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Abstract Very recently, researchers dealing with

constitutive law pertinent viscoelastic materials put

forward the successful idea to introduce viscoelastic

laws embedded with fractional calculus, relating the

stress function to a real order derivative of the strain

function. The latter consideration leads to represent

both, relaxation and creep functions, through a power

law function. In literature there are many papers in

which the best fitting of the peculiar viscoelastic

functions using a fractional model is performed.

However there are not present studies about best

fitting of relaxation function and/or creep function of

materials that exhibit a non-linear viscoelastic behav-

ior, as polymer melts, using a fractional model. In this

paper the authors propose an advanced model for

capturing the non-linear trend of the shear viscosity of

polymer melts as function of the shear rate. Results

obtained with the fractional model are compared with

those obtained using a classical model which involves

classical Maxwell elements. The comparison between

experimental data and the theoretical model shows a

good agreement, emphasizing that fractional model is

proper for studying viscoelasticity, even if the material

exhibits a non-linear behavior.

Keywords Spectrum of relaxation times �
Viscoelasticity � Fractional calculus � Power law
function

1 Introduction

Viscoelastic behavior is well represented by relaxation

function and/or creep function that are related each

other in Laplace domain. This means that, knowing

only one function, the other one is recovered through

an inverse Laplace transform. From a physical point of

view the aforementioned statement assesses that a

unique mechanical model is necessary to simulate

both functions. However, in practical applications the

number of model parameters discriminates the choice

of the model in two parallel paths. Specifically, if the

minimum number of model parameters is mandatory,

then two different models are considered: the Maxwell

model for capturing relaxation function and the

Kelvin–Voigt model for creep function [1–4]. Further,

if only one model is required, then this unique model is
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characterized by a large number of parameters being

composed of several Maxwell models in series and/or

in parallel with Kelvin–Voigt models.

From above considerations it is apparent that, on

one hand if one prefers few parameters, to be

identified, then two different models are necessary to

characterize the same material, obscuring a physical

meaning and violating a theoretical aspect, provided

by the relation in Laplace domain. On the other hand,

choosing a unique model the computational effort

increases significantly.

In this decade, researchers dealing with constitutive

law pertinent viscoelastic materials put forward the

successful idea to introduce viscoelastic laws embed-

ded with fractional calculus [5–12].

Fractional calculus can be regarded as an extension

of the classical differential calculus. Until now a

limited use of such tool can be observed in mechanics

[13–25], probably due to the presence of many

definitions of fractional operators as well as the lack

of an easy geometrical meaning. However, the com-

mon point to all definitions of fractional operators is

that they are simply convolution integrals with power

law kernel. The beauty of such operators is that they

exactly behave as ordinary derivatives and integrals,

that is, all the rules of classical operators with integer

order hold true, including Leibniz rule and integration

by parts [26, 27].

At this point the following question arises: what is

the main difference between a classical viscoelastic

law and the fractional viscoelastic one?

In classical viscoelastic law the stress function is

related to an integer order time derivative of the strain

function [1], this leads to have an exponential function

as a kernel in the correspondent integral form (Boltz-

man Integral), while if the stress function is related to a

real order time derivative of the strain function, the

kernel will be a power law function in the correspon-

dent integral form. Moreover, since the kernel of the

integral form of viscoelastic constitutive law is related

to the relaxation or creep function, it means that when

a fractional constitutive law is considered the relax-

ation and creep function will be a power law function.

After all, the latter is not a novel concept, in fact at the

beginning of the twentieth century, Nutting and

Gemant [28, 29] observed that, for viscoelastic

materials such as rubber, bitumen, polymers, concrete

etc., the experimental data were properly fitted by a

power law function. In this regard, the power law

decay representation for relaxation data was firstly

considered by the polymer scientists, while the

mechanics community chose the classical models as

the Maxwell model, the Kelvin–Voight model and

complex combinations of these elementary models to

capture viscoelastic phenomena [1–4].

In literature there are many papers in which the best

fitting of the peculiar viscoelastic functions of mate-

rials that exhibit a linear viscoelastic behavior (rubber,

bitumen, polymers, giant reeds) using a fractional

model [30–38] is performed. However there are not

present studies where constitutive laws embedded

with fractional calculus have been used for predicting

the response of materials that exhibit a non-linear

viscoelastic behavior, as polymer melts.

