic manifold, to make

the normal diffusion of the same order as the fast

motion. This corresponds to a boundary-layer

Fig. 1 HMM solution and the original signal
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expansion in which the excursions into the different

Aj’s become comparable to the fast motion.

The averaged system will take values in a reduced

spaceM. The geometry of this space is found from the

unperturbed system or the coarse-grained dynamics.

In a typical four dimensional example, the reduced

space M looks like an ‘‘arrowhead’’ where the phase-

space regions separated by hyperbolic invariant man-

ifolds are mapped to distinct planes (leaves).

Then, under small perturbations, the integrals of

motion evolves slowly and stochastic averagingmakes

use of the integrable structure to identify a reduced

diffusive model on a space which encodes the structure

of the fixed points and have dimensional singularities.

At these singularities, glueing conditionswere derived,

thereby completing the specification of the dynamics

of the reduced model. It was shown in [36] that the law

of fpðfet Þ; t� 0g tends to that of a M-valued Markov

process with a two-dimensional generator Ly

ðLyf ÞðxÞ ¼def
X2
j

bijðxÞ
ofi

oxj
ðxÞ þ 1

2

X2
j k

aijkðxÞ
o2fi

oxj oxk
ðxÞ;

for all x¼def ðh; IÞ 2Ci:

ð4:6Þ

Here bij is a drift vector and aijk a diffusion matrix and

the (three) Ci’s denote individual leaf of the ‘‘arrow-

head’’ M (see Fig. 2). The formal derivation of the

drift and diffusion coefficients is performed using the

martingale problem [17, 45].

4.1.1 Example in R2

To explain, let’s consider these results to a simpler

R2-valued system. Circumventing the cumbersome

algebra of four dimensional problems discussed

above, consider a noisy Duffing–van der Pol oscillator

_x1ðtÞ ¼ x2ðtÞ

_x2ðtÞ ¼ ax1ðtÞ � x31ðtÞ þ �ðbþ bx21ðtÞÞx2ðtÞ

þ
ffiffi
�

p
ðx1ðtÞm2n2ðtÞ þ m1n1ðtÞÞ;

ð4:7Þ

with

Hðx1; x2Þ ¼
1

2
x22 � a

1

2
x21 þ

1

4
x41:

We achieve the model-reduction through non-stan-

dard stochastic averaging, where the reduced Markov

process takes its values on a graph C ¼
S3

i¼0½ci�
[
S3

i¼1 Ci, Fig. 3, where

C1 ¼def [ x ¼ ðx1; x2Þ 2 G

HðxÞ\0

x 6¼ c1

x1\0

½x�; C2 ¼def [ x ¼ ðx1; x2Þ 2 G

HðxÞ\0

x 6¼ c2

x1 [ 0

½x�;

C3 ¼
def [ x 2 G

HðxÞ[ 0

½x�; and c0is are the critical points;

with certain glueing conditions at the vertex of the

graph.

Then according to Theorem 1 in [29] , the limiting

process on the graph is defined by the generator

Fig. 2 Two-dimensional reduced space ‘‘arrowhead’’ M and

the unperturbed phase space

1

2 3

hparGnainotlimaH

Γ

O
Γ Γ

c1 c2

Fig. 3 Homoclinic orbit at H�1ð0Þ which divides the phase

space of the Hamiltonian flow (viz.R2) into three regions, which

are mapped to the ‘‘Y’’ graph [18, 29]. Any two points x and y in

R2 are equivalent, i.e., x� y, if HðxÞ ¼ HðyÞ and they are in the
same connected component of H�1ðHðxÞÞ ¼ H�1ðHðyÞÞ
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L
y
i fiðHÞ ¼ �AiðHÞf 0i þ

1

2
�r2i ðHÞf 00i ; ½x� 2 Ci ð4:8Þ

on the three edges of the graph, whereH is only a local

coordinate in each edge and it can take the same value

for different trajectories. The domain of the averaged

generator (4.8) is given by

DðLyÞ ¼def f y 2 CðCÞ : f y 2 C2ð[3
i¼1CiÞ;

�

limH!HðOÞ L
y
i exist;

X3
i¼1

ð
Þr2i ðOÞf 0i ðOÞ ¼ 0

)

