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Abstract Movement of a body inside a resistive

medium can be based on special vibrational motions of

internal masses contained within this body. This

principle of movement does not require any external

devices such as wheels, legs, or tracks interacting with

the outer environment; the system can be hermetic.

This type of mobile systems sometimes called vibro-

robots or capsubots can be useful for motions inside

hazardous or vulnerable media and inside tubes. In the

literature, one-dimensional motions of such systems

were studied in various resistive media. In the paper,

two-dimensional motions of a multibody mobile

system carrying internal masses are analyzed in the

presence of dry friction forces acting between the

system and the horizontal plane. It is shown that, under

certain conditions, this system can be brought from

any initial position to the prescribed terminal position

in the plane. The algorithm of motion is described and

specified.

Keywords Multibody system �Motion control � Dry
friction

1 Introduction

Mobile robots usually are equipped with wheels, legs,

tracks, propellers and other external devices that

interact with the outer environment. On the other hand,

there exists a possibility to organize the movement of a

body in a resistive medium by means of special

vibrational motions of internal masses contained

inside the moving body. Such mobile systems are

sometimes called vibro-robots or capsubots; they

consist of a main body and one or several bodies

moving inside it. The principle of movement based on

internal motions does not require that the main body

should have any external devices; this body can be

hermetic. This type of mobile robots can be useful for

motions inside hazardous or vulnerable media, inside

tubes, and in other cases where traditional mobile

systems are undesirable.

Of course, the principle of motion based upon

internal moving masses is implementable only

inside a resistive medium, i.e., in the presence of

resistance forces acting upon the main body. Var-

ious types of resistance forces are considered: linear

and quadratic forces, depending on the velocity, dry

friction forces, obeying Coulomb’s law, and more

complicated resistance laws, both isotropic and

anisotropic. In this paper, we restrict ourselves to

dry friction forces only.

Mobile systems whose movement is based on

motions of internal masses were considered in [1–3].

This principle of motion was used for micro- and
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nano-positioning [4–6]. The same idea was applied to

micro-robots moving inside tubes [7].

Optimization problems for systems consisting of a

main body and movable internal masses were consid-

ered in [8–13]. In these papers, optimal periodic

motions were designed that correspond to either

maximum average speed of the system as a whole or

its maximum displacement for a given time period.

Various constraints were imposed on the displacement

of the internal mass relative to the main body, relative

velocity or acceleration of this mass. Experimental

data presented in [14, 15] confirm the obtained

theoretical results.

In all papers mentioned above, only rectilinear

translational motions of the system containing internal

moving masses along a horizontal line were consid-

ered. In this paper, we discuss two-dimensional

motions of such system along a horizontal plane in

the presence of dry friction forces acting between the

system and the plane. It is shown that, under certain

assumptions, the system controlled by special motions

of internal masses can be brought from any initial

position to any prescribed terminal position in the

plane.

2 Mechanical system

Consider a rigid body P of massm1 that can slide along

a fixed horizontal planeOXY. AxisOZ of the Cartesian

coordinate system OXYZ is directed vertically

upwards. Body P contacts plane OXY at three support

points Ai; i ¼ 1; 2; 3. Note that in the case of three

contact points the mechanical system is statically

determinate; hence, normal reactions Ni; i ¼ 1; 2; 3,

can be found univalently.

Dry friction forces Fi acting between points Ai and

the plane OXY obey Coulomb’s law with friction

coefficient f. If the support point Ai slides along the

planeOXYwith velocity vi, the friction force is defined

by equations

Fi ¼ �fNivi=vi; vi ¼ jvij; if vi 6¼ 0;

jFij � fNi; if vi ¼ 0; i ¼ 1; 2; 3:
ð1Þ

Two additional bodies are associated with the main

body P, namely, point Q of mass m2 and rotor R of

mass m3. Rotor R is a rigid body that can rotate about

the vertical axis BZ 0 which is parallel toOZ and passes

through the point B of body P. Rotor R is dynamically

symmetric with respect to axis BZ 0; its moment of

inertia about this axis is equal to I. A horizontal line

directed along the unit vector e is connected with rotor

R. The point mass Q can move along this line; the

displacement BQ is denoted by n (Fig. 1).

