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Abstract Parametric instability problem of a rotat-

ing shaft subjected to a periodically varying axial force

has been studied by using a numerical simulation

method—discrete singular convolution. External vis-

cous damping and internal material damping (Voigt–

Kelvin model) have been considered. Parametric

instability regions have been presented to illustrate

the influence of spinning speed and damping. Numer-

ical results reveal that for rotating shafts with no

damping, parametric instability regions under different

spinning speeds are ‘V’ shapes, and do not vary

obviously with spinning speed increasing. While, for

rotating shafts with damping, parametric instability

regions are enlarged significantly as spinning speed

increases. It may be considered that spinning speed has

a great effect on parametric instability of rotating shafts

with damping, but little influence on that of rotating

shafts with no damping. Moreover, the increase of

damping results in reduction of parametric instability

regions, which is helpful to improve dynamic stability

of systems. And it is also found that effects of internal

material damping and external viscous damping on

parametric instability regions are similar. Compared to

the results by using theoretical methods of Floquet and

Bolotin, it is observed that the numerical results

support Floquet’s method, disagree with Bolotin’s

method for parametrically excited rotating shafts. In

consideration of Bolotin’s method leading to enlarge-

ment of instability regions, it is strongly recommended

that Bolotin’s should not be applied to parametric

instability analysis of rotating systems.

Keywords Parametric instability � Dynamic

stability � Discrete singular convolution � Rotating

shaft � Periodic axial force

1 Introduction

Parametric instability problem of rotating systems

subjected to periodic axial forces has been an active
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research issue and has been investigated by many

researchers. Chen and Ku used finite element method

to study dynamic stability of a rotating Timoshenko

shaft [1], a rotating shaft embedded in an isotropic

Winkler-type foundation [2] and a rotating

Timoshenko shaft-disk system [3], respectively. Lee

analyzed dynamic stability of spinning pre-twisted

cantilever beams subjected to axial pulsating loads [4]

and axial base excitations [5] by assumed mode

method, respectively. Chen and Peng [6] studied

dynamic stability of a rotating composite shaft under

axial periodic forces by finite element method. Sheu

and Chen [7] proposed a lumped mass model to study

parametric instability of a cantilever shaft-disk system

subjected to axial and follower loads. Lin and Chen [8]

investigated dynamic stability of spinning pre-twisted

sandwich beams with a constrained damping layer

subjected to periodic axial loads. Other researchers [9–

23] have also investigated vibration and dynamic

stability of rotating systems.

Generally, when parametric instability problems

are dealt with, the governing differential equations are

reduced to a Mathieu–Hill equation, And the Mathieu–

Hill equation determines boundaries of instability

regions by using existing theoretical methods such as

Bolotin [24], Floquet [18], and multiple scale method

[10–12, 25] etc. In the most cases, results obtained by

using Bolotin, Floquet and multiple scales method are

coincident with each other except for some small

errors. However, recently, Bolotin’s method is con-

sidered to lead to enlargement of instability regions for

gyroscopic systems, and may contradict the results by

using Floquet’s method [18], which is worthy of being

focused on. To the authors’ knowledge, up till now,

study on this problem has not been reported except the

work of Pei [18]. In addition, it should be noted that

when these theoretical methods are applied, paramet-

ric instability regions are determined by Mathieu–Hill

equation. Whether another way to solve this problem

exists or not is worth considering. Fortunately, another

way [26] has been applied to analyze parametric

instability problem, in which instability regions are

determined by a direct simulation method, rather than

the previously mentioned way. In the authors’ previ-

ous work [27–29], a direct simulation technique—

discrete singular convolution (DSC) [30], has been

successfully applied to analyze dynamic instability of

beams. In the present work, this direct simulation

technique is applied to parametric instability analysis

of a rotating shaft under a periodic axial force. And

dynamic instability regions obtained by this direct way

are compared to those by using theoretical methods of

Bolotin and Floquet, which will further illustrate the

contradiction between Bolotin and Floquet. Espe-

cially, to the authors’ knowledge, experimental reports

on this problem have not been published. Therefore,

the present numerical study appears especially

important.

Discrete singular convolution (DSC) method pro-

posed by Wei [31] has emerged as a new highly

efficient technique for numerically solving differential

equations. Although DSC method is considered as a

local method, it has spectral level accuracy [32, 33].

