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Abstract The past two decades reveal a growing

role of continuum biomechanics in understanding

homeostasis, adaptation, and disease progression in

soft tissues. In this paper, we briefly review the two

primary theoretical approaches for describing

mechano-regulated soft tissue growth and remodeling

on the continuum level as well as hybrid approaches

that attempt to combine the advantages of these two

approaches while avoiding their disadvantages. We

also discuss emerging concepts, including that of

mechanobiological stability. Moreover, to motivate

and put into context the different theoretical

approaches, we briefly review findings from

mechanobiology that show the importance of mass

turnover and the prestressing of both extant and new

extracellular matrix in most cases of growth and

remodeling. For illustrative purposes, these concepts

and findings are discussed, in large part, within the

context of two load-bearing, collagen dominated soft

tissues—tendons/ligaments and blood vessels. We

conclude by emphasizing further examples, needs, and

opportunities in this exciting field of modeling soft

tissues.

Keywords Biomechanics � Growth � Remodeling �
Constrained mixture

1 Introduction

Scholars have been aware of the importance of

mechanical environment in the development of living

organisms for at least four centuries. Galileo Galilei

suggested in 1638 that mechanics naturally limits the

size of animals due to a cubic scaling of gravitational

forces [1, 2]. Nevertheless, the relation between

mechanics and biology was conceptualized for a long

time as static or predetermined; an active change of

soft tissue mass in response to a change in its

mechanical environment was considered ‘‘a physio-

logical impossibility’’ [3]. This view was criticized by

Henry Gassett Davis in 1867 who postulated that

biological soft tissues are capable of functional

adaptations to a changing mechanical environment

[4]. He suggested that ‘‘Nature never wastes her …
material’’ [5] but rather responds to an increased load

by lengthening and the addition of material and to a

decreased load by the opposite. Soon thereafter, Julius

Wolff postulated a similar relation for bone, the
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famous Wolff’s law [6]. Together, these two nine-

teenth century concepts suggested that, despite their

different structures and functions, both soft and hard

tissues may be designed to promote mechanical

optimality following a similar rationale.

Nowadays the importance of the intimate relation

betweenmechanical stimuli and biological growth and

remodeling (G&R) is widely acknowledged in biol-

ogy, biomedical engineering, and medicine, and forms

an important part of the emerging field of mechanobi-

ology [7]. Examples range from substrate stiffness

determining the lineage fate of stem cells [8] to

physical disuse of tendons [9] and bone [10, 11]

leading to atrophy (that is, loss of tissue mass).

Mechano-regulated G&R thus plays important roles in

both morphogenesis and pathogenesis, including dis-

ease progression wherein normal tissue is simply

altered (e.g., aortic aneurysms [12]) or abnormal tissue

develops and accumulates (e.g., malignant tumors in

cancer [13]). Likewise, G&R can occur under the

action of physiological loads (e.g., enlargement of an

aneurysm under normal blood pressures) or under the

action of non-physiological loads (e.g., post-surgical

G&R due to surgical implantation of a medical device

[14]). Notwithstanding the importance of understand-

ing and modeling all aspects of G&R, from molecular

to whole organism scales and related to all medical

specialties from pathology to surgery, for illustrative

purposes we focus on mature load-bearing soft tissues

wherein collagen turnover dominates adaptive

responses and multiple cases of disease progression.

Moreover, we focus primarily on G&R of two types of

tissues, blood vessels and tendons/ligaments. By

growth, we mean a change of tissue mass, either an

increase or a decrease (atrophy); by remodeling, we

mean a change in tissue microstructure and thus

mechanical properties. Although G&R need not occur

simultaneously, they often go hand-in-hand. Hence,

basic concepts and theoretical frameworks should seek

a unified approach that can recover, as special cases,

these potentially separate processes.

Soft tissue G&R has attracted considerable interest

since the mid-1990s [15–17] and now represents one

of the primary areas of study in biomechanics. Novel

experimental methods continue to provide an increas-

ingly detailed understanding of molecular and cellular

mechanisms as well as tissue-to-organism level man-

ifestations. At the same time, theoretical frameworks

and computational approaches continue to advance

significantly. Nevertheless, as is often the case, there is

much to learn from the early observations and

theoretical ideas. Thus, we first briefly summarize in

Sect. 2 some of the seminal findings that continue to

guide and motivate current studies. In Sect. 3 we

review the state of mathematical modeling; in Sect. 4

we discuss important theoretical principles that have

been identified; in Sect. 5 we list a few illustrative

examples found in key references.

2 Experimental and clinical observations

2.1 Tensional homeostasis

Comparative biology is a particularly powerful

approach for revealing general principles that govern

biological structure–function relationships. As an

example, consider the aorta, the main blood vessel in

the body. The mature aortic wall consists primarily of

an elastic fiber/smooth muscle rich parenchymal layer

that has a lamellar structure that is surrounded by a

collagen rich layer that serves as a protective sheath.

Wolinsky and Glagov [18] compared values of tension

and tension per lamellar unit in the normal, mature

aortic wall from different species ranging from mice

(28 g body mass) to pigs (200 kg body mass). They

found that wall tension varied by a factor of 26 across

these species, yet the tension per lamellar unit was

remarkably similar (2–4 N/m) and varied by only a

small factor (*2.8). This finding suggested the

existence of a cell-mediated mechanism aimed to

establish the local mechanical environment near a

preferred value and/or to ensure a nearly constant level

of Cauchy stress that is structurally favorable. This

concept was supported further by observations in a

single species that the aorta tends to thicken in

response to sustained increases in blood pressure

(i.e., hypertension) and thereby to restore Cauchy

stress toward a nearly constant normal level of around

150–300 kPa [19, 20]. Related to this, Shadwick [21]

subsequently reported that the aortic stiffness in vivo,

evaluated at individual values of mean arterial pres-

sure, differs in species ranging from toad, squid, and

shark to rat and whale only by a factor of 1.4 (with an

average value of *0.4 MPa). Because many soft

tissues, including arteries, exhibit a nearly exponential

stress–strain relationship [22], stiffness and stress

relate nearly linearly, thus rendering it difficult to
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discern whether the cells seek to establish, maintain, or

restore a preferred state of stress or stiffness. Never-

theless, these early findings in arterial biomechanics

support the general hypothesis that there exists a

preferred mechanical state for a load-bearing soft

tissue, a so-called homeostatic state. Although not

recognized previously, this hypothesis is consistent

with Davis’ law [4], which suggests that perturbations

from a preferred homeostatic state in soft collagenous

tissues are answered by biological G&R processes

aimed to restore normalcy.