The motion of the system is controlled by two

independent actuators that can move the internal

bodies R and Q relative to the main body P. One of

them controls the rotation of rotor R applying to it the

torque about the axis BZ 0. The second actuator applies
the force to the point mass Q and controls its motion

along the movable line directed along the vector e.

The system of internal movable bodies can be

implemented in different ways.

Instead of two bodies—rotor R and point mass Q,

one can consider rotor R0 and pendulumQ0. Rotor R0 is
identical to rotor R. The pendulum Q0 of length l and

mass m2 can swing about the horizontal axis n

perpendicular to the vector e. The pendulum moves

in a small vicinity of its vertical equilibrium position,

either lower or upper one. Note that the latter version

(oscillations of the pendulum about the upper equi-

librium position) was implemented in the experiment

[14] on control of motion by means of internal

movable mass. In case of small oscillations of the

pendulum, the system Pþ Q0 þ R0 with a pendulum is

equivalent to the system Pþ Qþ Rwith a point mass;

linear displacement n of point Q along the direction e

corresponds to the quantity lu where u is the angle of

deflection of the pendulum from the vertical.

Replacing rotor R0 and pendulum Q0 by one rigid

body R00 with two degrees of freedom relative to body

P
C

R

Q

B
e

Y

O X

A3

A2

A1

Fig. 1 Mechanical system
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P, we obtain another version of the system.We assume

that body R00 can rotate about the vertical axis BZ 0 and
also perform small oscillations about the axis n in the

vicinity of one of two vertical equilibrium positions.

Thus, body R00 is a physical pendulum; its center of

mass is situated at a distance l from its axis of

swinging, and this axis n can rotate about the axis BZ 0.
Since all three versions of the system ðPþ Qþ

R;Pþ Q0 þ R0;Pþ R00Þ are equivalent to each other,

we will consider below the first one ðPþ Qþ RÞ.

3 Control problem

Let us consider the following control problem. Sup-

pose that the system Pþ Qþ R is at rest at the initial

time instant t ¼ 0, the support points Ai are in

positions A0
i ; i ¼ 1; 2; 3, in the plane OXY, vector e

and the displacement n of point Q are e ¼ e0 and

n ¼ 0, respectively.

By controlling the motion of internal bodies Q and

R, it is required to transfer the system Pþ Qþ R from

the initial state of rest to the terminal state of rest,

where the support points Ai are in prescribed positions

A1
i ; i ¼ 1; 2; 3, in the plane OXY, vector e is in a

prescribed position e ¼ e1, and the displacement n is

zero.

The problem stated above will be considered under

two substantial assumptions that simplify significantly

the equations of motion.

First, the triangle A1A2A3 is equilateral.

Second, the center of mass C of the whole system

Pþ Qþ R with zero displacement n ¼ 0 of point Q is

situated at equal distances from points Ai; i ¼ 1; 2; 3.

In other words, the projection C� of the center of mass

C onto the plane OXY lies in the center of the triangle

A1A2A3.

The assumptions made allow to present an explicit

analytical solution to thecontrolproblemstated above. In

the general case, numerical calculations are necessary.

Denote by B� the projection of point B onto the

plane OXY. Points B and C as well as their projections

B� and C� are rigidly connected with body P and the

triangle A1A2A3. Hence, the prescribed initial and

terminal positions of the system correspond to the

fixed initial and terminal positions B0;C0 and B1;C1

of points B,C, respectively, as well as to fixed initial

and terminal projections B0
�;C

0
� and B1

�;C
1
� of these

points B0;C0 and B1;C1 onto the plane OXY.

The solution of the problem stated above will

consist of three stages (Fig. 2).

1. At the first stage, pointQ stays in its initial state B,

so that n � 0. Rotor R rotates, and, as a result,

body P rotates too about the fixed vertical axis

C�C passing through the center of mass C of the

system. Point C does not move. The rotation ends

at the state of rest, in which the projection B� of

point B lies on a line C0
�C

1
� that connects the

projections of the initial and terminal positions of

the center of mass C. At the end of the stage,

vector e should be parallel to the same line C0
�C

1
� .

