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Abstract This paper aims to analyze the axial and

transverse dynamic response of a functionally graded

nanobeam under a moving constant load. The gov-

erning equations are obtained using the Hamilton

principle and nonlocal Euler–Bernoulli beam theory.

The mechanical properties vary in the thickness

direction. The simply supported boundary condition

is assumed and using the Laplace transform, the exact

solution for the transverse and axial dynamic response

is presented. Some examples were used to analyze

nonlocal parameters such as power law index of FG

materials, aspect ratio and the velocity of a moving

constant load and also their influence on axial and

transverse dynamic and maximum deflections. By

obtaining a good agreement between the presented

natural frequencies in this study and previous works,

the results of this study are validated.

Keywords Vibration response � FG nanobeam �
Laplace transform �Moving load �Nonlocal elasticity �
Analytical solution

1 Introduction

Nowadays nanotechnology is one of the most inter-

esting technologies, which has greatly influenced

many fields of science and industry such as human

health science, aerospace industry, as well as civil and

mechanical engineering [1]. There have been many

efforts to enhance the physical, electrical and mechan-

ical performance of nanodevices and nanostructures.

In this regard, some kind of nanostructures like

nanobeam, nanoplate and nanotube have been devel-

oped. Recently, these structural elements have been

widely used in modern and innovative technologies

like micro/nano electro mechanical systems (MEMS/

NEMS). Designing and manufacturing such systems

with high precision, is strongly affected by an accurate

understanding of the mechanical behaviour of nanos-

tructures, which play key role in the performance of

these systems [2, 3]. Therefore, studies based on

investigating the mechanical behaviour of nanostruc-

tures have been an area of active research.

Advanced nanocomposite materials have great appli-

cation in nanotechnology due to their superior properties,

however, nanocomposite materials inherently have dis-

tinct interface with sudden variation in material properties.

This characteristic threatens the reliability of nanocom-

posite based instruments [4]. In order to solve this

problem, there is an urgent need to employ materials with

smooth variation in material properties to eliminate stress

concentration at the constituent material interface [2, 5].
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Functionally graded materials satisfy this requirement

with continuous gradation of their compositions [5], thus

with the growing amounts of nanostructures, FGMs are

widely employed in MEMS and NEMS as AFMs, micro

switches, microsensors and thin films [2, 5–9]. Veith et al.

[10] investigated the transformation of core/shell alu-

minium/alumina nanoparticles into nanowires. Core/shell

nanowires of Al/Al2O3 are obtained by decomposition of

tert-butoxyalane on metal, silicon or glass substrates

heated up to 650 �C without use of a noble metal seed.

These biphasic nanowires are characterized by X-ray

diffraction (XRD), scanning electron microscopy (SEM),

scanning energy dispersive X-ray spectroscopy (EDX),

transmission electron microscopy (TEM) and high-reso-

lution TEM. They have uniform diameters of about

20–30 nm, are composed of an inner aluminium wire,

wrapped up by aluminium oxide at a constant molar ratio,

and have lengths of several micro-meters. With the quick

growth of nanostructures, FGMs are extensively used in

micro- and nano-structures such as thin films [11–14],

micro-switches [15–17], micro piezoactuator [18], and

micro/nano-electromechanical systems (MEMS and

NEMS) [19–23]. Jia et al. [16] investigated the forced

vibration of non-homogeneous FG micro-switches under

combined electro-static, intermolecular forces and axial

residual stress. In this study the effects of material

composition, gap ratio, slenderness ratio, intermolecular

force, axial residual stress on the pull-in instability were

shown. In another study, they investigated the nonlinear

pull-in characteristics of the microswitches made of either

homogeneous material or non-homogeneous functionally

graded material (FGM) with two material phases under

the combined electrostatic and intermolecular Casimir

force [15]. As it is challenging for a single layer to

encounter all material and economical necessities pre-

tended to an MEMS structural layer, Witvrouw and Mehta

[24] recommended the use of a non-homogenous func-

tionally graded material layer, to attain the favorite

mechanical and electrical properties. Fine-tuning of the

stress gradient was achieved by the use of a top stress

compensation layer, whose optimum thickness was

estimated from an assessment of the stress gradient shape

through thickness. It should be noted that because of high

sensitivity of micro and nanoelectromechanical systems

(MEMS/NEMS) in response to external loading and

stimulations, the accurate understanding of mechanical

behavior of these systems is an important issue. In this

regard, several investigations have been done to study the

mechanical behavior of FG MEMS/NEMS [2, 6]. Eltaher

et al. [25] through the investigation of static–buckling

behavior of functionally graded nanobeams as a core

structure of micro and nano electro mechanical systems,

derived equilibrium equations by applying the principle of

virtual displacement. Their study addressed the significant

role of parameters such as material gradient index,

boundary conditions and nonlocal effect on the static–

buckling behavior of FG nanobeam. In another study,

Eltaher et al. [26] by investigating the static and buckling

behavior of nonlocal functionally graded Timoshenko

nanobeam shown the importance of the material distribu-

tion profile effect on the buckling and bending behavior of

nanobeams. Kiani et al. [4] investigated the effect of

power-law parameter, small-scale parameter and length of

the functionally graded nanobeam, on the frequencies and

stability of the moving nanobeam. This study was done

based on the mathematical model which have proposed

for functionally graded nano beam moving with constant

velocity. Nonlinear free vibration analysis of FG

nanobeam based on nonlocal theory for two kind of

boundary conditions, was studied by Nazemnezhad and

Hosseini-Hashemi [27].