In vivo studies provide considerable insight and

motivation, but in vitro studies often provide comple-

mentary understanding. Early cell culture studies

revealed that aortic smooth muscle cells change their

production of important extracellular matrix proteins

and glycosaminoglycans directly in response to

changes in mechanical loading [23]. Subsequent

studies confirmed this mechanobiological response

and showed, in the case of cyclically stretched smooth

muscle cells, that altered mechanical loading changes

both the production of different biomolecules by the

cell and the number or sensitivity of associated

membrane-bound receptors [24]. That is, these studies

proved that smooth muscle cells change their produc-

tion and secretion of biomolecules (i.e., mass) directly

in response to changes in mechanical loading, thus

confirming mechano-mediated growth processes. To

similarly simplify studies of cell–matrix interactions

under mechanical loading, many investigators turned

to so-called tissue equivalents. Typically consisting of

reconstituted collagen or fibrin gels, having various

geometries and boundary conditions, these gels are

seeded with smooth muscle cells or fibroblasts and

monitored over short periods (hours) to study

responses to mechanical stimuli [25]. In a particularly

important early study, uniaxial collagen gels fixed at

both ends were observed to develop within a few hours

an internal stress to a certain (apparently homeostatic)

plateau level when seeded with fibroblasts. If this

homeostatic state was perturbed by suddenly stretch-

ing or relaxing the gel, an immediate elastic change of

stress in the gel was followed by a slow, exponential

return back toward the homeostatic level [26, 27]. It is

important to distinguish this behavior from passive

viscoelastic stress relaxation common in many bio-

logical soft tissues [28]. Passive stress relaxation

always releases strain energy. In contrast, active G&R

restores a certain stress level even if this requires an

increase in stress and strain energy as illustrated in

Fig. 1. Such studies confirmed that cells actively

change the microstructure and stress of the matrix in

which they reside directly in response to changes in

mechanical loading, thus confirming mechano-medi-

ated remodeling processes. Subsequent reports

showed further that this active remodeling, and even

initial production, of extracellular matrix requires

actomyosin activity [29], hence revealing that cells not

only synthesize and secrete diverse extracellular

constituents, they also actively fashion these con-

stituents to control structure, stiffness, and strength

[30]. Collectively, these many findings support the

notion of ‘‘tensional homeostasis’’, that is, cells

attempt to establish, maintain, or restore a homeostatic

mechanical state.

2.2 Turnover

An important difference between living tissues and

traditional engineering materials is mass turnover.

Cells in living soft tissues not only produce (synthe-

size and secrete new) and remodel (rearrange extant)

structural constituents within the extracellular matrix,

they also actively remove (degrade) these constituents.

The combined deposition and degradation of con-

stituents is referred to as turnover. It can occur either

within a cell (over short time scales, often minutes) or

within the extracellular space (over longer time scales,

possibly hours but often days to months); it can also be

either balanced (homeostatic) or unbalanced (adaptive

or pathologic). Two extreme examples of unbalanced

matrix turnover are fibrosis (excessive deposition of

matrix, as in scars) and atrophy (unbalanced degrada-

tion, as in disuse). Importantly, homeostasis is often

thought of as a state, yet this word actually describes a

process—one by which cells attempt to maintain a

preferred state, a biological equilibrium. Given that all

Fig. 1 If a uniaxial collagen gel seeded with fibroblasts is

shortened from length L to L� DL at time t0 (left), a step-

decrease of the elastic stress from the initial homeostatic level rh
is followed by a slow return back toward the homeostatic stress

(right)
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biological cells have finite life-spans and all biological

molecules have finite half-lives, homeostasis neces-

sarily requires continuous turnover even when there is

no macroscopic change in geometry or mechanical

properties. Such a case is called tissue maintenance.

In arteries, for example, the half-life of collagenfibers

has been studied using radioactive L-[2,3-3H]proline.

Given that the normal half-life of arterial collagen

appears to be on the order of 60–70 days, cells must

continually produce new collagen fibers to maintain

tissue normal. This half-life can decrease significantly

in cases of disease, for example, down to 17 days in

hypertension [31]. Hence, synthetic arterial cells must

not only increase their production of collagen to

increase wall thickness to restore wall stress toward

normal in hypertension, they must further increase

production to offset the increased loss of collagen.

Altered rates of collagen turnover (production and

removal) similarly appear to be critical in other cases of

arterial disease, including aneurysms [32].

Whereas collagen fibers experience different rates

of turnover within the arterial wall in normalcy and

disease, elastic fibers do not turnover. Functional

arterial elastic fibers are unique; they alone are

exclusively produced prior to adulthood and yet

persist for many years because of a remarkably long

half-life, on the order of 25–70 years [33, 34]. For this

reason, although arteries are subject to 107 load cycles

per year in humans due to the pulsatile blood pressure,

mechanical fatigue is important only in relation to the

structural integrity of the elastic fibers. That is, living

soft tissues appear to avoid most issues of mechanical

fatigue via the process of mass turnover; extant tissue

is normally replaced prior to its mechanical degrada-

tion by fatigue. In other words, one could hypothesize

that one purpose of mass turnover is to serve as a

continuous repair mechanism to replace extant, pos-

sibly damaged, tissue by new intact tissue. Regardless,

there is abundant experimental evidence that mass

turnover is controlled by both the biomechanical and

biochemical environment. Increased mechanical

stress correlates with an increased synthesis and

secretion of structural proteins (mass production) as

well as proteolytic enzymes [35], the latter of which

can hasten mass removal. Moreover, changes in stress

or strain can alter the rate at which matrix is degraded

by proteases [36, 37]. Mechanically dependent degra-

dation rates likely contribute to the overall process by

which the arterial wall thickens in hypertension until a

homeostatic wall stress is restored. Finally, whereas

rates of matrix production and removal are governed,

in part, by mechano-stimulated changes in gene

expression, it is becoming increasingly clear that final

gene products are also influenced by microRNAs (e.g.,

[38, 39]). There is a need to explore the effects of

mechanical and other factors on microRNA activity as

well.

It is important to recall that soft tissue properties

also depend on the degree of cross-linking of partic-

ular constituents as well as other matrix-to-matrix

interactions. In general, fibers within the extracellular

matrix can interact in different ways, as, for example,

by mechanical entanglements (kinematic constraints)

or chemical bonds. Among other enzymes, lysyl

oxidases and transglutaminases play important roles

in covalently cross-linking molecules such as colla-

gen. The former may be important in cross-linking

newly synthesized molecules (i.e., in growth) whereas

the latter may be important in cross-linking extant

molecules (i.e., in remodeling). Recalling the desire to

construct general theoretical frameworks for G&R,

note that one can use the concept of ‘‘mass turnover’’

to describe effects of altered cross-linking. For

example, one can conceptualize the cross-linking of

extant fibers simply as the removal of non-cross-linked

fibers and the simultaneous production of (i.e.,

replacement with) cross-linked fibers. Cross-linking

collagen is not only important for increasing structural

properties such as stiffness and strength, it is also

important in tensional homeostasis. For example,

inhibition of tissue transglutaminase in initially

stress-free collagen gels seeded with fibroblasts

reduced the ability of the cells to compact the gels,

which by inference reduced their ability to achieve a

preferred mechanical environment [40]. This obser-

vation is consistent with the thought that macroscopic

remodeling of matrix by cells must occur in incre-

ments, with incremental changes preserved by cross-

linking. These observations suggest that cell-mediated

microstructural reorganization of both the orientations

of and the cross-links between fibers plays an impor-

tant role in establishing, maintaining, or restoring

matrix homeostasis. Although the precise underlying

mechanisms remain unknown, the breaking and

reforming of cross-links appears to be an efficient

complement to frank mass turnover and should be

explored further both experimentally and

computationally.
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2.3 Prestress (or deposition stretch)

A vital aspect of cellular regulation of matrix is the

mechanical state of the matrix that is either deposited

de novo or remodeled within extant matrix. In

particular, early G&R theories [41] conjectured and

computational [42] and theoretical [43] studies con-

firmed that replacement of stressed fibers with initially

unstressed fibers could not achieve homeostasis—

initially stress-free or under-stressed fibers would

likely extend until reaching the in vivo level of stress,

which would necessarily result in tissue elongation or

expansion, not maintenance. In other words, it is

natural to imagine that newly produced or remodeled

matrix must be prestressed and, under optimal condi-

tions, the value of prestress should equal the home-

ostatic target [30]. Indirect evidence that cells

prestress the matrix that they produce or remodel

continues to accumulate. For example, assembly of

vascular collagen requires both integrins and acto-

myosin activity [29], presumably so the cells can hold

onto and work on the collagen. This concept is

supported by experiments on collagen fiber alignment

by tendon fibroblasts; these cells can produce collagen

in the absence of intracellular actin, but they cannot

organize it without actin [44]. Indeed, it has been

suggested that elaborate control of gene expression

and intracellular signaling related to actomysin activ-

ity is fundamental to tensional homeostasis [45],

which is important in both normalcy and disease [46].