2. At the second stage, rotor R stays fixed relative to

body P, while the point mass Q moves rectilin-

early along vector e that keeps its direction. As a

result of the motion of mass Q, the main body P

moves translationally along the line C0
�C

1
� . The

motion stops when the center of massC reaches its

prescribed terminal position. At the end of the

second stage, we obtain C� ¼ C1
�; n ¼ 0, and the

whole system comes to the rest.

3. At the third stage, as at the first one, the point mass

Q stays at the point B with n ¼ 0. Due to the

rotation of rotor R, body P rotates about the fixed

vertical axis C�C passing through the center of

mass C that stays immovable ðC� ¼ C1
�Þ. The

rotation ends at the state of rest, in which the

support points Ai come to their fixed terminal

positions A1
i ; i ¼ 1; 2; 3, the projection B� of point

B comes to the prescribed position B1
�, and vector

e comes to its prescribed position e1.

As a result, the control problem stated above will be

solved. We will show that, under certain conditions,

realization of all three stages is feasible.

4 Equations of motion

Let us make up equations of motion for all thee stages.

At the first and third stages, the center of mass C of

the system is at rest. Velocity vi of each point Ai is

given by
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vi ¼ x� ri; ri ¼ C�Ai
��!

; i ¼ 1; 2; 3; ð2Þ

where x is the angular velocity of body P. Equating to

zero the vector sum of all external forces acting upon

the system Pþ Qþ R and using Eqs. (1) and (2), we

obtain

X

3

i¼ 1

Ni ¼ mg; m ¼ m1 þ m2 þ m3; ð3Þ

X

3

i¼1

Fi ¼� fx�
�

X

3

i¼1

Niri=vi

�

¼ 0 ð4Þ

Here, g is the acceleration of gravity. The projection

C� of the center of massC is at equal distances from all

support points Ai; i ¼ 1; 2; 3; denote this distance by r.

Hence, by virtue of (2), the values of velocities vi are

also equal to one another. On the strength of (4), we

have

X

3

i¼1

Niri ¼ 0: ð5Þ

Scalar Eq. (3) and the two-dimensional vector Eq. (5)

make up a system of three linear algebraic equations

for normal reactions Ni. This system has an obvious

unique solution

N1 ¼ N2 ¼ N3 ¼ mg=3 ð6Þ

which is valid because r1 þ r2 þ r3 ¼ 0 for the

equilateral triangle A1A2A3.

Let us form the equation of moment of momentum

for the system Pþ Qþ R about the axis C�C:

J _xþ I _X ¼
X

3

i¼1

ðri � FiÞk: ð7Þ

Here, J is the moment of inertia of the system Pþ
Qþ R (with n ¼ 0) about the axis C�C;X is the

angular velocity of rotor R relative to body P, and k is

the unit vector of axisOZ. Substituting expressions for

Fi from (1) and for vi from (2) into Eq. (7) and taking

into account that the values of vectors ri and vi for

different i are equal to each other, we obtain

J _xþ I _X ¼ �fr
X

3

i¼1

Nisignx: ð8Þ

By virtue of Eq. (6), we have from (8):

J _x ¼ �fmgrsignx� I _X ðx 6¼ 0Þ: ð9Þ

Equation (9) holds, if the support points slide along

the planeOXY with non-zero velocity, i.e., ifx 6¼ 0. If

body P is at rest andx ¼ 0, one should use inequalities

(1) for vi ¼ 0. In this case, instead of (9), we obtain

Ij _Xj � fmgr ðx ¼ 0Þ: ð10Þ

Equations (9) and (10) should be supplemented by

kinematic equations

_w ¼ x; _h ¼ X; ð11Þ

where w is the absolute angle of rotation of the main

body P about the vertical axis C�C, and h is the angle

of rotation of rotor R about its axis B�B relative to body

P.

Both at first and third stages, the main body P and

rotor R are to rotate by given angles, while the whole

system should be at rest at the beginning and the end of

motion. Hence, the following boundary conditions

must be satisfied:

wð0Þ ¼ hð0Þ ¼ xð0Þ ¼ Xð0Þ ¼ 0;

wðsÞ ¼ w1; hðsÞ ¼ h1; xðsÞ ¼ XðsÞ ¼ 0:
ð12Þ

C

B
0

0

A1
0

A2
0

A3
0

A2
1

A3
1 A1

1

C1

2

3

1
B1

Fig. 2 Stages of

displacement
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Here, the initial time instant as well as the initial

values of the angles w and h are, without loss of

generality, taken equal to zero; s is the terminal time

instant which is not fixed; andw1 and h1 are prescribed
values of the angles of rotation.