This paper is building on Acierno et al.’s findings

reported in [39, 40] where, in agreement with previous

literature [41–43], among several non-Newtonian

models, they proposed a set of non-linear equations,

to predict the non-Newtonian behavior of a type of

L.D. polyethylene known as IUPAC sample.

In particular in this paper the authors propose the

fractional model to capture the non-linear viscoelastic

behavior of polymer melts. Starting from the equilib-

rium values of the parameters of the fractional model,

describing the mechanical behavior of the fluid in the

limit of liner viscoelasticity and obtained from the best

fitting of the relaxation function, the trend of the shear

viscosity of polymer melts, as function of shear rate, is

performed. The good match of the proposed results

with both experimental data [44, 45] and results

obtained using the classical constitutive laws [39, 40],

assesses that this proposed model is an alternative

approach with respect to classical one, especially for

range of shear rate pertinent with viscoelastic behav-

ior, while for higher values of shear rate, since the

behavior turns to liquid one, then the classical model is

more appropriate.

2 Linear viscoelasticity: fractional and classical

Maxwell model

At the beginning of the twentieth century, Nutting and

Gemant [28, 29] observed that, for viscoelastic

materials that exhibit a linear viscoelastic behavior

such as rubber, bitumen, polymers, concrete etc., the

experimental data, coming from the relaxation test,

were well fitted by a power law decay, that is
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U tð Þ / tð Þ�a
0\a\1 ð1Þ

If we select the coefficient of proportionality in Eq. (1)

in the form Ca0=C 1� að Þ, where C �ð Þ is the Gamma

function, whileCa0 and a are coefficients obtained by a
best fitting procedure from the relaxation test, then

Eq. (1) becomes

U tð Þ ¼ Ca0

C 1� að Þ t
�a ð2Þ

This viscoelastic model characterized by such relax-

ation function is termed in literature [26] as spring-pot

element and it is depicted in Fig. 1.

The Laplace transform of U tð Þ given in Eq. (2) is

U sð Þ ¼ Ca0 s
a�1 ð3Þ

and then invoking the fundamental relation in Laplace

domain between the relaxation function and the creep

function

U sð ÞD sð Þ ¼ 1=s2 ð4Þ

where U sð Þ and D sð Þ are the Laplace transforms of

relaxation function U tð Þ and creep function D tð Þ
respectively, the inverse Laplace transform of D sð Þ ¼
1
�
Ca0 s

1það Þ returns the creep function in the form

D tð Þ ¼ 1

Ca0 C 1þ að Þ t
a ð5Þ

Recent findings reported in [30–35] underscore the

strength of choosing a spring-pot to capture the linear

viscoelastic behavior using only one model for

evaluating, with the same two parameters, both creep

and relaxation functions. Specifically, for fitting

relaxation test it is required the identification of the

two parameters Ca0 and a as apparent from Eq. (2).

Once the relaxation function is determined it follows

the creep function from Eq. (5) and vice versa. In such

a model, the stress s tð Þ is related to a fractional

derivative of the strain c tð Þ in the form

s tð Þ ¼ Ca0 CD
a
0þc

� �
tð Þ ð6Þ

and the strain to a fractional integral of the stress

c tð Þ ¼ 1

Ca0
D�a

0þ s
� �

tð Þ ð7Þ

being the symbol CD
a
0þ �

� �
tð Þ the Caputo’s fractional

derivative defined as

CD
a
0þ f

� �
tð Þ ¼ 1

C 1� að Þ

Z t

0

_f �tð Þ= t � �tð Þad�t ð8Þ

where a dot over a function denotes first order time

derivative, while D�a
0þ �

� �
tð Þ is the Riemann–Liouville

fractional integral defined as

D�a
0þ f

� �
tð Þ ¼ 1

C að Þ

Z t

0

f �tð Þ= t � �tð Þ1�a
d�t ð9Þ

Note that the constitutive laws in Eqs. (6) and (7)

interpolate the purely elastic behavior (a ¼ 0) and the

purely viscous one (a ¼ 1).