Contractile forces exerted by cells seem essential to

endow matrix with prestress in the first place. This

prestress is, however, only partially maintained by

continued cellular contraction. A large and probably

often dominant part of the prestress is maintained by

permanent cross-links that are established between the

prestressed and surrounding matrix [47]. Prestress is

then maintained primarily by the matrix itself, not by

the cells (which would have to consume ATP to this

end). How cells actually build-in stresses within new

or extant matrix remains unclear and further experi-

ments are required. One hypothesis, however, is a

lock-step or ratchet mechanism [48]. Regardless of the

biological complexity, linear momentum balance must

always be respected [49]. Prestress permanently

incorporated in the matrix can balance external loads

and thus significantly reduce the stress experienced by

the cells. Indeed, the associated ‘‘stress shielding’’ [50]

would seem to be mechanically favorable, allowing

mechano-sensitive cells merely to probe the matrix to

assess whether there is a need for further G&R due to

increased stress rather than carrying excessive stress

themselves. Finally, note that the existence of pre-

stress in matrix (and similarly in cells, cf. [51])

influences both its stiffness (since stiffness is propor-

tional to stress in a nonlinear material) and its role as a

reservoir for a host of growth factors, cytokines, and

proteases. It has been suggested, for example, that a

prestressed matrix can prime latent cytokines such as

transforming growth factor-beta, hence facilitating

their activation via additional stresses generated

through actomyosin activity [52].

2.4 Pathologic growth and remodeling

In healthy tissues, G&R enables a favorable adaptation

to a changing mechanical environment, for example,

by restoring nearly normal levels of wall stress in

arteries despite sustained increases in blood pressure.

There are, however, many cases where neither growth

nor remodeling can maintain or appropriately adapt

the geometry or mechanical properties of a tissue or

organ. Two prominent examples in the arterial tree are

aneurysms and tortuosity. Aneurysms are focal dilata-

tions of the arterial wall; some aneurysms can enlarge

to a new stable state whereas others continue to

enlarge over years and eventually rupture. That is,

aneurysmal G&R may or may not result in a new

mechanobiologically stable state [43, 53]. Tortuosity,

on the other hand, is defined as an abnormal length-

ening of a blood vessel that results in a distorted

geometry. It appears that tortuosity is irreversible [54],

though it is yet unclear whether it can achieve a

stable state. It remains an important challenge to

understand the mechanisms governing these and many

other forms of pathological G&R, which serves as

additional motivation for the development of compu-

tational models, as noted below.

3 Mathematical modeling

G&R of load-bearing soft tissues typically involves

finite deformations and thus must be treated within the

context of nonlinear continuum mechanics [55].

Toward this end, a recent review summarized roles

of general balance relations in G&R within a contin-

uum mechanical framework [16]. To complement that
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work, we focus herein on how important biological

and micromechanical aspects (such as tensional

homeostasis, mass turnover, and prestress) can be

appropriately addressed within a general constitutive

framework, again based on nonlinear continuum

mechanics.

Let us begin by considering a reference configura-

tion j 0ð Þ that is deformed (elastically and inelasti-

cally) into a current configuration j sð Þ at G&R time

s[ 0 (note: since G&R typically occurs over time

scales greater than normal in vivo time scales, such as

the cardiac cycle or gait frequency, we use G&R time s

and reserve time t for other temporal processes). Of

course, valid reference configurations need not be

experienced by the physical tissue nor do they need to

be stress-free. Without loss of generality, we assume

the reference configuration to be the normal (home-

ostatic) in vivo loaded configuration at time s ¼ 0. A

differential volume element in the reference configu-

ration dV is mapped to a volume element in the current

configuration dv ¼ det Fð ÞdV , with F the standard

deformation gradient that maps the tangent space of

the reference configuration to the one of the current

configuration. In general, G&R in soft tissues typically

happens on the time scale of days to months whereas

elastic deformations occur on the time scale of seconds

or less. Thus, G&R is often modeled as a quasi-static

process, subject to the usual balance of linear

momentum

div Pð Þ þ .0b0 ¼ 0; ð1Þ

with P the 1st Piola–Kirchhoff stress tensor, b0 the

body force per unit mass, and .0 the mass density per

unit reference volume. In the quasi-static setting with

hyperelastic materials typically assumed in soft tissue

growth and remodeling, we have P ¼ oW=oF. Hence,

to compute deformations and stresses resulting from

G&R, one typically has to define a strain energy

function W and a mass balance equation that allows

computation of .0 at every in time.

Within this standard setting of nonlinear continuum

mechanics two major approaches have been proposed

to address G&R (see Fig. 2), namely, kinematic

growth and constrained mixture models, which can

essentially be understood as two fundamentally

different ways to compute the strain energy W and

mass density .0.

3.1 Kinematic growth models

The fundamental basis for current theories of kine-

matic growth of soft tissues [56] arose from seminal

concepts by Richard Skalak that were published in the

early-to-late 1980s. It appears that many of these ideas

were motivated, in large part, by the desire to

understand residual stresses in soft tissues (see Fig. 4

in [56]). Growth was thus conceptualized primarily as

changes in the size and shape of a growing unloaded

body, which could be described via two deformations:

an inelastic ‘‘growth’’ deformation (gradient) Fg

capturing stress-free changes by mass added or lost

in (infinitesimal) volume elements and a subsequent

elastic ‘‘assembly’’ deformation (gradient) Fa that

ensures geometric compatibility by assembling the

grown volume elements into a contiguous unloaded

body. That is, growth of individual volume elements is

thought, in general, to be geometrically incompatible

and the assembly of these volume elements to result in

residual stresses in the contiguous but yet unloaded

body. Effects of external loads then require, while

enforcing equilibrium, an additional elastic deforma-

tion (gradient) FE so that the total elastic deformation

(gradient) is Fe ¼ FEFa and the total deformation

(gradient)

F ¼ FeFg: ð2Þ

The stored energy W at any time s depends on the

deformation, thus

W sð Þ ¼ W Fe sð Þð Þ: ð3Þ

Given Fg sð Þ in (2), the elastic constitutive Eq. (3)

allows one to solve the mechanical equilibrium

problem (1) in the traditional way. Kinematic growth

theory thus requires, in addition to the elastic consti-

tutive Eq. (3), a second constitutive (evolution) equa-

tion for the inelastic deformation (i.e., growth) Fg sð Þ,
typically assumed to not include rigid body rotations.