All of these studies and investigations have done to

analyze behavior of nanostructures and they indicate

that at the nanoscale, mechanical characteristic of the

nanostructures behave in a different manner in com-

parison with macro scales. This behavior is due to

inherent size effect. It is clear that, investigation of the

mechanical behavior of nanostructures, extremely

requires an efficient theory which could correctly

predict the size dependent behavior of the nanostruc-

tures [27, 28]. This efficiency is obtained through

considering the size effect in the theory. Classical

continuum theories failed to analyze the mechanical

behavior of the nanostructures, because they don’t

consider the nanoscale effect [27, 28], however,

classical continuum theories could be extended to be

applicable for prediction of mechanical behavior of

nanostructures through considering nanoscale effect

[29–36]. Eringen’s nonlocal theory is an extended

form of continuum theory which is largely used in

nanostructures investigations [27]. Based on the

assumption in nonlocal theory, stress at a reference

point is a function of the strain at all neighbor points in

the body [27]. The growing amount of studies, which

have done based on nonlocal theory in recent years,

have proved the applicability and functionality of this

theory in nanostructures analysis [37–39]. Niknam

and Aghdam [5] obtained a closed form solution for
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nonlinear vibration and buckling behavior of Euler–

Bernoulli based FG nanobeam using nonlocal theory.

Rahmani and Pedram [40] by using nonlocal beam

theory, presented a closed-form solution for

Timoshenko FG nanobeam to analyze the size effect

on vibration behavior of the functionally graded

nanobeam. Nonlocal beam theory could be used to

analyze nanotube structures. Ebrahimi et al. [2] by

using nonlocal theory, shown the applicability of

differential transformation method to vibration anal-

ysis of functionally graded nanobeam.

Vibration, as an important mechanical behavior

should be analyzed for structural elements to help

designers to avoid resonance in engineering problems

[41]. In the other hand, as the amount of functionally

graded nano structures are growing, some studies have

been done to investigate vibration behavior of func-

tionally graded nano-structural elements. Eltaher et al.

[42] investigated free vibration behavior of FG

nanobeam on the basis of nonlocal elasticity theory.

According to their results, dynamic characteristic and

vibration behavior of the FG nanobeam is highly

affected by material gradient index, nonlocal effect

and boundary conditions.

Kiani [43] studied the dynamic response of a

single-wall carbon nanotube (SWCNT) under a

moving nano particle based on nonlocal theory. He

also formulated the inertial effect of the moving

nano scale particle and the friction, which exists

between the nanoparticle surface and the inner

surface of the SWCNT. Simsek [44] by investigat-

ing the forced vibration of a simply supported

single-walled carbon nanotube (SWCNT) under a

moving harmonic load, based on nonlocal Euler–

Bernoulli beam theory, represented that dynamic

deflection of the SWCNT is strongly affected by

nonlocal parameter, and also its dynamic behavior

is affected by other parameters like load velocity

and the excitation frequency. In another study,

Simsek [45] analytically studied the force vibration

of an elastically connected double-carbon nanotube

system (DCNTS) under a moving nanoparticle. The

result of his study showed that dynamic response of

the DCNTS is strongly affected by the nonlocal

effect. He also addressed the important role of the

velocity of the moving nanoparticle and the stiff-

ness in the elastic layer on the dynamic response of

DCNTS. Recently Pourseifi et al. [46], studied the

vibration behavior of nanotubes particularly for

designing a control system to suppress the vibration

of nanotube in response to the action of a moving

nanoparticle. In another study, Pirmohammadi et al.

[47], used a linear classical optimal control to

suppress the vibration of a single-walled carbon

nanotube under action of a harmonic moving load.

Based on the above review, it is clearly observed

that reports related to the investigation of FG

nanobeam behavior in both transverse and axial mode

in response to forced vibration due to moving load are

limited. Due to this fact, this paper aimed to study the

transverse and axial dynamic response of an FG

nanobeam by using nonlocal and Euler–Bernoulli

theories to derive governing equations and Laplace

transform to solve the derived differential equations. It

should be noted that an exact solution for both

transverse and axial responses is obtained as a result

of this effort. Through parametric study, valuable

results have been concluded which are related to the

effect of important parameters such as FG material

distribution index, nonlocal parameters, aspect ratio

and load velocity on the dynamic response of the FG

nanobeam in axial and transverse modes. The pre-

sented results in this study are validated by obtaining

good agreement which compares with available

results in the literature.

2 Theory and formulation

2.1 Materials properties in functionally graded

beam

In this study, the FG beam, which is schematically

shown in Fig. 1, consists of ceramic and metal. The

FGM profile that is defined across the thickness

direction of the beam is assumed to follow the power

law form:

f ðzÞ ¼ fm þ fcm
2zþ h

2h

� �p

f ðzÞ ¼ fm þ fcm
2zþ h

2h

� �k

fcm ¼ fc � fm

ð1Þ

f, fm, fc denotes the material properties of FGM, metal

properties of FGM, ceramic properties of FGM,

respectively and p and k are the power law index.
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The other material properties of FGM such as density

and modulus of elasticity can be assumed to follow the

power law.