ð4:9Þ

where f 0i ðOÞ ¼ limH!HðOÞ f
0
i ðHÞ for ðH; iÞ 2 Ii and the

±sign denotes whether the coordinate H on the edge Ii

is greater than or less than HðOÞ. In Eq. (4.9), the

glueing condition for the vertex O

X3
i¼1

ð
Þr2i ðOÞf 0i ðOÞ ¼ 0 ð4:10Þ

that corresponds to the saddle point, roughlymeans the

following. Define

D ¼def r21ðOÞ þ r22ðOÞ þ r23ðOÞ:

If the limiting process starts in edge 1 of the graph C, it
evolves according to Eq. (4.8) with i ¼ 1. Upon

reaching the vertex, it flips a three-sided coin to

decide where to go next. It will go back to edge 1 with

likelihoodr21ðOÞ=D, to edge 2 with likelihood

a b

c d

Fig. 4 a Particle filter (PF), b HHPF, c PF l and r and d HHPF l and r
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r22ðOÞ=D, and to edge 3 with likelihood r23ðOÞ=D.
Once it is in any of these edges, it will evolve

according to Eq. (4.8) with r1 and B1 replaced by the

appropriate ri and Bi. When it again hits the vertex,

the coin-flipping procedure is repeated (with a new

coin).

In evaluating the drift and diffusion coefficients for

each edge, we change the time integral to the path

integral with respect to the fast variable xet while

averaging over one period of the fast motion of xet . For

different values of H, we have different path integrals

(oscillations or rotations) and thus different drift �AðHÞ
and diffusion coefficients �rðHÞ. They are evaluated in
[29, 34]. For practical problems it was crucial to

consider real noise excitations. The above results were

extended in [15] for non-white stationary stochastic

processes for the treatment of large amplitude ship

rolling in random seas.

5 Data assimilation in multi-scale systems

In a large number of applications it is essential to not

only track the state of the system but also to understand

if the system state has entered or is approaching a new

dynamic mode in real time. This requires data and the

common features of much of current data are: their

complex structures—complexity in relations between

different parts of the data and the nature of the data

itself; noisiness—most of the measurement processes

are inherently subject to random fluctuations; indirect

observation—the desired state is not directly

observed. This section deals with the assimilation of

such data into evolving complex systems. Data

assimilation or filtering involves blending information

from observations of the actual system states with

information from dynamical models to estimate the

current system states or certain model parameters. The

filtering problem relies on three fundamental ingredi-

ents, namely (1) sensor placement: where the sensors

are placed in order to obtain the most useful informa-

tion, (2) sensor fusion: how to combine the measure-

ments from different sensors, and (3) estimation: how

to use the measurements to obtain the best possible

state estimates. Continuous time state estimation for

linear stochastic systems is based on a single unifying

theme, namely that state estimation is equivalent to

projection onto a closed linear subspace generated by

an observation process in a Hilbert space of random

variables. This formulation of state estimation leads

linear estimation and prediction, such as the Kalman–

Bucy filtering formulae, which are much used for
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0 10 20 30 40 50 60 70 80
−50

0

50
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0
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100

PF

a

b

c

d

Fig. 5 Particle filter without control: a X1, b X2, c X3 and d total error et ¼ jjðX1
t ;X

2
t ;X

3
t Þtrue � ðX1

t ;X
2
t ;X

3
t Þestijj2
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example in problems of inertial guidance and control

in aerospace and in stochastic optimal control.

To begin with, we consider the data assimilation

problem for multi-timescale nonlinear systems. An

understanding of how scales interact with information

can lead to the development of rigorous reduced-order

data assimilation techniques for these high-dimen-

sional problems. The nonlinear filtering problem is

generically framed by augmenting the dynamics (4.1)

of the state by an observation process Ye
t (see for

example, [9, 22]). We will consider the case where the

information about the state is available only indirectly

through sensors (partial observation), h(x, z), cor-

rupted by sensor noise Vt, that is, a d-dimensional

observation is given by

Y �
t ¼

Z t

0

hðX�
s ; Z

�
s Þdsþ Vt ð5:1Þ

with Borel-measurable h : Rmþn ! Rd . Vt is assumed

to be a d-dimensional standard Brownian motion that

is independent of the signal (4.1) noiseWt and Bt. The

only available information about the signal/state of the

system is contained in the observation r-field Ye
t ¼
def

r
fY e

s : 0	 s	 tg. The main objective of filtering theory

is to estimate the statistics of the signal ðXe
t ; Z

e
t Þ at time

t based on the information Ye
t in the observation

process up to time t, more precisely, for each t� 0 find

the conditional law of ðXe
t ; Z

e
t Þ given Ye

t .