Overall, this general Kinematic Theory of Growth,

which is illustrated in Fig. 2, continues to be used

widely (cf., [16, 17]) due to its simplicity and low

computational cost. It is conceptually similar to well-

known models for viscoelastic fluids (cf. Eq. (10) in

[57]) and plasticity (cf. chapter 9 in [58]). Neverthe-

less, a major challenge in the kinematic growth theory

remains the specification of a constitutive relation for
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Fg. Recalling that soft tissue seeks to maintain some

mechanical quantity, say G, near its homeostatic

value, two approaches to model mechano-regulated

G&R are common. First, one can postulate an

evolution equation of the form

_Fg ¼ S : DG; ð4Þ

where DG ¼ G� Gh is the assumed growth stimulus

with Gh the homeostatic value of the mechanical

quantity G; the colon denotes a double contraction

product and S is some fourth order sensitivity-type

tensor. The basis assumption of (4) is that Fg can be

written as a smooth function ofGwith _Fg DG ¼ 0ð Þ ¼ 0

so that Taylor expansion renders the first order

approximation (4). Second, one can define Fg starting

from a decomposition

Fg ¼
Xm

j¼1

b j sð ÞB j ð5Þ

into second-order basis tensors B j with scalar b jðsÞ.
The B j define growth directions, and from experi-

mental and clinical observations one can try to define

evolution equations for each b j that define the growth

in each direction. Again, one may, for example,

assume some stimulus DG as in (4) and approximate

b j by a Taylor expansion around DG ¼ 0 with
_b j DG ¼ 0ð Þ ¼ 0. Models based on (5) often assume,

for example, isotropic growth with Fg ¼ b sð ÞI, with
identity tensor I, or else fiber growth with Fg ¼
b sð ÞA� Aþ I � A� Að Þ for fiber direction A [16].

There continues to be debate about the mechanical

quantity G governing G&R. In [56] G was identified

with the (corotated) Cauchy stress, which is motivated

by experimental observations as summarized in

Sect. 2.1. Alternatively, strain [59] or, motivated from

plasticity theory, the Eshelby stress [60] or Mandel

stress [61] have been suggested. Another major

in vivo 
states 

G&R 
time

fictitious states 

Kinematic Growth 
Models: the local 
deformation of the 
unloaded body is split 
into an inelastic 
and an elastic part 

Constrained Mixture 
Models: new mass is 
added, with a prestress, 
into a stressed body.  
This prestress is 
prescribed relative to 
a constituent-specific 
natural configuration. 

natural states … … …

Fig. 2 From a reference configuration jð0Þ, a mechanical body

is deformed by external loading as well as growth and

remodeling into current configurations jðsÞ and jðsÞ at time s
and s. Kinematic growth theory assumes that the total

deformation gradient F can be decomposed into an inelastic

part Fg, capturing growth, and an elastic part Fe that ensures

mechanical equilibrium and geometric compatibility during

deformation. In contrast, constrained mixture models concep-

tualize the body as composed of n constituents, with each

constituent composed of a multitude of mass increments

deposited at different times. The individual mass increments

are deposited with an elastic pre-stretch Fi sð Þ
pre at time s compared

to their respective stress-free natural configurations jinðsÞ. In
each volume element, mass increments from different con-

stituents deposited at different times form a constrained mixture,

that is, they undergo the same elastic deformation over time
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problem is the proper definition of S in (4) or the b j

and B j in (5). Typically, these quantities are not

chosen on the basis of micromechanical or biological

arguments, but rather so as to mimic phenomenolog-

ically a certain observed growth behavior (i.e.,

macroscopic changes in size and shape) [15, 17].

The resulting significant arbitrariness in the choice of

S,G, b j, andB j remains one of the greatest limitations

of kinematic growth models.

The spatial density . of a soft tissue is often

assumed to remain constant not only during elastic

deformation (‘‘incompressibility’’) but also during

G&R. That is, . ¼ .0 sð Þ=det F sð Þð Þ ¼ const with the

density per unit reference volume .0. From (2) we

know det Fð Þ ¼ det Feð Þdet Fg

� �
¼ det Fg

� �
with the

incompressibility condition det Feð Þ ¼ 1. Thus, one

has the net mass production per unit reference volume

_.0 sð Þ ¼ .
d det Fg

� �� �

ds
: ð6Þ

This mass balance becomes, in the case of (4)

always and in case of (5) at least approximately in the

neighborhood of the homeostatic state,

_.0 sð Þ ¼ .0kr : DG ð7Þ

where the colon again denotes a double contraction

product and kr is a gain-type parameter (a second

order tensor that depends in general on Fg). Equa-

tion (5) can not only be used for mechano-regulated

growth but also in various other cases where mass

deposition in a body or tissue has to be modeled.

Finally, it is worth mentioning that in kinematic

growth models one often defines not only evolution

equations for the inelastic deformation gradient Fg but

also for material properties such as structural tensors

characterizing anisotropic constitutive properties.

This way, for example, mechano-regulated reorienta-

tion of collagen fibers in vitro and in vivo was studied

[62–64].

In summary, most implementations of the kine-

matic growth theory are computationally convenient,

yet mechanobiologically limited. Reasons for the

latter are to be expected, in part, because the theory

was designed to model the growth of initially stress-

free configurations of whole tissues. Growth and

remodeling in vivo necessarily occurs in stressed

configurations via the production, removal, or remod-

eling of different types of constituents at different rates

and having different prestresses. These processes are

not considered in kinematic growth theory, and Fg is

typically defined heuristically. There is also generally

no attempt to model the mechanics of separate

constituents, such as elastic fibers (with a normal

half-life of several decades) versus collagen fibers

(with a normal half-life of 70 days) in arteries. Given

that G&R of arteries in aging, aneurysms, atheroscle-

rosis, and so forth depend strongly on the evolving

relative roles of these constituents, a single phe-

nomenological descriptor would not be expected to

capture key aspects of the disease progression. Indeed,

it appears that even normal residual stresses in arteries

arise due to spatial heterogeneities in the different

constituents that have different prestresses, hence a

traditional kinematic growth model could only be

expected to capture the overall change in size and

shape when residual stress is relieved, not to predict

how it arose or why it changes in disease.

3.2 Constrained mixture models

Whereas Skalak advocated the use of finite strain

kinematics to describe growth, Fung suggested that

G&R should be described in terms of mass-stress

relations. Motivated by the latter as well as the

desire to better incorporate mechanobiological data

as they become available, so-called constrained

mixture models were proposed for G&R of soft

tissues [41]. These models represent a fundamen-

tally different approach. It is assumed that, in each

volume element, there exists a mixture of n

structurally significant constituents. Given the afore-

mentioned continuous turnover of most constituents,

mass increments of each constituent i ¼ 1; 2; . . .; n

are allowed to be deposited within the body at each

time s 2 ½0; s�. These increments possess different

natural (stress-free) configurations and yet deform

together with the overall tissue (i.e., in a constrained

manner). Let mass increments of constituent i be

incorporated within the extant matrix under the elastic

pre-stretch Fi sð Þ
pre (relative to the stress-free configura-

tion of the mass increment) at time s. If the body

subsequently deforms between time s and s such that

the total mixture deformation gradient changes from

F sð Þ to F sð Þ, then the prestressed mass increment will

experience at time s the elastic deformation gradient

(cf. Fig. 2)
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Fi sð Þ
e sð Þ ¼ F sð ÞF�1 sð ÞFi sð Þ

pre : ð8Þ

Obviously, this constituent-specific elastic stretch

depends on the deposition time s and the pre-stretch

of that constituent, and will in general be different for

all mass increments within an infinitesimal volume

element. Note that (8) allows a decomposition of the

deformation of each mass increment into an elastic

part Fi sð Þ
e sð Þ and an inelastic part Fi sð Þ

e sð Þ
� ��1

F sð Þ,
similar to (2). One difference between kinematic

growth theory and classical constrained mixture

theory is, however, that in the latter in each volume

element there is a mixture of different mass increments

deposited at different times and experiencing an, in

general, different elastic and inelastic deformation.