The FG beam becomes a fully ceramic beam when

p and k are set to be zero. Therefore from Eq. (1), the

effective material properties of the FG nanobeam can

be expressed as follows:

EðzÞ ¼ Ec � Emð Þ z

h
þ 1

2

� �p

þEm

qðzÞ ¼ qc � qmð Þ z

h
þ 1

2

� �k

þqm

ð2Þ

2.2 Kinematic relations based on Hamilton’s

principle

The equations of motion is derived based on the Euler–

Bernoulli beam theory according to which the displace-

ment field at any point of the beam can be written as:

ux x; z; tð Þ ¼ u x; tð Þ � z
owðx; tÞ

ox
ð3aÞ

uzðx; z; tÞ ¼ wðx; tÞ ð3bÞ

where t is time, u andw are displacement components of

the mid-plane along x and z directions, respectively.

Therefore, according to Euler–Bernoulli beam theory,

every elements of strain tensor vanish except normal

strain in the x-direction. Thus, the only nonzero strain is:

exx ¼ e0
xx � zk0

x ; e0
xx ¼

ouðx; tÞ
ox

; k0 ¼ o2wðx; tÞ
ox2

ð4Þ

where e0
xx and k0 are the extensional strain and bending

strain respectively. Based on the Hamilton’s principle,

which states that, the motion of an elastic structure

during the time interval t1\ t\ t2 is such that the

time integral of the total dynamics potential is

extremum:

Z t

0

dðU � T þ VÞdt ¼ 0 ð5Þ

Here U is strain energy, T is kinetic energy and V is

work done by external forces. The virtual strain energy

can be calculated as:

dU ¼
Z
v

rijdeijdV ¼
Z
v

rxxdexxð ÞdV ð6Þ

Substituting Eq. (4) into Eq. (6) yields:

dU ¼
Z L

0

N de0
xx

� �
�M dk0

� �� �
dx ð7Þ

In which N, M are the axial force and bending

moment respectively. These stress resultants used in

Eq. (7) are defined as:

N ¼
Z
A

rxxdA; M ¼
Z
A

rxxzdA ð8Þ

The kinetic energy for Euler–Bernoulli beam can be

written as:

T ¼ 1

2

Z L

0

Z
A

qðzÞ oux

ot

� �2

þ ouz

ot

� �2
 !

dAdx ð9Þ

Also the virtual kinetic energy can be expressed as:

dT ¼
Z L

0

I0
ou

ot

odu
ot

þ ow

ot

odw
ot

� ��

� I1
ou

ot

o2dw
otox

þ odu
ot

o2w

otox

� �
þ I2

o2w

otox

o2dw
otox

�
dx

ð10Þ

where (I0, I1, I2) are the mass moment of inertias,

defined as follows:

Fig. 1 Schematic of a

simply supported FG

nanobeam under a moving

load
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I0; I1; I2ð Þ ¼
Z
A

qðzÞ 1; z; z2
� �

dA ð11Þ

The first variation of external forces work of the

beam can be written in the form:

dWext ¼
Z L

0

f ðxÞduþ qðxÞdwð Þdx ð12Þ

where f(x) and q(x) are external axial and transverse

loads distribution along length of beam, respectively.

By Substituting Eqs. (7), (10) and (12) into Eq. (5)

and setting the coefficients of du, dw and dow
ox

to zero,

the following Euler–Lagrange equation can be

obtained:

oN

ox
¼ I0

o2u

ot2
� I1

o3w

oxot2
ð13:aÞ

o2M

ox2
¼ I0

o2w

ot2
þ I1

o3u

oxot2
� I2

o4w

ox2ot2
ð13:bÞ

Under the following boundary conditions:

N ¼ 0 or u ¼ 0 at x ¼ 0 and x ¼ L ð14:aÞ

oM

ox
� I1

o2u

ot2
þ I2

o3w

oxot2
¼ 0 or w ¼ 0

at x ¼ 0 and x ¼ L

ð14:bÞ

M ¼ 0 or
ow

ox
¼ 0 at x ¼ 0 and x ¼ L ð14:cÞ

2.3 Nonlocal governing equations for FG

nanobeam

Despite the elastic continuum theory that the stress

field at point X depends only on the strain at the same

point, based on Eringen nonlocal theory stress field at

point X not only depends on strain at that point but also

depends to all other points of the body. Thus the

nonlocal stress tensor at point X can be obtained as

follows:

rnlðXÞ ¼
Z
V

k X0 � Xj j; sð ÞT X0ð ÞdV X0ð Þ ð15:aÞ

TðXÞ ¼ CðXÞ : eðXÞ ð15:bÞ

T(X) represents the classical macroscopic stress tensor

at point X, the kernel function K X0 � Xð Þ; sj j denotes

the nonlocal modulus, (X0 - X)indicates the distance

and s is the material constant which depends on type of

material. The macroscopic stress tensor at a point X in

a Hookean solid is represented by T and is depends to

the strain at the same point which is based on the

generalized Hook’s law. C is the fourth-order elastic-

ity tensor which represents the double-dot product. A

simplified equation of differential form is utilized due

to the complicated solution of the integral constitutive

equation, which is as follows:

LrnlðXÞ ¼ 1 � lr2
� �

rnl ¼ T; l ¼ s2l2 ð16Þ

L ¼ 1 � lr2ð Þ and r2 indicates nonlocal differential

and the Laplacian operator, respectively. s is deter-

mined by s = e0a/l where e0 is a constant which varies

based on each material and a and l represents the

internal and external characteristic length. The nonlo-

cal parameter which is represented by l varies in

accordance with different materials.