The main objective of this section is to describe

some recent results for the best estimate of the slow

state Xe
t at time t based on the information Ye

t up to

time t of the observation process Y e
t which depends

also on the fast process Ze
t . Since the fast variable Ze

t

rapidly attains its invariant measure, and standard

averaging techniques suggest that as e & 0, we should

replace the dynamics of the slow variables by �Xt.

Hence, we can average out the effects of the fast

variable Ze, regard �Xt; t� 0f g as the reduced dynam-

ical model. The recent work by Imkeller et al. [20]

showed that the marginal of the original conditional

density, that is, for each t� 0 and

A 2 BðRnÞ; pe;xt ðA;Ye
½0;t�Þ ¼ PfXe

t 2 AjYe
tg, con-

verges to a Pð �XÞ-valued process �p ðor �uÞ, as e ! 0.

More precisely, it was shown how the equations of

filtering interact with the reduced dynamics described

by the low-dimensional generator Ly (4.3).
The convergence of ðXe; YeÞ itself does not guar-

antee the convergence of filters. In a series of papers,

Namachchivaya and coworkers [20, 39, 40] showed

how the scaling interacts with filtering. This issue

0 10 20 30 40 50 60 70 80
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Fig. 6 Particle filter with control: a X1, b X2, c X3 and d total error et ¼ jjðX1
t ;X

2
t ;X

3
t Þtrue � ðX1

t ;X
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naturally appears when one has to replace the sensor

observations by their effective quantities. Both dimen-

sion reduction methods and nonlinear filtering tech-

niques were used in [20, 40] to create new capabilities

for the analysis and prediction of large-scale complex

systems.

The homogenized process generated by Ly is
combined with the actual observation Y e in defining

the recursive stochastic PDE conditional density

�ptð�;FYe

t Þ. Also, define �hðxÞ ¼
R
hðx; zÞp1ðx; dzÞ. It

was shown that the marginal of the original

conditional density p
e;x
t ð�;FYe

t Þ is close to the homog-

enized conditional density �ptð�;FYe

t Þ. For A 2 BðRnÞ,
the conditional law of the coarse-grained dynamics

is

�ptðA;Ye
½0;t�Þ ¼

def
Z
x2A

�peðt; xÞdx ¼
R
x2A �ueðt; xÞdxR
x2Rn �ueðt; xÞdx

;

where �ueðt; xÞ is governed by the following stochastic

PDE

d�ueðt; xÞ ¼ Ly��ueðt; xÞdt þ �hðxÞ�ueðt; xÞdYe
t ; ð5:2Þ

with �ueð0; xÞ ¼ px: The recursive computability of the

lower-dimensional nonlinear filter of the coarse-

grained dynamics is brought out much more explicitly

through the stochastic PDE (5.2). Note that the

homogenized filter is still driven by the real observa-

tion Y�
t and not by a ‘‘homogenized observation’’,

which is practical for implementation of the homog-

enized filter in applications since such averaged

observation is usually not available. However, even

if such homogenized observation is available, using it

would lead to loss of information for estimating the

signal compared to using the actual observation. This

theory is enabled using an efficient class of filtering

methods called particle methods, which include

sequential Monte Carlo and interacting particle filters

(e.g., [24, 41]). Particle filters represent the posterior

conditional distribution of the state variables by a

collection of particles, which evolves and adapts

recursively as new information becomes available.

This method involves the simulation of a sample of

independent particles of the signal according to the

signal’s stochastic law, and the resampling of these

particles to incorporate information from the obser-

vations. This combined method of sampling and

averaging to solve the filtering equation in a multiscale

setting is called the Homogenized Hybrid Particle

Filter (HHPF).