Another consistent fractional model, to capture the

viscoelastic behavior, is the fractional Maxwell model

derived adding a spring in series to the spring-pot, as

depicted in Fig. 2.

The constitutive law concerning this model is

expressed in the form

ka0 CD
a
0þs

� �
tð Þ þ s tð Þ ¼ Ca0 CD

a
0þc

� �
tð Þ ð10Þ

being ka0 the ratio between Ca0 and the modulus G0 of

the spring (ka0 ¼ Ca0=G0). It is worth stressing that the

classical Maxwell model is recovered from the

fractional one replacing the spring-pot with a regular

dashpot characterized by a constant l0 that means

setting a ¼ 1 in the relationship

ka0 ¼ k0ð Þa¼ l0=G0ð Þa.
To obtain the relaxation function U tð Þ of the

fractional Maxwell model, write the Laplace trans-

form of Eq. (10)

ka0 s
as sð Þ þ s sð Þ ¼ Ca0 s

ac sð Þ ð11Þ

and, considering c sð Þ ¼ 1=s, being the strain imposed

Fig. 1 Spring-pot model Fig. 2 Fractional Maxwell model
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a unit step function, the stress response coincides with

the Laplace transform of the relaxation function

U sð Þ ¼ Ca0
sa�1

1þ ka0 sa

� �
ð12Þ

Then performing the inverse Laplace transform, the

relaxation function U tð Þ is given by

U tð Þ ¼ G0 Ea � ta

ka0

� �� �
ð13Þ

where Ea �½ � is the one-parameter Mittag–Leffler func-

tion [27] defined in the form

Ea z½ � ¼
X1

k¼0

zk

C ak þ 1ð Þ ð14Þ

On the other hand the creep function may be obtained

by the inverse Laplace Transform of U sð Þ�1
s�2 in

according to Eq. (4)

D tð Þ ¼
ka0 þ ta

C 1það Þ
Ca0

ð15Þ

that is a power law function in accordance with the

Nutting and Gemant observation.

Once again, setting a ¼ 1 and

ka0 ¼ k0ð Þa¼ l0=G0ð Þa, both relaxation and creep

functions pertinent the classical Maxwell model are

respectively derived in the form

U tð Þ ¼ G0 exp � t

k0

� �

D tð Þ ¼ t

l0
þ 1

G0

ð16a; bÞ

It has to be stressed that this formulation is valid for

small values of stress and/or deformation since

Boltzman integral requires the validity of the super-

position principle.

3 Non-linear viscoelasticity: classical

and fractional formulation

Experimental tests on polymer melts have shown that

such materials exhibit a non-linear behavior. To

capture this non-linear behavior in Acierno et al.

[39, 40] a model of non-linear viscoelasticity with

relaxation times depending on material has been

introduced and validated through experimental results

[44, 45]. For readers’ convenience it will be reported

the equation of the aforementioned model as

si þ ki
dsi
dt

¼ 2Gi ki D

Gi ¼ G0i xi ki ¼ k0i x
1:4
i

dxi

dt
¼ 1� xið Þ

ki
� a xi

ki

ffiffiffiffiffi
Ei

Gi

r
ð17a-cÞ

where si is the stress tensor, Ei ¼ 1=2 tr si (the symbol

tr indicates the operation of trace), G0i and k0i are the
equilibrium values of Gi and k i describing the

mechanical behavior of the fluid in the limit of linear

viscoelasticity and evaluable from the best fitting of

the relaxation function, as detailed later. Moreover, a

is a model parameter, D ¼ 1
2
rvþrvTð Þ is the

symmetric part of the velocity gradient rv and d=dt
is the so called contravariant convected derivative [41]

defined as

dsi
dt

¼ dsi
dt

�rv � si tð Þ � si tð Þ � rvT ð18Þ

The scalar dimensionless quantities xi � 1 can be

regarded as internal variables describing how the

existing element is far from equilibrium, representing

the connectivity of the macromolecular network with

respect to that of equilibrium [42]. The first equation

of (17b) expresses the fact that the elastic modulus is

proportionally to the concentration of junctions.

Conversely, the second equation of (17b) is essentially

empirical. Equation (17c) gives the rate of change of

the variable xi including a term (the second one on the

right-hand side) which is the rate of destruction of

junction due to the existing stress and a term (the first

one on the right-hand side) which gives the net rate of

reformation due to the thermal motion.