For an elastic material in the one dimensional case,

the nonlocal constitutive relations may be simplified

as:

rnlðxÞ � ðe0aÞ2 o
2rnlðxÞ
ox2

¼ EeðxÞ ð17Þ

where r and e are the nonlocal stress and strain,

respectively and E is the Young’s modulus. For Euler–

Bernoulli nonlocal FG beam, Eq. (17) can be rewritten as:

rxx � l2 o
2rxx
ox2

¼ EðzÞexx ð18Þ

where (l = (e0a)). Integrating Eq. (18) over the

beam’s cross-section area, the force–strain and the

moment–strain relations for the nonlocal FG beam can

be obtained as follows:

N � l2 o
2N

ox2
¼ Axx

ou

ox
� Bxx

o2w

ox2
ð19Þ

M � l2 o
2M

ox2
¼ Bxx

ou

ox
� Cxx

o2w

ox2
ð20Þ

In which the cross-sectional rigidities are defined as

follows:

Axx;Bxx;Cxxð Þ ¼
Z
A

EðzÞ 1; z; z2
� �

dA ð21Þ

The explicit relation of the nonlocal normal force

can be derived by substituting for the second deriva-

tive of N from Eq. (13.a) into Eq. (19) as follows:

Meccanica (2017) 52:1441–1457 1445

123



N ¼ Axx

ou

ox
� Bxx

o2w

ox2
þ l2 I0

o3u

oxot2
� I1

o4w

ox2ot2

� �

ð22Þ

Also the explicit relation of the nonlocal bending

moment can be derived by substituting for the second

derivative of M from Eq. (13.b) into Eq. (20) as

follows:

M ¼ Bxx

ou

ox
� Cxx

o2w

ox2

þ l2 I0
o2w

ot2
þ I1

o3u

oxot2
� I2

o4w

ox2ot2

� �
ð23Þ

The nonlocal governing equations of FG nanobeam

in terms of the displacement can be derived by

substituting for N and M from Eqs. (22) and (23),

respectively, into Eq. (13) as follows:

Axx

o2u

ox2
� Bxx

o3w

ox3
þ l2 I0

o4u

ot2ox2
� I1

o5w

ot2ox3

� �

� I0
o2u

ot2
þ I1

o3w

ot2ox
¼ 0 ð24Þ

Bxx

o3u

ox3
� Cxx

o4w

ox4

þ l2 I0
o4w

ot2ox2
þ I1

o5u

ot2ox3
� I2

o6w

ot2ox4
� o2q

ox2

� �

� I0
o2w

ot2
� I1

o3u

ot2ox
þ I2

o4w

ot2ox2
þ q ¼ 0

ð25Þ

Transverse force for a nanobeam, under constant

moving load can be defined as follow:

q ¼ Pd x� v0tð Þ ð26Þ

where P is concentrated moving load, and d(�) is Dirac

delta function.

3 Analytical solution

The assumed mode method is utilized for discretiza-

tion of the unknown fields of the problem in the spatial

domain; therefore u x; tð Þ ¼
P1

n¼1 UnðtÞuu
nðxÞ and

w x; tð Þ ¼
P1

n¼1 WnðtÞuw
n ðxÞ in which the parameters

uu
nðxÞ and uw

n ðxÞ denote in turn the appropriate n th

mode shapes associated with the axial and transverse

deflection fields of the FG beam. Moreover uu
nðxÞ ¼

cos npx=L
� �

and uw
n ðxÞ ¼ sin npx=L

� �
are derived as the

mode shapes of the simply supported of the FG

nanobeam. By using the general property of Dirac-

Delta function, d x� v0tð Þ ¼ 2
P1
n¼1

sin npx=L
� �

sin npv0t=L
� �

, the following set of ODEs is obtained:

� Axx

np
L

� 	2

UnðtÞ þ Bxx

np
L

� 	3

WnðtÞ

� l2I0 €UnðtÞ
np
L

� 	2

þl2I1 €WnðtÞ
np
L

� 	3

�I0 €UnðtÞ

þ I1 €WnðtÞ
np
L

� 	
¼ 0

ð27Þ

Bxx

np
L

� 	3

UnðtÞ � Cxx

np
L

� 	4

WnðtÞ

� l2I0
np
L

� 	2
€WnðtÞ þ l2I1

np
L

� 	3
€UnðtÞ

� l2I2
np
L

� 	4
€WnðtÞ � I0 €WnðtÞ þ I1

np
L

� 	
€UnðtÞ

� I2
np
L

� 	2
€WnðtÞ ¼ �2P 1 þ l2 np

L

� 	2
� �

sin
npv0

L
t

� 	

ð28Þ

With the initial condition:

Wnð0Þ ¼ Unð0Þ ¼ _Wnð0Þ ¼ _Unð0Þ ¼ 0 ð29Þ

The unknown parameters WnðtÞ and UnðtÞ of the

Eqs. (27) and (28) should be determined by a

suitable method. To solve the system of the differen-

tial Eqs. (27) and (28) in time domain, Laplace

transform is utilized. By recalling of this transform,

L €WnðtÞ

 �

¼ s2-ðsÞ � sWð0Þ � _Wð0Þ where -ðsÞ ¼
L WðtÞ½ � and L €UnðtÞ


 �
¼ s2#ðsÞ � sUð0Þ � _Uð0Þ

where #ðsÞ ¼ L UðtÞ½ � and then by using Eq. (29) and

applying Laplace Transform in Eqs. (27) and (28), the

system of equation is obtained as follow:

�Axx

np
L

� 	2

�l2I0
np
L

� 	2

s2 � I0s
2

� �
#ðsÞ

þ Bxx

np
L

� 	3

þl2I1
np
L

� 	3

s2

�

þ I1
np
L

� 	
s2
	
-ðsÞ ¼ 0

ð30Þ
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Bxx

np
L

� 	3

þl2I1
np
L

� 	3

s2 þ I1
np
L

� 	
s2

� �
#ðsÞ

þ �Cxx

np
L

� 	4

�l2I0
np
L

� 	2

s2 � l2I2
np
L

� 	4

s2

�

�I0s
2 � I2

np
L

� 	2

s2

�
-ðsÞ ¼

�2P 1 þ l2 np
L

� �2
� 	

npv0

L

� �
s2 þ npv0

L

� �2

ð31Þ

By solving the Eqs. (30) and (31), Wn(s) and Un(s)

are obtained as:

and

UnðsÞ ¼
Bxxa3 þ I1aes2

Axxa2 þ I0es2
WnðsÞ ð33Þ

where

a ¼ np
L

� 	
; e ¼ 1 þ l2 np

L

� 	2
� �

ð34Þ

By applying in inverse Laplace transform to

Eq. (32) and then Eq. (33) the transverse and axial

WnðsÞ ¼ � 2v0aeP

s2 þ v2
0a

2
� �

�Cxxa4 � e I0 þ I2a2ð Þs2 þ Bxxa3þI1aes2ð Þ2

Axxa2þI0es2

� 	 ð32Þ

w x; tð Þ ¼
X1
n¼1

1

d2

d1 sin
ffiffiffiffiffi
a2

p
t

� �
ffiffiffiffiffi
a2

p �
ffiffiffi
2

p

4d5u

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 � u

d7

r
2d4d5 þ d3 �d6 þ uð Þð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 þ u

2d7

r
t

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 þ u

d7

r
�2d4d5 þ d3 �d6 þ uð Þð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 � u

2d7

r
t

� �

0
BBB@

1
CCCA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

sin
npx
L

� 	
ð35Þ
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dynamic response of FG nanobeam are obtained:

and

where

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

6 � 4d5d7

q
ð37Þ

For k = 1, 2, …, 10, dk are obtained as follow:

d1 ¼ a1a8 � a1a2a9

d2 ¼ a5 þ a2
2a6 � a2a7 þ a3a8 � a2a4a8 � a2a3a9 þ a2

2a4a9

d3 ¼ a1a2a6a8 � a1a7a8 � a1a4a
2
8 þ a1a5a9 þ a1a2a4a8a9

d4 ¼ �a1a6a8 þ a1a2a6a9 � a1a4a8a9 þ a1a2a4a
2
9

d5 ¼ a5 þ a3a8

d6 ¼ a7 þ a4a8 þ a3a9

d7 ¼ a6 þ a4a9

d8 ¼ a1

ffiffiffiffiffi
a5

p � a1a2

ffiffiffiffiffi
a6

p

d9 ¼ a1a5

ffiffiffiffiffi
a6

p þ a1a2

ffiffiffiffiffi
a5

p
a6 � a1

ffiffiffiffiffi
a5

p
a7 � a1a4

ffiffiffiffiffi
a5

p
a8

þ a1a3

ffiffiffiffiffi
a6

p
a8 � a1a3

ffiffiffiffiffi
a5

p
a9 þ a1a2a4

ffiffiffiffiffi
a5

p
a9

d10 ¼ �a1

ffiffiffiffiffi
a5

p
a6 þ a1a2a

3
2

6 � a1a4

ffiffiffiffiffi
a5

p
a9 þ a1a2a4

ffiffiffiffiffi
a5

p
a9

ð38Þ

where

a1 ¼ �2v0aeP; a2 ¼ v2
0a

2; a3 ¼ �Cxxa
4;

a4 ¼ �e I0 þ I2a
2

� �
; a5 ¼ Bxxa

3
� �2

; a6 ¼ I1aeð Þ2;

a7 ¼ 2Bxxa
3I1ae; a8 ¼ Axxa

2 and a9 ¼ I0e

ð39Þ

4 Numerical results and discussions

In this section, a numerical testing of the procedure as

well as parametric studies were performed in order to

establish the validity and usefulness of the analytical

approach. The effect of FG distribution, non-locality

effect and thickness ratios on the natural frequencies

of the FG nanobeam were investigated. The function-

ally graded nanobeam is composed of aluminium and

alumina and its properties are shown in Table 1. The

bottom surface of the beam consists of pure aluminium

(Al), whereas the top surface of the beam is pure

alumina (Al2O3). The relations described in Eq. (40)

are performed in order to calculate non-dimensional

natural frequencies.