We now apply the HHPF to an example to illustrate

its potential for high-dimensional complex problems.

Consider the signal model given by (4.4a) and (4.4b)

with the observation

Y e
t ¼

1

2
ðXe

sÞ
2 þ Bt:

Note that the above observation can be written in a

differential form

dY e
t ¼ Xe

t �ðZe
t Þ

3 þ sinðptÞ þ cosð
ffiffiffi
2

p
ptÞ

n o
dt þ dBt;

which is a proper form (5.1) of HHPF. We obtain the

averaged observation with the following sensor function

�hðX0
t Þ ¼ �ðX0

t Þ
4 � 3

2
ðX0

t Þ
2 þ fsinðptÞ þ cosð

ffiffiffi
2

p
ptÞgX0

t :

We then applied the algorithms described in [41] to the

above simple problem using Matlab R2007a. The

results from the branching particle filter and the HHPF

are given in Fig. 4a, b, respectively. Both results are

also compared with the analytical solution (4.5). The

sample mean l and standard deviation r for each

method are shown in Fig. 4c, d, respectively, with the

error bars representing the standard deviations. The

time taken for these simulations are 448 and 15 s

respectively with a 2 GHZ Intel Core 2 Duo Mac-

Book, see [41] for simulation parameters.

5.1 Optimal nudging in particle filters

Based on the above results, an efficient particle

filtering algorithm for multi-scale systems was con-

structed. Particle methods that are adapted for dynam-

ical systems which are inherently chaotic are used for

approximating the solution to the SPDE (5.2). Impor-

tance sampling and control methods are then used as a

basic and flexible tool for the construction of the

proposal density inherent in particle filtering. We

superimpose a control on the particle dynamics which

aims to drive the particles to locations most represen-

tative of the observations, while still trying to remain

faithful to the original signal dynamics. To this end,

we evolve the particle i according to

dbXi

t ¼ �bðt; bXi

tÞdt þ uiðtÞdt þ �rðt; bXi

tÞdWt;

tk 	 t	 tkþ1; bXi

tk
¼ xitk ;

ð5:3Þ

Meccanica (2016) 51:2975–2995 2991

123



where �b and �r are defined in (4.3). Note the difference

between the above equation and the homogenized

SDE associated with (4.3). The bX is used to indicate

that the particles are evolved according to the

controlled dynamics which is different from the

system dynamics. This control is obtained by mini-

mizing a specific cost functional which consists of a

running cost due to input energy and a terminal cost

that penalizes for being away from observation. The

control can be interpreted as steering particles grad-

ually toward locations indicated by the next observa-

tion. The optimization also results in minimal weight

variance for each particle. The measure change,

needed to compensate for the addition of control in

the ‘‘prognostic’’ equations, corresponds to that

involved in optimal importance sampling. The filter-

ing algorithm presented in [26] utilizes the next

available observation to steer particles in the time

interval in between observations to construct better

posterior densities at the observation times.

In practice, evaluation of the optimal control based on

the Feynman–Kac representation and Malliavin deriva-

tive can become computationally overwhelming for

nonlinear signals. However, the optimal control solution

can be obtained explicitly for linearized systems:

uðt; xÞ ¼ QðeAðtkþ1�tÞÞ�½I þ H�R�1HR��1

�H�R�1½ðYtkþ1
� HlÞ�

ð5:4Þ

where A is the linear operator, l :¼ eAðtkþ1�tÞx, and

R :¼
R tkþ1

t
eAðtkþ1�sÞQðeAðtkþ1�sÞÞ�ds are the mean and

variance of the linearized system at time tkþ1 when it

starts at time t at x.

Asshownin[26],alinearcontrolstrategywasimplemented

as a suboptimal control solution on particle filtering for the 3-

dimensional Lorenz ’63 system. The signal and observation

processes are given as:

d

X1
t

X2
t

X3
t

2
64

3
75 ¼

�r r 0

q �1 0

0 0 �b

2
64

3
75

X1
t

X2
t

X3
t

2
64

3
75dt

þ
0

�X1
t X

3
t

X1
t X

2
t

2
64

3
75dt þ a dWt

dYtk ¼ hXtk þ gdBtk ; k ¼ 1; 2; . . .