Let .i0 sð Þ be the constituent-specific (apparent)

mass density per unit reference volume and

_.i0þ sð Þ[ 0 the associated true mass production rate

per unit reference volume for the i-th constituent at

any G&R time s� 0. Once deposited, all biomolecules

have a finite half-life and thus degrade over time. Let

the fraction of the mass initially existing at time 0 and

still surviving at time s be Qi sð Þ 2 0; 1½ �, with

Qi 0ð Þ ¼ 1, and similarly the fraction of mass depos-

ited at time s and still surviving at time s be

qi s� sð Þ 2 ½0; 1�. Thus, directly from the mass bal-

ance relation for a mixture, the mass density of the i-th

constituent in the constrained mixture, at G&R time s,

is

.i0 sð Þ ¼ .i0 0ð ÞQi sð Þ þ r
s

0

_.i0þ sð Þqi s� sð Þds ð9Þ

which, when divided by the mass density of the whole

tissue (i.e., constrained mixture) .0 ¼
Pn

i¼1

.i0 yields the

evolving mass fraction for each constituent. The strain

energy density of the constrained mixture of mass

increments in each infinitesimal volume element is

assumed, according to a simple rule of mixtures,

W sð Þ ¼
Xn

i¼1

Wi sð Þ ð10Þ

where the strain energy density of the i-th constituent

is typically assumed to be

Wi sð Þ ¼ .i0 0ð Þ
.0 sð Þ Q

i sð ÞŴi Fi 0ð Þ
e sð Þ

� �

þ
Zs

0

_.i0þ sð Þ
.0 sð Þ qi s� sð ÞŴi Fi sð Þ

e sð Þ
� �

ds ð11Þ

with some standard strain energy function Ŵi such as a

Fung exponential function. This formulation reveals

the need for three classes of constitutive relations:

constituent-specific stored energy functions Ŵi, rates

of mass production, and survival functions, all

depending on the specific time at which the constituent

is incorporated within extant matrix.

Unlike in kinematic growth theory, in the con-

strained mixture theory net production rate _.i0 is

understood as a difference between true production

_.i0þ [ 0 and degradation _.i0� [ 0 rates, with

_.i0 ¼ _.i0þ � _.i0�: ð12Þ

One often assumes a stress-dependent true mass

production rate

_.i0þðsÞ ¼ .i0
1

Ti
þ kir : r sð Þ � rhð Þ

� 	
ð13Þ

where rh is the (corotated) homeostatic Cauchy stress,

Ti a time constant, and kir some second order tensor

(containing gain-type parameters). The first term in the

brackets on the right-hand side is called the basal mass

production rate (i.e., the one in a homeostatic state) and

the second term is the stress-dependentmass production

rate. With (12) and (13) in a homeostatic state

_.i0� ¼ _.i0þ ¼ .i0
Ti

; ð14Þ

so that Ti can be interpreted as an average survival

time of mass in a homeostatic state. With (12), (13),

(14) and the often made assumption of a constant mass

removal rate, we arrive at a net mass production rate

_.i0 sð Þ ¼ .i0k
i
r : r sð Þ � rhð Þ; ð15Þ

which is similar to (7) found in kinematic growth

theory with DG ¼ r sð Þ � rh.

In constrained mixture models, constituents such as

collagen or smooth muscle are often represented by

quasi-one-dimensional fiber families. In this case,
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Cauchy stress in (13) and (15) can simply be expressed

by the scalar stress in the fiber direction and kir by a

scalar gain factor. Moreover, in practice, exponential

survival functions are often assumed, that is,

Qi sð Þ ¼ exp �s=Ti
� �

;

qi s� sð Þ ¼ exp �ðs� sÞ=Ti
� �

:
ð16Þ

For given gain factors kir and survival functions qi

and Qi, mass turnover is completely defined by (13)

and (9). With a given mass turnover and deposition

pre-stretch (often chosen to be constant), (10) and (11)

define the mechanical behavior of soft tissue subject to

growth and remodeling completely.

Unlike kinematic growth models, constrained mix-

ture models naturally account for the simultaneous

presence of multiple constituents in soft tissues and

moreover for the differential turnover of these con-

stituents in living organisms. They are based on a

micromechanical model of G&R, which has helped to

clarify several fundamental mechanisms of G&R (cf.

Sect. 4). Nevertheless, these models require one to

track a large number of different reference configura-

tions. As can be seen from (8) to (11), the strain energy

is calculated separately for each of the n constituents

on the basis of an integral which, in practice, is

evaluated in a discrete manner at nt time points in the

past. Thus, the configuration of the body has to be

stored for each of these past times and a nonlinear

strain energy function has to be evaluated for each of

them in each time step. In general nt is determined by

the survival functions and time step size; in practice nt
will often range between 20 and 60. Both computa-

tional cost and implementation effort are therefore

much higher for constrained mixture models than for

kinematic growth models, which is the main disad-

vantage of constrained mixture approaches. For this

reason, hybrid models have been developed that are as

easy to implement as kinematic growth models but yet

capture in some ways the effects of mass turnover as

included in constrained mixture models.

3.3 Hybrid models

3.3.1 Evolving recruitment stretch models

In a series of papers published over the past decade

[65–70], a hybrid approach to G&R was developed

to study the enlargement of aneurysms. The tissue

is modeled as a constrained mixture of n con-

stituents with, in general, individual reference config-

urations. Unlike in the classical constrained mixture

model [41], however, the mass of each constituent is

not modeled as a constrained mixture of mass

increments deposited at different times with different

reference configurations. Rather only the change in the

average stress-free configuration of each constituent

due to increments of deposition and degradation of

mass is tracked by the evolution of a ‘‘recruitment’’

stretch kir: This approach has been implemented for

G&R of tissues containing quasi-one-dimensional

fiber families so that a scalar recruitment stretch (in

fiber direction) is sufficient. The general idea is that

wavy fibers in a soft tissue start to carry load only once

their initial undulations disappear at the recruitment

stretch. A change of this recruitment stretch is thus

equivalent to an inelastic remodeling deformation of

the material, that is, to an inelastic deformation

gradient

Fi
r ¼ kirA

i � Ai þ 1ffiffiffiffiffi
kir

q I � Ai � Ai
� �

ð17Þ

with fiber direction Ai. Evolution of the recruitment

stretch is often modeled by a simple rate equation

(e.g., Eq. (27) in [65])

_kir ¼ a
kie
� �2� kipre

� �2

kipre

� �2

�1

; ð18Þ

where kie is the current elastic stretch of the i-th fiber

family and kipre the prestretch (‘‘attachment stretch’’)

with which new fibers are incorporated within the

matrix during mass turnover (comparable to Fi sð Þ
pre in

the classical constrained mixture model in Sect. 3.2).