�x1 ¼ x1L
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAl2O3

A/EAl2O3
I

p
ð40Þ

where I ¼ bh3=12 is the moment of inertia of the cross

section of the beam.

To evaluate the accuracy of the natural frequencies

predicted by the present method, natural frequencies

of simply supported FG nanobeam with various

volume fraction index and L/h ratios previously

analyzed by finite element method were re-examined.

Tables 2 and 3 compares the results of the present

study and the results presented by Eltaher et al. [42]

were obtained by finite element method for FG

nanobeam with different FG distribution indexes,

length-to-thickness ratios and non-local parameters.

The non-dimensional fundamental frequencies of

simply-supported FG nanobeam are presented in

Tables 2 and 3 and determines the effect of nonlocal

parameter (varying from 0 to 5), material distribution

Table 1 Material properties of FGM

Properties Aluminum (Al) Alumina (Al2O3)

Young modulus (E) 70 (Gpa) 390 (GPa)

Density (q) 2700 (kg/m3) 3960 (kg/m3)

u x; tð Þ ¼
X1
n¼1

1

d2

d8 sin
ffiffiffiffiffi
a2

p
t

� �
ffiffiffiffiffi
a2

p �
ffiffiffi
2

p

4d5u

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 � u

d7

r
2d10d5 þ d9 �d6 þ uð Þð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 þ u

2d7

r
t

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 þ u

d7

r
�2d10d5 þ d9 d6 þ uð Þð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d6 � u

2d7

r
t

� �

0
BBB@

1
CCCA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

cos
npx
L

� 	
ð36Þ
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Table 2 Comparison of non-dimensional fundamental natural frequencies ( �x1 ¼ x1L
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAl2O3

A/EAl2O3
I

p
) of simply supported FG

nanobeams (b = 1000 nm, L = 10,000 nm, h = 100 nm, p = 0, 0.1, 0.2, 0.5 [42])

L/h l 9 10-12 Eltaher et al. [42] Present Eltaher et al. [42] Present

FEM Analytical FEM Analytical

p = 0 p = 0.1

20 0 9.8797 9.8594 9.2129 9.1887

1 9.4238 9.4062 8.7879 8.7663

2 9.0257 9.0102 8.4166 8.3972

3 8.6741 8.6603 8.0887 8.0712

4 8.3607 8.3483 7.7964 7.7804

5 8.0789 8.0677 7.5336 7.5189

50 0 9.8724 9.8679 9.2045 9.1968

1 9.4172 9.4143 8.7815 8.7740

2 9.0205 9.0180 8.4116 8.4047

3 8.6700 8.6678 8.0848 8.0783

4 8.3575 8.3555 7.7934 7.7873

5 8.0765 8.0747 7.5313 7.5256

100 0 9.8700 9.8692 9.2038 9.1980

1 9.4162 9.4154 8.7806 8.7752

2 9.0197 9.0191 8.4109 8.4057

3 8.6695 8.6689 8.0842 8.0793

4 8.3571 8.3565 7.7929 7.7882

5 8.0762 8.0757 7.5310 7.5265

p = 0.2 p = 0.5

20 0 8.7200 8.6858 7.8061 7.7377

1 8.3175 8.2865 7.4458 7.3820

2 7.9661 7.9376 7.1312 7.0712

3 7.6557 7.6294 6.8533 6.7966

4 7.3791 7.3545 6.6057 6.5518

5 7.1303 7.1074 6.3830 6.3316

50 0 8.7115 8.6937 7.7998 7.7450

1 8.3114 8.2940 7.4403 7.3889

2 7.9613 7.9448 7.1269 7.0778

3 7.6520 7.6363 6.8500 6.8030

4 7.3762 7.3612 6.6031 6.5579

5 7.1282 7.1138 6.3811 6.3375

100 0 8.7111 8.6948 7.7981 7.7460

1 8.3106 8.2951 7.4396 7.3899

2 7.9607 7.9459 7.1263 7.0788

3 7.6515 7.6373 6.8496 6.8039

4 7.3758 7.3622 6.6028 6.5588

5 7.1279 7.1147 6.3808 6.3384
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Table 3 Comparison of non-dimensional fundamental natural frequencies ( �x1 ¼ x1L
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAl2O3

A/EAl2O3
I

p
) of simply supported FG

nanobeams (b = 1000 nm, L = 10,000 nm, h = 100 nm, p = 1, 2, 5, 10 [42])