We use the standard parameters r ¼ 10; q ¼ 8=3, and

b ¼ 28 in the signal equations. The signal and sensor

noise is simulated as a vector of Gaussian random

numbers premultiplied by the following correlation

matrices,

Q ¼def aaT ¼
1 0:5 0:25

0:5 1 0:5

0:25 0:5 1

2
64

3
75and

R ¼def ggT ¼
2 0 0

0 2 0

0 0 2

2
64

3
75:

The sensor function is a 3� 3 identity matrix,

h ¼def I3�3. Observations are recorded every Dt ¼ 0:2,

which corresponds to roughly 1 / 4 of the error

doubling time for the deterministic Lorenz ’63 system.

The filtering results are shown in Figs. 5 and 6.

Implementation of the suboptimal control was suffi-

cient to ensure consistent tracking of the signal, even

when the time interval between observations is large.

The difference between the estimated state and the

true state of the system constitutes the error

et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXt � X̂tÞðXt � X̂tÞT

q
;

where Xt represent true signal and X̂t be the estimate,

in specifying or forecasting the state, which is

amplified in chaotic systems that have a number of

positive Lyapunov exponents. Figure 5 shows the

results of the particle filter without any control. A total

of 20 particles are used, and resampling is done if the

effective number of particles falls below 5. The time

step used for integration is dt ¼ 0:004 and the

observation is received every 50 dt. This is a difficult

filtering problem as discussed in [26] and the particle

filter without any control misses the transitions from

one wing of the Lorenz butterfly to the other, as can be

seen from Fig. 5. For the same parameters and with the

same initial sample as the above filter, Fig. 6 shows

the results of the particle filter with the approximate

linear control (5.4) where the trajectories of the

controlled particle filter tracks ‘‘true’’ signal. Resam-

pling is done (if the effective number of particles falls

below 5) only at the time when observation is

recorded.

The filtering algorithm can be supplemented by a

scheme that extracts more accurate observations (that

contain the maximum amount of information), which

has the potential to further reduce the error in the

2992 Meccanica (2016) 51:2975–2995

123



analysis of the initial state for the forecast. For chaotic

systems, solution settles near a subset of the state

space, called an attractor. The state trajectories are

sensitive to initial conditions, i.e. trajectories starting

from initial conditions that are close can deviate far

apart in the future. This sensitivity to initial conditions

is characterized by finite time Lyapunov exponents.

Observations can potentially be improved by con-

structing a sensor function that is more sensitive in

unstable directions (directions corresponding to pos-

itive Lyapunov exponents).

The filtering algorithm described so far can be

supplemented by a sensor design scheme that extracts

better observations (that contain the maximum amount

of information), which has the potential to further

reduce the error in the analysis of the initial state for

the forecast. Using information-theoretic formulations

and information flow, adaptive sensing can be

designed to extract more information content at a

given observation time. Finally, [48] considers sensor

selection with the goal of improving the analysis at

observation times, by looking at mutual information

between the signal and observation. Additionally, in

chaotic systems, error growth and uncertainty can be

characterized by Lyapunov exponents. Specifically,

for a chaotic system, solutions settle near a subset of

the state space, called an attractor. However, state

trajectories are sensitive to initial conditions, i.e.

trajectories starting from initial conditions that are

close can deviate far apart in the future. This

sensitivity to initial conditions is characterized by

(finite time) Lyapunov exponents. Observations can

potentially be improved by constructing a sensor

function that is more sensitive in unstable directions

(directions corresponding to positive Lyapunov

exponents).

6 Conclusions

Summarizing the results of this paper, the first section

presented result on the maximal Lyapunov exponent

of the response of multi-degree of freedom bilinear

[32, 35, 46] and single-well nonlinear oscillators

[5, 30] driven by either an additive or multiplicative

white noise. Then it was shown that stochastic

homogenization of the nonlinear systems yielded a

set of equations which, together with their variational

equations, were explicitly solved and hence their

bifurcation behavior completely analyzed [2, 29, 44].