The idea is that degradation of extant fibers with

elastic stretch kie and deposition of new fibers having

an elastic pre-stretch kipre should make the average

elastic stretch of a constituent approach the pre-

stretch. This is realized by a kir evolving until

kie ¼ kipre

� �
. For simplicity, this process is assumed

to follow a first order rate equation determined by

parameter a. At the same time, net mass production

(that is, mass production minus mass degradation) is

defined as (cf. Eq. (29) in [65])
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_.i0 ¼ .i0
b

kipre

� �2

�1

kie
� �2� kipre

� �2
� 	

ð19Þ

with some parameter b. This relation is similar to the

one usually assumed in constrained mixture models

[cf. (15)], but based on stretch rather than stress.

Models with evolving recruitment stretch were orig-

inally used in two-dimensional membrane models of

blood vessels, but recently have been extended to

volumetric growth [65]. There they are combined with

a volumetric-deviatoric split to enforce incompress-

ibility of the soft tissue during transient loading, which

is equivalent to an assumed isotropic inelastic growth

deformation accommodating an appropriate volume

for the changing mass during growth. The inelastic

growth deformation (gradient) is thus

Fi
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 .

i
0 sð ÞPn

i¼1 .
i
0 0ð Þ

3

s

I: ð20Þ

In general, the inelastic deformation of a con-

stituent can be written as

Fi
gr ¼ Fi

rF
i
g; ð21Þ

where the evolution ofFi
r is governed by (17) and (18).

Similar to (2), one can thus decompose the total

deformation gradient F into an elastic part Fi
e and an

inelastic part Fi
gr with

F ¼ Fi
eF

i
gr ð22Þ

with the strain energy determined at any G&R time by

W sð Þ ¼
Xn

i¼1

Wi Fi
e sð Þ

� �
: ð23Þ

This approach can be considered a hybrid. Similar

to classical constrained mixture models, it uses the

concept of a constrained mixture to account for the

simultaneous presence of different constituents with

different stress-free configurations. It also incorpo-

rates the idea of mass turnover and prestress (attach-

ment stretch) for deposited mass. Yet, mass turnover is

not accounted for by tracking mass increments

deposited at each time. Rather, effects of mass

turnover and growth are captured by an effective

inelastic deformation for each constituent, whose

evolution is governed by mass production and a rate

equation that describes how the current stretch

approaches the attachment stretch if, during turnover,

extant mass is replaced by new mass deposited with

the attachment stretch. Comparing (2) and (7) with

(19)–(22) further reveals a conceptual similarity with

kinematic growth theory. The advantage of this hybrid

approach is its conceptual simplicity compared with

classical constrained mixture models for G&R, as

described in Sect. 3.2. Its disadvantage is its rather

phenomenological basis. The rate Eq. (18) describes

an evolution towards a homeostatic state that can be

expected to resemble qualitatively the one produced

by detailed micromechanical models, as in classical

constrained mixture models. The choice of (18) is yet

heuristic and it has not yet been shown how this

equation corresponds to specific micromechanical

assumptions about G&R processes. Moreover, this

hybrid approach has been implemented so far only for

quasi-one-dimensional fiber families or—in the con-

text of volumetric growth–isotropic growth. General-

izations of these two aspects are pending.

3.3.2 Homogenized constrained mixture models

Recently, a temporally homogenized constrained

mixture model has been proposed as another hybrid

approach to model G&R of soft tissue [71]. It is

motivated by the constrained mixture models dis-

cussed in Sect. 3.2. In constrained mixture models the

total deformation gradient of each mass increment

deposited at time s can be decomposed into an elastic

part Fi sð Þ
e [cf. (8)] and an inelastic part Fi sð Þ

gr by

F ¼ Fi sð Þ
e Fi sð Þ

gr ; ð24Þ

both of which depend explicitly on the time of

constituent deposition and incorporation s 2 ½0; s�
within the extant material. The main difficulty in the

practical application of constrained mixture models is

the implementation and evaluation of the time integral

in (11). The origin of this difficulty is that all mass

increments are deposited in general in different

configurations with different F sð Þ. The general idea

of homogenized constrained mixture models is to

perform a temporal homogenization across all mass

increments within one constituent. This operation is

performed on the basis of three assumptions. First, it is

assumed that G&R changes the mechanical properties

of a soft tissue, but the underlying strain energy

function remains in the same so-called ‘‘similar set’’ in
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the sense of Definition 3 in [72], that is, differences in

the average stress–strain response of each constituent

caused by G&R can be captured via a single average

inelastic deformation Fi
gr so that for each constituent

the total deformation gradient can be decomposed into

F ¼ Fi
eF

i
gr: ð25Þ

with elastic deformation gradient Fi
e. Second, expo-

nential survival functions as in (16) are assumed.

Third, it is assumed that the inelastic deformation can

be decomposed into a growth-related part Fi
g, accom-

modating an appropriate volume for growth-based

changes of mass, and a turnover-related part Fi
r with

Fi
gr ¼ Fi

rF
i
g: ð26Þ

The turnover-based inelastic deformation is

assumed to evolve such that the rate of change of the

average Cauchy stress in a given configuration equals

the one that would occur in a classical constrained

mixture model following [41]. Under these simple

assumptions, the turnover-based inelastic deformation

was shown [71] to be governed by

_.i0 tð Þ
.i0 tð Þ þ

1

Ti

� 	
Si � Sipre

h i
¼ oSi

oCi
e

: Ci
eL

i
r þ Li

r

� �T
Ci
e

h i� 	

F;Fi
g¼const

ð27Þ

with .i0 and Ti defined as in Sect. 3.2 for the classical

constrained mixture models. Here, the second Piola–

Kirchhoff stress and deposition prestress are denoted

Si and Sipre, the inelastic velocity gradient

Li
r ¼ _Fi

r Fi
r

� ��1
, and the elastic right Cauchy–Green

deformation tensor Ci
e ¼ Fi

e

� �T
Fi
e.

This temporally homogenized constrained mix-

ture model was shown to converge in the neigh-

borhood of a homeostatic state to the same solution

as classical constrained mixture models and also to

render far from these states at least very similar

results [71]. Temporally homogenized constrained

mixture models thus share the micromechanical

basis of classical constrained mixture models while

reducing computational cost and implementation

effort to a level comparable to that of kinematic

growth theory. In this way, these models combine

advantages of the two thus far proposed major

approaches to modeling G&R in load-bearing soft

tissues.

4 Theoretical insights

Mathematical modeling of G&R in soft tissues has led

to several non-trivial insights into the underlying

mechanisms, which are briefly summarized in this

section.

4.1 Prestress

G&R is characterized in load-bearing tissues by the

reorganization or degradation of extant stressed con-

stituents and the deposition of new constituents having

a certain prestress. If the value of prestress (of

deposited or reorganized material) does not equal the

current stress, the internal stress in the material changes

continuously by turnover, which requires a continued

deformation to balance the given external loading. Thus

in a mechanobiologically static state, prestress has to be

the higher, the higher the external load, and:

Prestress defines a limit on the load that can be

supported in a mechanobiologically static state by

living soft tissue. Prestress can thus play a role in

living tissues that is similar to yield stress in classical

engineering materials, as discussed in [43].