L/h l 9 10-12 Eltaher et al. [42] Present Eltaher et al. [42] Present

FEM Analytical FEM Analytical

p = 1 p = 2

20 0 7.0904 6.9885 6.5244 6.4165

1 6.7631 6.6672 6.2233 6.1215

2 6.4774 6.3865 5.9604 5.8638

3 6.2251 6.1386 5.7283 5.6361

4 6.0001 5.9174 5.5213 5.4331

5 5.7979 5.7185 5.3352 5.2505

50 0 7.0852 6.9951 6.5189 6.4224

1 6.7583 6.6735 6.2191 6.1271

2 6.4737 6.3925 5.9571 5.8692

3 6.2222 6.1443 5.7257 5.6413

4 5.9979 5.9229 5.5193 5.4380

5 5.7962 5.7239 5.3338 5.2553

100 0 7.0833 6.9960 6.5182 6.4232

1 6.7577 6.6744 6.2185 6.1279

2 6.4731 6.3934 5.9567 5.8700

3 6.2217 6.1452 5.7254 5.6420

4 5.9976 5.9237 5.5190 5.4388

5 5.7960 5.7247 5.3335 5.2560

p = 5 p = 10

20 0 6.0025 5.9370 5.7058 5.6713

1 5.7256 5.6641 5.4425 5.4106

2 5.4837 5.4256 5.2126 5.1828

3 5.2702 5.2149 5.0096 4.9815

4 5.0797 5.0271 4.8286 4.8020

5 4.9086 4.8581 4.6659 4.6407

50 0 5.9990 5.9421 5.7001 5.6760

1 5.7218 5.6689 5.4389 5.4151

2 5.4808 5.4303 5.2098 5.1871

3 5.2679 5.2194 5.0074 4.9857

4 5.0780 5.0314 4.8269 4.8061

5 4.9072 4.8623 4.6646 4.6446

100 0 5.9970 5.9428 5.7005 5.6767

1 5.7212 5.6696 5.4384 5.4157

2 5.4803 5.4309 5.2094 5.1877

3 5.2675 5.2201 5.0071 4.9863

4 5.0777 5.0320 4.8267 4.8066

5 4.9071 4.8629 4.6644 4.6451

1450 Meccanica (2017) 52:1441–1457

123



index (varying from 0 to 10) and length-to-thickness

ratios (varying from 20 to 100) on the natural

frequency characteristics of FG nanobeam.

One may clearly notice here that the non-dimen-

sional fundamental frequency parameters obtained in

the present investigation are in excellent agreement

with the results presented by analytical solution and

finite element method for all cases used for compar-

ison and validates the proposed method of solution.

First of all, when the two parameters vanish

(l 9 10-12 = 0 and p = 0) the classical isotropic

beam theory is rendered. Furthermore, the effects of

slenderness ratios on the dimensionless frequency are

presented in Tables 2 and 3. From the results, it can be

observed that, when the slenderness ratio of the FG

nanobeam decreased (thickness reduces), the frequen-

cies increased. As seen in Tables 2 and 3, by fixing the

nonlocal parameter and varying the material distribu-

tion parameter results in decreasing fundamental

frequencies due to increasing ceramics phase con-

stituent and hence, stiffness of the beam. However,

increasing nonlocal parameter causes a decrease in

fundamental frequency at a constant material gradu-

ation index.

In this section the axial and transverse dynamic

response of FG nanobeam under a moving constant

load is analyzed. The dimensionless axial and trans-

verse dynamic deflection are defined as the ratio of u

and w with h; thickness of nanobeam are shown as

ð�u; �wÞ ¼ ðu;wÞ=h. The transverse moving constant

load is v0 = 5, 10, 15, 20 nm/ns and also the width of

the curve is 10 nm.

The variation of transverse dynamic deflection

versus time for v0 = 5, 10, 15, 20 nm/ns velocity of

moving constant load and at different power law index

of FG material as p = 0, 0.2, 1, 5 is illustrated in

Fig. 2. In this figure the length of the nanobeam is

equal to 100 nm and the non-local parameter is

Fig. 2 Variation of non-

dimensional transverse

dynamic deflection versus

time for four different

velocity of moving load and

also for different power law

index of FG material as

a p = 0, b p = 0.2, c p = 1,

d p = 5 (l = 1 nm, h =

L/100, k = p)
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constant and equal to 1. It should be said that the

deflection shown in Fig. 2 is the deflection at midspan

(x = L/2). It can be seen that by passing time, the

value of �w decreases or increases. Before the 3 ns, the

values of �w that have higher velocities are higher than

those of lower velocities which changes with passing

time. By increasing the power law index of FG

material, dynamic deflection increases. For instance,

the amount of mentioned increase in Fig. 2c is twice

that in Fig. 2d and this shows the importance of FG

materials.

In continuance, it can be understood that by

increasing p, maximum dynamic deflection in trans-

verse direction increases approximately in an expo-

nential manner. Furthermore, an increase in velocity

of each moving load parameter affects this procedure

by a particular rate. In addition, by increasing time and

power-law exponent, the dependency of dimension-

less dynamic deflection on the velocity of moving load

variations is insignificant.

Figure 3 illustrates the axial dynamic deflection �u,

versus time for the mentioned parameters in Fig. 2.

Except case (a), the amounts of (�u) increase or

decrease at various times. Before 2.5 ns, the values of

�u that have higher velocities are higher than those of

lower velocities. In comparing Figs. 2b and 3b, it is

distinctly clear that the amounts of �w are almost 1000

times as high as those of �u. This is obvious as the FG

nanobeam is under the transverse loading and conse-

quently, the axial dynamic deflection should be

negligible. It can be seen from Fig. 3 that when the

power law index of FG is equal to zero, the amount of

axial dynamic deflection for all of the loading

velocities is also equal to zero. This is because of the

Fig. 3 Variation of non-

dimensional axial dynamic

deflection versus time for

four different velocity of

moving load and also for

different power law index of

FG material as a p = 0,

b p = 0.2, c p = 1, d p = 5

(l = 1 nm, h = L/100,

k = p)
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fact that when p = 0, the nanobeam has homogenous

properties. This behaviour seems predictable consid-

ering that as p increases, the FG nanobeam tends to a

purely aluminum one, and that the Young’s modulus

of aluminum is smaller than alumina. In this condition

the amounts of I1 and B are equal to zero and therefore,

Fig. 4 Variation of the

maximum non-dimensional

dynamic deflection of the

FG nano beam with respect

to the moving load velocity,

for different values of

nonlocal parameters and

also for various aspect

ratios. a L/h = 50, b
L/h = 70, c L/h = 80, d
L/h = 100 (p = 1, k = p)