Finally the shear viscosity l and the stress tensor s
are determined as

l ¼
Xn

i¼1

li ¼
Xn

i¼1

kiGi

s ¼
Xn

i¼1

si

ð19Þ

the latter represents a spectral decomposition of the

stress tensor. Further, for steady shear flow, assuming

v ¼ x2 _c 0 0½ �T , (being _c the rate of shear) with

x1; x2; x3ð Þ reference axes, only the tangential stress

s12 and the normal stress s11 are the non-null
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components of the stress tensor. Then the governing

Eq. (17) revert to

s12 ¼
Xn

i¼1

s12i ¼
Xn

i¼1

Gi ki _c

s11 ¼
Xn

i¼1

s11i ¼
Xn

i¼1

2Gi k
2
i _c2

Gi ¼ G0i xi ki ¼ k0i x
1:4
i

1� xið Þ
xi

¼ ki a _c

ð20a-cÞ

having taken into account that the symmetric part of

the velocity gradient is particularized as

D ¼ 1

2
rvþrvT
� �

¼
0

1

2
_c 0

1

2
_c 0 0

0 0 0

2

6664

3

7775
ð21Þ

Introducing a fractional constitutive law, for steady

shear flow modelled through fractional Maxwell

elements, the velocity is in the form

v ¼ x2 CD
a
0þc

� �
0 0


 �T
, while the symmetric part

of the velocity gradient turns into

D ¼ 1

2
rvþrvT
� �

¼
0

1

2
CD

a
0þc

� �
0

1

2
CD

a
0þc

� �
0 0

0 0 0

2

66664

3

77775

ð22Þ

hence the model is described by the following set of

equations

s12 ¼
Xn

i¼1

s12i ¼
Xn

i¼1

Gi kai CD
a
0þc

� �

s11 ¼
Xn

i¼1

s11i ¼
Xn

i¼1

2 Gi k
2
ai CD

a
0þc

� �2

Gi ¼ G0i xi kai ¼ ka0i ¼ k0ið Þa

1� xið Þ
xi

¼ kai a CD
a
0þc

� �

ð23a-cÞ

leading to Ca the shear viscosity expressed in the form

Ca ¼
Xn

i¼1

Cai ¼
Xn

i¼1

kaiGi ð24Þ

whereG0i and ka0i are the equilibrium values ofGi and

kai, evaluated through the procedure described in the

next section.

It is worth underscoring that Eqs. (23) are the

transformed equation of the model of non-linear

viscoelasticity with relaxation times depending on

structure, taking into account the presence of frac-

tional Maxwell elements instead of classical ones.

It is apparent that the relevant result is that the

empirical equation is no more present but all equations

have been derived theoretically leading to a closed

form solution for xi. At this point the fundamental step

will be the validation of this proposed formulation

through experimental data developed by Meissner and

reported in [44, 45]. It is worth underscoring that, such

experimental data are the same used for validating the

classical formulation in [39, 40].

4 Best fitting of relaxation function: classical

and fractional model

To obtain the equilibrium values G0i and k0i(classical
model) and/or G0i and ka0i (fractional model) describ-

ing the mechanical behavior of the fluid in the limit of

linear viscoelasticity it needs experimental data of the

relaxation function such that the best fitting, through

expressions (13) and (16a), for fractional and classical

constitutive laws respectively, will return the main

parameters of each model. Specifically, considering

the experimental data of relaxation function U tð Þ of

the IUPAC L.D polyethylene samples obtained by

experimental tests performed by Meissner [44, 45],

then to evaluate the aforementioned equilibrium

values the same procedure adopted in [39, 40] has

been considered for both classical and fractional

models. In Fig. 3 both best fittings of experimental

relaxation function, using five (n = 5) classical and

five fractional Maxwell elements connected in parallel

are shown. Each best fitting leads to the identification

of Maxwell parameters whose values are reported in

Table 1.