Thus, at the first and third stages, it is required to

choose the motion of rotor R, i.e., the angular velocity

XðtÞ on the interval ½0; s�, so that Eqs. (9)–(11) and

boundary conditions (12) be satisfied.

At the second stage, the main body P with rotor R

move translationally along the line C0
�C

1
� . The veloc-

ities of all support points Ai are equal to the velocity v
0

of the main body. Denoting by u0 the velocity of the

point mass Q relative to body P, we make up the

equations of motion for body P (together with rotor R)

and mass Q as follows

ðm1 þ m3Þ _v0 ¼ � F þ
X

3

i¼1

Fi;

m2ð _v0 þ _u0Þ ¼F ðv0 6¼ 0Þ:
ð13Þ

Here, F is the force of interaction between body P

and mass Q created by the actuator installed on body

P. On the strength of Eqs. (1), (3) and vi ¼ v0, we
obtain

X

3

i¼1

Fi ¼ �f
X

3

i¼1

Nisign v
0 ¼ �fmgsign v0: ð14Þ

Summing up Eq. (13) and taking account of Eq. (14),

we have

m _v0 ¼ �fmgsign v0 � m2 _u
0 ðv0 6¼ 0Þ: ð15Þ

For the state of rest ðv0 ¼ 0Þ, Eq. (15) should be

replaced by the inequality similar to (10):

m2j _u0j � fmg: ð16Þ

Equations (15) and (16) should be supplemented by

kinematic equations:

_s ¼ v0; _n ¼ u0: ð17Þ

Here, s is the displacement of body P along the line

C0
�C

1
� .

At the beginning and the end of motion, the

boundary conditions similar to (12) should hold:

sð0Þ ¼nð0Þ ¼ v0ð0Þ ¼ u0ð0Þ ¼ 0;

sðsÞ ¼s1; nðsÞ ¼ v0ðsÞ ¼ u0ðsÞ ¼ 0:
ð18Þ

Here, s1 is the total displacement of body P equal to

the distance C0
�C

1
� .

At the second stage, it is required to choose themotion

of the point mass Q, i.e., its velocity u0ðtÞ relative to

body P for the time interval ½0; s�, so that Eqs. (15)–

(17) and boundary conditions (18) be satisfied.

5 Design of control

It is obvious that Eqs. (15)–(18) for the second stage

are identical to Eqs. (9)–(12) for the first and third

stages. The difference lies only in the notation:

variables v0; u0; s; n in Eqs. (15)–(18) correspond to

variables x;X;w; h in Eqs. (9)–(12). Also, there is

evident correspondence between the constants in these

equations.

Let us introduce normalized variables

w ¼ ax; h ¼ ay; x ¼ av; X ¼ au;

a ¼ fmgr=J; l ¼ I=J
ð19Þ

in Eqs. (9)–(12) and variables

s ¼bx; n ¼ by; v0 ¼ bv; u0 ¼ bu;

b ¼ fg; l ¼ m2=m
ð20Þ

in Eqs. (15)–(18). After that, the both groups of

equations of motion (9)–(11) and (15)–(17) take the

same form

_x ¼ v; _y ¼ u; _u ¼ w; _v ¼ �sign v� lw

if v 6¼ 0;

jwj � l�1 if v ¼ 0:

ð21Þ

The boundary conditions (12) and (18) for both cases

become

xð0Þ ¼vð0Þ ¼ yð0Þ ¼ uð0Þ ¼ 0;

xðsÞ ¼x1; yðsÞ ¼ y1; vðsÞ ¼ uðsÞ ¼ 0;
ð22Þ

where x1 and y1 are given values. The time moment s
is not fixed.

Hence, the control problems for all three stages are

reduced to the normalized problem of control for

system (21) with boundary conditions (22) that

describes the controlled motion of a body with an

internal movable mass along a line. Here, x and v are

the displacement and absolute velocity of the main

Meccanica (2016) 51:3203–3209 3207
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body, y,u andx are the relative displacement, velocity

and acceleration of the internal mass, respectively.