Fig. 5 a Variation of

maximum non dimensional

transverse dynamic

deflection versus moving

load velocity and for

different values of power

law index, b variation of

maximum non dimensional

axial dynamic deflection

versus moving load velocity

and for different values of

power law index

(L/h = 100, l = 1 nm,

k = p)
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the differential equations of (24) and (25) become

decoupled and the transverse dynamic deflection has

no effect on axial dynamic deflection or vice versa.

The variation of maximum dynamic deflection versus

the velocity of moving load for different non-local

parameters and different aspect ratios is shown in Fig. 4.

As shown, maximum dynamic deflection due to increas-

ing velocity of the moving load initially decreases, then

increases and finally decreases again. By increasing the

nonlocal parameter in a constant aspect ratio (length to

thickness), the amount of maximum deflection increases.

Maximum difference occurred where nonlocal param-

eters are equal to 2 and 3.

By increasing the aspect ratio, the maximum

dynamic deflection transfers to the lower velocities

from the higher ones. For an instance the maximum

dimensionless dynamic deflection in Fig. 4a occurred

at a velocity of 70 nm/ns while for Fig. 4d, it occurs at

35 nm/ns.

The maximum transverse and axial dynamic

deflection versus the velocity and for different power

laws index of FG material are shown in Fig. 5a, b,

respectively.

It is distinctly clear that increasing the velocity

firstly, results in increasing the maximum dynamic

deflection and secondly, results in its decrease. In

Fig. 5a, by increasing the power index law of FG

material, the maximum dynamic deflection increases

and then decreases which is not the same in Fig. 5b. In

Fig. 5b as the power law index increases (by up to 5),

the maximum dynamic deflection approaches its

highest value but as the power law index increases

from 5 to 10, it decreases. Finally, as the power law

index increases again (p[ 10), the maximum

Fig. 6 a Variation of

maximum non dimensional

transverse dynamic

deflection versus nonlocal

parameter and for different

values of power law index,

b variation of maximum non

dimensional axial dynamic

deflection versus nonlocal

parameter and for different

values of power law index

(L/h = 100, v = 100 m/s,

k = p)

Fig. 7 a Variation of

maximum non dimensional

transverse dynamic

deflection versus nonlocal

parameter and for different

values of power law index,

b variation of maximum non

dimensional axial dynamic

deflection versus nonlocal

parameter and for different

values of power law index

(L/h = 100, v = 100 m/s,

p = 1)
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dynamic deflection decreases. By more careful obser-

vation, it is seen from Fig. 5b that the two diagrams are

coincident and their maximum dynamic deflection is

equal to zero. This is due to the fact that when the

power law index of FG material extends to infinity, the

material becomes homogenous and shows the ceramic

or metal material, respectively. In this condition there

is no axial dynamic deflection in transverse loading.

The variation of maximum transverse and axial

deflection versus nonlocal parameter for different

power law index of FG material is shown in Fig. 6. In

order to have more general results, the power law

index p is not same for the elastic modulus and the

density is presented (Fig. 7). Figure 7 shows the

variation maximum non-dimensional transverse as

well as axial dynamic deflection versus non-local

parameter and for different values of density power

law index. As shown, the amount of maximum

transverse dynamic deflection variation is higher than

those of axial dynamic deflection. According to

Figs. 6a and 7a, as the nonlocal parameter increases

the variation of maximum transverse dynamic deflec-

tion increases and in addition, the slope increases with

increasing non-local parameter and the power law

index of FG material. Figures 6b and 7b shows that

increasing the non-local parameter tends to increase

the maximum transverse dynamic deflection but when

p = 0, the value of maximum dynamic deflection is

equal to zero and increasing the non-local effect does

not have any effect on it. By increasing the non-local

parameter, strength and stability of the nanobeam

reduces; therefore, the amount of deflection increases.

Generally, Figs. 6 and 7 show the importance of the

non-local parameter and the theory used in this study.

5 Conclusion

An exact solution for the transverse and axial dynamic

response of a FG nanobeam which is under moving

constant load was analyzed in this study. Using the

Hamilton principle, the differential equation and

boundary condition is obtained and then based on the

non-local Euler–Bernoulli theory the governing equa-

tions are derived. Considering the simply supported

boundary condition and the Laplace transform, an

exact analytical solution for the transverse and axial

response of FG nanobeam was found. The results

showed that increasing the power law index of FGM

tends to increase the transverse dynamic deflection.

Also, when the power index law is equal to zero or

infinity, the amount of axial dynamic deflection is

equal to zero which is due to the fact that in this

condition, the material is homogenous and the trans-

verse loading does not have any effect on the transverse

dynamic deflection. Also, the effect of nonlocal

parameter was analysed and the importance of using

the non-local parameter in nanoscale was clarified.
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