In particular for classical Maxwell elements ten

parameters (spring’s and dashpot’s parameters: G0i

and k0i) have been identified, considering the relax-

ation function expressed in the form

Meccanica (2017) 52:1843–1850 1847
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U tð Þ ¼
Xn

i¼1

G0i exp � t

k0i

� �
ð25Þ

being the relaxation function of a Maxwell element

formulated through Eq. (16a).

While for fractional Maxwell elements considering

the following expression in terms of relaxation

function [6, 23]

U tð Þ ¼
Xn

i¼1

G0iEa � ta

ka0i

� �� �
ð26Þ

it needs the identification of eleven parameters (five

spring’s and five spring-pot’s parameters and a unique

value of a).
As expected from a theoretical point of view,

spring’s parameters are equal for both cases while

ka0i ¼ k0ið Þa.

5 Validation of the proposed formulation

Finally, in this section, the experimental data on the

shear viscosity of polyethylene samples as a function

of shear rate have been considered to validate the

theoretical results outlined in the previous section. In

particular, Fig. 4 sketches the values of viscosity as a

function of shear rate, where, the dots are experimental

data of the shear viscosity taken in different labora-

tories and introduced in [44, 45]. Below _c ’ 10 s�1

they were obtained with cone and plate-type instru-

ments, while for larger _c values, the viscosity was

obtained from capillary measurements. Starting from

the common point at lowest value of _c say

l 10�4ð Þ ¼
Pn

i¼1

k0iG0i ¼ Ca 10�4ð Þ ¼
Pn

i¼1

ka0iG0i, after

solving Eqs. (19) and (20) for classical procedure or

Eqs. (23) and (24) for proposed procedure, the shear

viscosity of polyethylene samples as a function of

shear rate, is obtained and plotted in Fig. 4, having

fixed the a parameter at 0.4.

As apparent from Fig. 4, results obtained from both

methods highly match the experimental results assess-

ing that the proposed procedure is reliable. More, the

relative errors obtained using fractional constitutive

law are lower than those evaluated through classical

constitutive law, as shown in Table 2. Further, it is

worth underscoring that for values of _c pertaining a

viscoelastic behavior the proposed model is the best

Fig. 3 Best fitting of the experimental relaxation function: (red

dotted line) through five classical Maxwell elements (black

dashed line) and five fractional Maxwell elements (blue solid

line). (Color figure online)

Table 1 Values of

viscoelastic parameters

obtained from best fitting

Classical Maxwell model Fractional Maxwell model a ¼ 0:97

G01 ¼ 434254 dyne/cm2; k01 ¼ 0:0329 sec G01 ¼ 434254 dyne/cm2; ka01 ¼ 0:036 seca

G02 ¼ 161565 dyne/cm2; k02 ¼ 0:336 sec G02 ¼ 161565 dyne/cm2; ka02 ¼ 0:34 seca

G03 ¼ 49429 dyne/cm2; k03 ¼ 3:21 sec G03 ¼ 49429 dyne/cm2; ka03 ¼ 3:1 seca

G04 ¼ 8123 dyne/cm2; k04 ¼ 30:5 sec G04 ¼ 8123 dyne/cm2; ka04 ¼ 27:5 seca

G05 ¼ 360 dyne/cm2; k05 ¼ 230 sec G05 ¼ 360 dyne/cm2; ka05 ¼ 195:4 seca

Fig. 4 Shear viscosity of polyethylene samples as a function of

shear rate: experimental data (dots), theoretical results obtained with

fractional model a = 0.97 (blue solid line), theoretical results

obtained with classical model a = 1 (black dashed line). (Color

figure online)
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model to predict the response, while, when _c assumes

higher values, since the material tends to behave as

pure liquid, then classical procedure turns out more

appropriate.

6 Conclusions

The main aim of this paper is to transform the equation

of the model of non-linear viscoelasticity with relax-

ation times depending on material, introduced in

[39, 40], taking into account the presence of fractional

Maxwell element instead of classical ones.

An advanced model for capturing the non-linear

trend of the shear viscosity of polymer melts as

function of the shear rate has been proposed. Results

obtained with the fractional model are compared with

those obtained using a classical model which involves

classical Maxwell elements. The good match among

experimental data, results from classical theoretical

formulation and proposed ones, underscores that that

fractional model is proper for studying viscoelasticity,

even if the material exhibits a non-linear behavior.
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