If the current stress in soft tissue is higher than the

deposition prestress, this stress will decrease by

turnover towards the value of the prestress; if the

current stress is lower than the prestress, it will

increase towards the level of prestress. Prestress may

thus be identified with the homeostatic stress at which

no further remodeling occurs. This behavior, which is

captured both by classical constrained mixture

(Sect. 3.2) and hybrid (Sect. 3.3) models can also be

understood as a special form of inelasticity on the basis

of a mechanical analog model consisting of a

viscoelastic Maxwell fluid and a motor element in

parallel (cf. Fig. 3) [71].

The essential role of prestress raises the question of

what governs its preferred homeostatic value. In [73],

energetic optimality was suggested as a governing

principle. To fulfill their respective mechanical func-

tions, tissues and organs need to support certain loads

and exhibit a certain stiffness. Let the characteristic

Cauchy stress in the tissue be r in such cases. As an

example, both the structural stiffness and the sup-

ported external load of tendons/ligaments or blood

vessels scale linearly with the load bearing cross

section and thus—for a given shape of the organ—

with tissue mass m. On the other hand, for given organ
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shape and mass m, the supported load increases

linearly with the tissue stress r. Recalling the expo-

nential strain energy function of soft collagenous

tissues [22], and the thus nearly linear relation

between stress and stiffness, this is also true for the

material stiffness of the tissue. Thus to support a

certain load in tensional homeostasis while maintain-

ing a certain stiffness, a certain functional target value

c ¼ rm has to be achieved. The energetic cost of mass

turnover per unit time _Wtot in the tissue or organ can be

divided into a chemical part _Wchem ¼ cchemm=T and a

mechanical part _Wmech ¼ W rð Þm= T.0ð Þ, where cchem
is the energetic cost to degrade a unit tissue mass and

replace it by new mass of the same type,W is the strain

energy of the soft tissue per unit volume, .0 the mass

density, and T the averaged survival time of mass.

Energetic optimization of mass turnover thus means

minimization of

_Wtot ¼ cchem þW rð Þ=.0½ �m
T
¼ cchem þW rð Þ=.0½ � c

Tr
ð28Þ

for given a c ¼ rm (that is, a given mechanical

function that the tissue or organ can fulfill). For a given

mechanical function c and turnover time T , minimiza-

tion of _Wtot renders

ropt ¼ argmin
r

_Wtot rð Þ
� �

¼ argmin
r

cchem þW rð Þ=.0½ � 1
r

 �
: ð29Þ

as optimal tissue stress that allows mass turnover (i.e.,

maintenance) at minimal energetic cost. Chemical

costs for synthesis and degradation of collagen during

mass turnover are not exactly known, but it seems

reasonable to assume a chemical cost of akBTK per

monomer, with Boltzmann constant kB, absolute

temperature TK , and a factor a between one and

several hundred. Of course, the stored energy may

vary significantly across different collagenous soft

tissues. Therefore, we examined the energetic cost of

mass turnover according to (28) for a ¼ 1; 10; or 100

and three different strain energy functions reported in

the literature: one in Table 1 of [74], one in Table 2 of

[75], and one reported in [76]. Results are depicted on

the right-hand side in Fig. 3. In all cases, a steep

increase in energetic cost is observed in the regime

r\100 kPa, due primarily to the large amount of mass

required in cases of low stress to maintain a certain

stiffness and support a certain load. On the other hand,

energetic costs decrease only marginally above

300 kPa. Of course, the stress of collagen should

remain well below its tensile strength (which some

have reported to range in arteries around 1.5 MPa

[77–79]). Therefore a homeostatic stress (prestress)

around 200–300 kPa appears optimal for aortic tissue

in the sense that it ensures (nearly) minimal energetic

cost of mass turnover and yet a sufficient safety factor

relative to tensile strength. This is indeed the range of

homeostatic stress typically observed in vascular

tissue (cf. Sect. 2.1). Therefore, one may hypothesize

that the magnitude of homeostatic stress (prestress)

can be understood from energetic optimality of mass

turnover. While this hypothesis requires further crit-

ical examination, it may at least serve as a starting

point for future research aiming to understand the

biomechanical principles governing prestress in soft

collagenous tissue.

Fig. 3 Left mechanical analog model for soft tissue subject to

G&R: a viscoelastic Maxwell fluid (spring and dashpot in series)

in parallel with a motor element (circle) exerting an actively

generated stress ripre, which represents the deposition prestress.

Right energy expenditure per unit time _Wtot invested in mass

turnover within the aorta for a range of assumed strain energy

functions and energetic costs for the synthesis and degradation

of collagen (where min _Wtot

� �
is the minimal value achieved by

each curve, respectively)
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4.2 Mechanobiological stability

Prestress is necessary to maintain a mechanobiolog-

ically static state in the presence of turnover. In living

organisms, such a state is subject to continued

perturbation (for example, changes in mechanical

loading, minor insults, changes of the biochemical

environment). Healthy tissue usually responds to such

perturbations by G&R processes that recover a

homeostatic state and largely maintain the original

geometry. In pathological cases, however, even minor

perturbations may start an unstable process of contin-

ued G&R that ends in a loss of geometric integrity. A

prominent example of such unstable growth processes

are aneurysms [53], and possibly tortuosity. In

aneurysms, an unstable dilatation of the vessel can

be observed over time in certain conditions (cf. Fig. 4)

that often results in rupture of the blood vessel and

thereby significant mortality and morbidity. In tortu-

osity, the vessel becomes contorted primarily in the

axial direction.

This issue of mechanobiological stability can be

understood from themechanical analogmodel in Fig. 3.

In a homeostatic state, the Cauchy stress ri acting on

each end of the model is balanced by a (pre)stress ripre.

If the external load is increased, ri increases and is no

longer fully balanced by the prestress ripre and the

Maxwell fluid in the upper branch of the analog model

is subject to a non-zero stress, resulting in an inelastic

extension. Especially in nearly incompressible soft

tissue, this extension may be accelerated by a trans-

verse contraction that contributes to a further increase

in ri for a given external load and possibly a total loss

of geometric integrity. To avoid such a loss of

geometric integrity after even minor perturbations of

the external loading, the system depicted in Fig. 3

needs to recover a state of mechanobiological

equilibrium, which means a state in which prestress

once again balances the stress due to external loads.

This is possible in two ways. First, prestress can

increase. Second, by deposition of additional mass

(i.e., growth), the load bearing cross section can be

increased and thus ri decreased (for still the same

increased external loading) until a state is recovered

with ripre ¼ ri. Therefore, to maintain a mechanobi-

ologically stable equilibrium state in the presence of

mass turnover, soft tissue needs to be endowed with

the capacity either to adapt its prestress or its mass

turnover, or both, in response to mechanical cues.

From this point of view, mechanobiology (i.e., the

capacity to control biological processes in response to

mechanical stimuli) is not only a mechanism that helps

soft tissues to adapt to changing mechanical environ-

ments, it is strictly necessary to maintain a stable state

in tissues subject to mass turnover.