Nonstandard reduction methods [29] with glueing

conditions (boundary conditions at the ‘‘tipping

points’’ for the reduced diffusion) were applied to

study the behavior of noisy, strongly nonlinear

mechanical systems with bifurcations in their fast

deterministic dynamics. The relationship between

stochastic bifurcations and how they are related to

Lyapunov and moment Lyapunov exponents [3, 28]

were examined. These results make the design of

mechanical systems robust and will have an important

impact on the design of advanced engineering systems

and their reliability.

In the context of filtering applications, the reduced-

order nonlinear filtering equations [20, 24] provided

the estimation of coarse-grained dynamics (slow

dynamics) without requiring explicit knowledge of

the fast dynamics, hence reducing computational

complexities and information storage requirements.

Finally, we presented new particle filters that represent

the posterior conditional distribution of the state

variables by a collection of particles, which evolves

and adapts recursively as new information becomes

available. Lorenz ’63 system was an excellent test-bed

for the optimal importance sampling scheme that was

developed in [26]. In most real applications, for

example weather prediction models, the observation

process is within the same environment as the signal;

hence the signal and sensor noise are correlated.

Hence the filter convergence results of [20, 41] need to

be extended to the correlated noise setting.

The change in scale and complexity of the types

of data and phenomena being studied in high

dimensional, multi-scale complex systems poses

new mathematical and conceptual challenges. In

this data-centric multi-scale environment, model-

based and data-driven methods are at the center of

development of a large number of key fields in the

sciences and engineering. The scope of data-centric

methods spans a wide range of areas, from techno-

logical (electric power grid) and geophysical (cli-

mate and weather) to environmental (chemical and

biological) and social systems (crime and terrorism).

The bottleneck is the lack availability of good

statistical techniques that quickly and effectively

extract useful information and assimilate them for

cooperative health monitoring and vulnerability

assessment in real time. It is this need and challenge

that was addressed in this paper.
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There are several topics in RDS that are not covered

in this paper due to lack of space. They include large

deviations [14, 19], which is concerned with asymp-

totic estimates of probability of rare events associated

with stochastic processes, information theoretic meth-

ods [48] to quantify the time evolution of uncertainty

about the signal and mutual information between

signal and observation, and random vibration [13]

which provides a more applied aspect of RDS, to name

a few. The same information theoretic concepts as in

the discrete-time sensor selection problem are used,

but now we will revert to the continuous-time setting

and obtain equations for uncertainty and information

flow.
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Birkhäuser, Boston

23. Leng G, Namachchivaya NS, Talwar S (1992) Robustness

of nonlinear systems perturbed by external random excita-

tion. ASME J Appl Mech 59(4):1015–1022

24. Lingala N, Namachchivaya NS, Perkowski N, Yeong HC

(2012) Particle filtering in high-dimensional chaotic sys-

tems. Chaos 22:047509

25. Lingala N, Namachchivaya NS, O’Reilly OM, Wihstutz V

(2013) Almost sure asymptotic stability of an oscillator with

delay feedback excited by finite state Markov noise. Probab

Eng Mech 32:21–30

26. Lingala N, Namachchivaya NS, Perkowski N, Yeong HC

(2014) Optimal nudging in particle filters. Probab EngMech

32:21–30

27. Lingala N, Namachchivaya NS (2016) Perturbations of

linear delay differential equations at the verge of instability.

Phys Rev E 93:21–30

28. Moshchuk N, Khasminskii R (1998) Moment Lyapunov

exponent and stability index for linear conservative system

with small random perturbation. SIAM J Appl Math

58(1):245–256

2994 Meccanica (2016) 51:2975–2995

123



29. Namachchivaya NS, Sowers RB, Vedula L (2001) Non-

standard reduction of noisy Duffing—van der Pol equation.