The constant l is the ratio of the internal mass to the

total mass of the system.

The control problem described by Eq. (21) and

boundary conditions (22) was considered in [8–11]

under different assumptions and constraints. Depend-

ing on the type of actuators controlling relative

motions of internal masses, constraints can be imposed

on the normalized relative velocity u(t)

juðtÞj �U ð23Þ

and/or normalized relative acceleration

jwðtÞj �W : ð24Þ

More complicated constraints can also be considered.

It is natural also to impose constraints on the range

of relative displacements:

jyðtÞj � L: ð25Þ

In inequalities (23)–(25), U,W and L are given

constants.

In particular, optimal piecewise constant controls

[9] for the relative velocity u(t) [under constraints (23)

and (25)] and for the relative acceleration w(t) [under

constraints (24) and (25)] can be used. These controls

provide the maximum average speed of the periodic

motion

V ¼ xðTÞ=T ! max ð26Þ

under the boundary conditions

xð0Þ ¼ vð0Þ ¼ yð0Þ ¼ uð0Þ ¼ 0; xðTÞ ¼ vðTÞ
¼ yðTÞ ¼ uðTÞ ¼ 0: ð27Þ

Here, T is the period of motion that is not a priori fixed

and is determined in the process of constructing of the

optimal solutions.

Using these solutions, one can obtain the control for

system (21) with boundary conditions (22) under

constraints (23) and (25) or (24) and (25). To do this,

we represent the total displacement x1 from conditions

(22) as follows:

jx1j ¼ nVT þ D; 0�D\VT ; ð28Þ

where n is an integer, V and T are optimal values

obtained in [9].

The required motion for system (21) will, according

to (28), consist of n periods of the optimal periodic

solution and an additional interval with the displace-

ment D. For the latter interval, the constant L in

constraint (25) should be replaced by a smaller value

L1\L. Since the displacement x(T) for the period of

optimal solution depends on L continuously and

monotonically, such value L1 for the interval D can

always be chosen. Thus, all boundary conditions (22),

besides the condition yðsÞ ¼ y1, will be satisfied. To

take into account this last condition, we note that,

according to (21), under the condition v ¼ 0, the

internal mass can move arbitrarily, if only

jwj ¼ j€yj � l�1: ð29Þ

Hence, when the main body reaches its prescribed

terminal state and stops, the internal mass can continue

its motion subject to condition (29) and reach the

condition yðsÞ ¼ y1 at some non-fixed instant of time

s.
Let us present some explicit formulas from [9] for

the case of bounded relative displacement and accel-

eration, i.e., for constraints (24) and (25). All formulas

are given in normalized dimensionless variables (19),

(20). This solution is valid under the condition

W [ l�1: ð30Þ

The optimal periodic acceleration w(t) has three

intervals of constancy with durations si; i ¼ 1; 2; 3:

The values of si and the total period T are given by

s1 ¼s3 ¼ l
2LW

1þ lW

� �1=2

; s2 ¼ 2
2L

Wð1þ lWÞ

� �1=2

;

T ¼s1 þ s2 þ s3 ¼ 2
2Lð1þ lWÞ

W

� �1=2

:

ð31Þ

The optimal acceleration is defined by

wðtÞ¼l�1; if t2 ð0;s1Þ and t2 ðs1þ s2;TÞ;
wðtÞ¼�W ; if t2 ðs1;s1þ s2Þ:

ð32Þ

The optimal average speed (26) is given by

V ¼ L

2Wð1þ lWÞ

� �1=2

ðlW � 1Þ: ð33Þ
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Using formulas (30)–(33) and notation (19), (20), one

can construct motions of our system for all three

stages.

6 Conclusions

It is shown that the mechanical system Pþ Qþ R

described above and consisting of a main body and

two internal bodies can be, under certain conditions,

transferred in a finite time from any initial state of rest

to any prescribed terminal state of rest on a horizontal

plane. The control of the system can be provided by

special motions of internal bodies. The resulting

motion consists of three stages described in the paper.

The conditions required for the desired transfer as well

as the upper estimate on the time of the transfer can be

obtained using previous results for the corresponding

type of constraints imposed on the internal motions.
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