The extension of the tissue model in Fig. 3 that starts

after a perturbation of the equilibrium between external

load and prestress will in general increase Cauchy stress

in the body due to transverse contraction. If this happens

faster than the adaptation of prestress or growth bymass

addition to recover equilibrium, the tissue will experi-

ence a continued extension up to a loss of geometric

integrity. This phenomenon has been termed

mechanobiological instability and is examined in detail

in [43, 53]. It was shown that mechanobiological

instability is promoted by fast turnover (i.e., small

average mass survival times Ti), low stiffness, and low

capacity for mechano-regulated mass production [e.g.,

small kr in (15)]. It was suggested that mechanobio-

logical stability could be the so far unknown biome-

chanical principle governing the continued

enlargement of aneurysms, a hypothesis supported

by comparisons with clinical and experimental evi-

dence. Accelerated mass turnover is observed in

Fig. 4 Illustration of the unstable dilatation of an aorta in case of an abdominal aortic aneurysm over the course of several years. In [50]

it was suggested that this unbounded enlargement could be interpreted as a mechanobiological instability
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aneurysms, in particular in patients with risk factors

such as smoking or hypertension, [32, 80] while

individuals with stiffer vessels, such as diabetics

[81, 82], have a lower risk for rupture. Moreover, in

aneurysms (where the stress does in general not equal

the homeostatic value) increased mass production or

decreased degradation [corresponding to higher kir in

(15)] impairs further dilatation [38, 39]. Given these

observations, the factors promoting mechanobiologi-

cal stability correlate well with the factors protecting

against aneurysmal enlargement and rupture.

Mechanobiological stability could thus not only

contribute to improved prediction of aneurysmal

enlargement (via the identification of meaningful

biomarkers), but perhaps also the development or

pharmacological therapies (manipulating exactly the

factors known to affect mechanobiological stability).

In [43, 53] it was also shown that mechanobiolog-

ically stable tissues tend not to return exactly to their

initial equilibrium state following a perturbation in

loading, but rather to a nearby new equilibrium state.

That is, tissues are typically neutrally stable, not

asymptotically stable. This mathematical property,

which has been termed mechanobiological adaptivity,

may explain why soft tissues often undergo minor

irreversible changes of geometry. For example, elastic

arteries are well-known to dilate during aging [83–85],

though this process results from complicated changes

in endothelial and smooth muscle cell biological

activity beyond simply mechano-regulation of matrix.

The concepts of mechanobiological stability and

adaptivity were developed in [43, 53] on the basis of

Lyapunov’s stability theory and a linearization around

homeostatic states. All the models discussed herein

that account for mass turnover (i.e., the classical

constrained mixture models from Sect. 3.2 and the

two hybrid models from Sect. 3.3) can be shown to

converge to the same behavior in such a linearized

limit. Thus, the concepts of mechanobiological stabil-

ity and adaptivity appear to be universally applicable

to these models of G&R.

5 Further examples

The above discussed mathematical models have been

used to studyG&R in diverse soft tissues. In this section,

we present a brief summary of illustrative examples.

5.1 Cardiovascular system

The vasculature adapts to altered mechanical loading

via cell-mediated processes [12]. Smooth muscle cells

and fibroblasts sense and respond to changes in their

mechanical environment due to altered blood pressure

and axial loads; endothelial cells similarly respond to

changes in altered blood flow. Via complex signaling

cascades, this sensing is translated into mechano-

regulated G&R, which has been studied by kinematic

growth models [60, 86, 87] and constrained mixture

models [88–90]. In particular, the enlargement of

aneurysms, focal pathological dilatations whose nat-

ural history may be linked to a form of unstable, ill-

controlled G&R (‘‘mechanobiological instability’’)

[53], has attracted increasing interest over the last

decade. Constrained mixture models [42, 74, 91–93]

as well as hybrid models [65–67, 70, 71] have been

used to examine the mechanisms driving aneurysmal

enlargement (Fig. 5).

Not only blood vessels, but also the heart itself is

subject to mechano-regulated G&R. For example, in

[95] concentric and eccentric cardiac growth through

sarcomerogenesis was studied, using anisotropic kine-

matic growth models.

5.2 Skeletal muscle

Skeletal muscle is well-known to grow by increasing

the number of sarcomeres in cases of chronic length-

ening. This process was studied by finite element

simulations using a kinematic growth model in [96]

(Fig. 6).

Fig. 5 von Mises stress [kPa] in an aneurysm (right) that has

grown in an initially healthy aorta (left) within 2700 days

(reprinted from [94], copyright 2012, with permission from

Elsevier)
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5.3 Skin

Mechanical loading can make skin expand by G&R.

This mechanism can be exploited in plastic and

reconstructive surgery to grow in a controlled process

in one region of the body additional skin that can be

used to compensate for skin losses in other regions.

Anisotropic kinematic growth models have been

developed [98] to study this process computationally

(Fig. 7).

5.4 Eye

Soft tissue G&R in the eye may play important roles in

diseases like glaucoma, and has thus been studied by

kinematic growth models [99, 100]. In particular,

mechano-regulated thickening of the lamina cribrosa

in early glaucoma was modeled and reorientation of

collagen fibers in the corneo-scleral shell (Fig. 8).

Fig. 6 Finite element simulation of temporal evolution of

sarcomere stretch in skeletal muscle after stepwise permanent

lengthening: elastic stretch is nearly completely released by

sarcomerogenesis between day 0 and 14 (reprinted from [96]

under Creative Commons License [97])

Fig. 7 Finite element simulation of skin growth in pediatric

scalp reconstruction using a kinematic growth model (reprinted

from [98], copyright 2013, with permission from Elsevier)

Fig. 8 Shown is a G&R

simulation of early

thickening in glaucoma of

the lamina cribrosa, a porous

collagen structure through

which axons pass. Such

models can help explain

experimental findings, as

noted in the original paper

(reprinted from [100],

copyright 2012, with

permission from Elsevier)
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5.5 Tissue cultures and tissue engineering

Collagen gels seeded with fibroblasts are important

model systems to study fundamental mechanisms in

soft tissue G&R [25, 40, 101]. To understand better the

experimental observations made in such gels kept in

tissue cultures, computational models of G&R have

been increasingly used over the last decade [62, 102].

Similarly, such models [103–107] have been success-

fully applied to help tissue engineer artificial blood

vessels and heart valves (Fig. 9).

6 Conclusions

Load-bearing collagenous soft tissues exhibit complex

mechanical behaviors, but also a remarkable ability to

adapt to perturbations in mechanical loading. The past

two decades have seen significantly increased atten-

tion in the biomechanics community to mathemati-

cally modeling the associated growth (changes in

mass) and remodeling (changes in structure). Because

of the finite deformations involved, the kinematics of

G&R necessarily includes multiplicative decomposi-

tions into elastic and inelastic deformations, indepen-

dent of approach. Kinematic growth theory provides a

computationally inexpensive means to capture conse-

quences of G&R, though without detail on the

mechanobiological processes of turnover of individual

constituents having individual properties. Another

approach, that of a constrained mixture, can capture

many aspects of chemomechanically stimulated

remodeling and turnover of individual matrix con-

stituents, but requires a computationally expensive

tracking of a multitude of reference configurations for

each constituent. Hybrid approaches attempt to exploit

advantages of kinematic theories while retaining some

features of constrained mixture theories, though with

the loss of some generality in describing actual

history-dependent mechanobiological processes. As

is the case with most constitutive formulations, the

method chosen should be based upon the question at

hand with an appreciation of the associated limita-

tions. New concepts such as mechanobiological sta-

bility and adaptivity promise to yield increasing

insight into principles of G&R, but much remains to

be accomplished. Continued studies should be moti-

vated directly by the unique mechanisms that cells use

to establish, maintain, remodel, repair, or remove

functional tissue and organs, including cell-mediated

incorporation of new matrix under stress.
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