J Dyn Syst 16(3):223–245

30. Namachchivaya NS, Kok D, Ariaratnam ST (2007) Stability

of noisy nonlinear auto-parametric systems. Nonlinear Dyn

47(3):143–165

31. Namachchivaya NS, Lin YK (1991) Method of stochastic

normal forms. Int J Nonlinear Mech 26(6):931–943

32. Namachchivaya NS, Van Roessel HJ (1993) Maximal

Lyapunov exponent and rotation numbers for two coupled

oscillators driven by real noise. J Stat Phys 71(3/4):549–567

33. Namachchivaya NS, Van Roessel HJ (2004) Averaging of

noisy nonlinear systems with rapidly oscillating and

decaying components. Nonlinear Dyn 36:329–347

34. Namachchivaya N Sri, Sowers R (2002) Rigorous stochastic

averaging at a center with additive noise. Meccanica

37(2):85–114

35. Namachchivaya NS, Vedula L (2000) Stabilization of linear

systems by noise: application to flow induced oscillations.

Dyn Stab Syst 15(2):185–208

36. Onu K, Namachchivaya N Sri (2010) Stochastic averaging

of surface waves. Proc R Soc A 466(3):2363–2381

37. Oseledec VI (1968) A multiplicative ergodic theorem.

Lyapunov characteristic numbers for dynamical systems.

Trans Mosc Math Soc 19:197–231

38. Papanicolaou GC, Stroock D, Varadhan SRS (1977)

Martingale approach to some limit theorem. In: Statistical

mechanics and dynamical systems, and papers from 1976

turbulence conference. Mathematics Department, Duke

University

39. Park JH, Namachchivaya NS, Sowers RB (2008) A problem

in stochastic averaging of nonlinear filters. Stoch Dyn

8(3):543–560

40. Park JH, Namachchivaya NS, Sowers RB (2010) Dimen-

sional reduction in nonlinear filtering. Nonlinearity

23(2):305–325

41. Park JH, Namachchivaya NS, Yeong HC (2011) Particle

filters in a multiscale environment: homogenized hybrid

particle filter. J Appl Mech 78(6):1–10

42. Popp K, Romberg O (2001) Influence of stochastic effects

on flow induced vibrations in tube bundles. In: Narayanan S,

Iyengar RN (eds) IUTAM symposium on nonlinearity and

stochastic structural dynamics. Solid mechanics and its

applications, vol 85. Kluwer Academic Publishers,

pp 197–208

43. Schimansky-Geier L, Herzel H (1993) Positive Lyapunov

exponents in the Kramers oscillator. J Stat Phys

782:141–147

44. Singh P, Yeong HC, Zhang H, Rapti Z, Sri Namachchivaya

N (2016) Stochastic stability and dynamics of a two-di-

mensional structurally nonlinear airfoil in turbulent flow.

Meccanica. doi:10.1007/s11012-016-0445-8

45. Stroock DW, Varadhan SRS (1979) Multidimensional dif-

fusion processes. Grundlehren der Mathematischen Wis-

senschaften, vol 233. Springer, Berlin

46. Wedig WV (1990) Invariant measures and Lyapunov

exponents for generalized parameter fluctuations. Struct Saf

8(1–4):13–25

47. Weinan E, Liu D, Vanden-Eijnden E (2005) Analysis of

multiscale methods for stochastic differential equations.

Commun Pure Appl Math 58:1544–1585

48. Yeong HC, Beeson R, Namachchivaya NS, Perkowski N,

Sauer PW (2017) Dynamic data-driven adaptive observa-

tions in data assimilation for multi-scale systems. In: Ravela

S, Blasch E, Aved A (eds) Dynamic data driven applications

systems. Springer, New York (to appear)

49. Zakai M (1969) On the optimal filtering of diffusion pro-

cesses. Z Wahrscheinlichkeitstheorie Verwandte Geb

11:230–243

50. Zeeman E (1988) On the classification of dynamical sys-

tems. Bull Lond Math Soc 20:545–557

Meccanica (2016) 51:2975–2995 2995

123

http://dx.doi.org/10.1007/s11012-016-0445-8

	Random dynamical systems: addressing uncertainty, nonlinearity and predictability
	Abstract
	Introduction
	Random dynamical systems
	Invariant measures
	Lyapunov exponents
	Moment Lyapunov exponents

	Stochastic stability and bifurcation
	Stochastic stability and stabilization by noise
	Stochastic bifurcation

	Dimensional reduction and homogenization
	Nonstandard reduction
	Example in {\mathbb {R}}^2


	Data assimilation in multi-scale systems
	Optimal nudging in particle filters

	Conclusions
	Acknowledgements
	References