Compared to other conventional numerical methods,

this method has the global methods’ high level

accuracy and the local methods’ flexibility for han-

dling complex geometries and boundary conditions

[34]. Like generalized differential quadrature (GDQ)

method [35], DSC method can provide accurate

solutions with relatively much fewer grid points. But

DSC has some advantages over GDQ for solving

higher-order vibration problems [34]. Compared to

finite element method (FEM) [36], DSC method just

need spatial discretization, and there are no real

elements like the elements in FEM, which is quite

different from FEM. Moreover, DSC method also can

give extremely accurate and stable results for high-

frequency vibration analysis of beams and plates [37,

38]. For more advantages of DSC for numerical

solutions, readers may refer to published works of Wei

et al. [30–34, 37–47]. DSC method has been success-

fully applied in vibration analysis of structures. Wei

et al. [39–41] applied DSC method to vibration

analysis of beams and plates with different boundary

and internal support conditions [42–47], analysis and

prediction of high-frequency vibrations [37, 38], and

also explored matched interface boundary (MIB)

method to treat free edges of plates [48]. Civalek used

DSC method to solve vibration problems of thick

rectangular plates [49], isotropic and orthotropic

rectangular plates [50], laminated composite plates

[51], rotating truncated conical shells [52], rotating

laminated cylindrical shells [53] and laminated com-

posite conical and cylindrical shells [54, 55]. Wang

et al. [56] applied DSC method to vibration analysis of

beams and rectangular plates with free edges,

Timoshenko beams [57], thin isotropic and anisotropic

rectangular plates [58], stepped beams [59] and plates
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[60]. To extend the scope of DSC method, DSC-Ritz

[61, 62] and DSC-element [63] method were explored

for vibration analysis of thick plates, shallow shells,

rectangular Mindlin plates. These studies indicate that

DSC method works very well for vibration analysis of

beams, plates and shells etc.

In vibration analysis of beams, plates and shells,

DSC method is used to discretize the spatial deriva-

tives and reduce the given partial differential equa-

tions into an eigenvalue problem [39–47]. However,

for solutions of dynamic responses of beams or

rotating shafts in time domain, the governing differ-

ential equations should be directly solved by DSC

procedure [23, 27–29]. In the authors’ previous work

[23], the governing differential equations of a rotating

ship shaft under axial force have been solved by using

DSC method. In that work, effects of number of blades

in the propeller on parametric instability are focused

on, and the exciting frequency of axial force is related

to spinning speed, which is a very special case. For the

most common cases, the exciting frequency of peri-

odic axial force has no any relation with spinning

speed such as those forces in the works of [1–4, 6–9,

12, 13]. Moreover, only external viscous damping is

considered in the authors’ previous work [23] briefly.

In fact, damping of rotating shafts includes external

damping and internal material damping. Considering

effects of internal material damping, the correspond-

ing term relating to internal material damping is added

to the governing differential equations of shafts, which

complicate the equations. And DSC procedure for

solving the problem considered here will be more

complex than ever before.

This study extends the previous effort of the

authors further to investigate parametric instability

of rotating shafts under periodically varying axial

forces by using DSC method which is completely

different from theoretical methods of Floquet and

Bolotin. A DSC procedure is given to solve the

governing differential equations of a rotating Euler

shaft under a periodic axial force. Influence of

external viscous damping and internal material

damping is also considered, and Voigt–Kelvin

model [16] is used to describe the behavior of

internal material damping. Parametric instability

regions are presented to demonstrate the effects of

spinning speed on rotating shafts without damping

and with damping, respectively. Numerical results

obtained by using DSC procedure are compared to

those by using theoretical methods.

2 Theoretical modal and algorithm

2.1 Equations of motion for rotating shafts

Figure 1 illustrates a uniform simply supported Euler shaft

rotating about its longitudinal axis with a constant spinning

speed X, subjected to a periodic axial force P(t) = PD
cos(ht), and (XYZ) is the fixed coordinate system while

(xyz) is the coordinate system attached to the shaft with the

x-axis aligned with the X-axis. Using Euler–Bernoulli

beam theory, effect of rotatory inertia is neglected. The

equations [9, 16] of motion can be written as

m
o2uy

ot2
� 2mX

ouz

ot
� mX2uy þ C

ouy

ot
þ EIai

o5uy

otox4

þ EI
o4uy

ox4
þ PðtÞ o

2uy

ox2
¼ 0

m
o2uz

ot2
þ 2mX

ouy

ot
� mX2uz þ C

ouz

ot
þ EIai

o5uz

otox4

þ EI
o4uz

ox4
þ PðtÞ o

2uz

ox2
¼ 0

ð1Þ

where uv, uz are the transverse displacements in the y-

and z-direction, m, C, E, I, ai and t are the mass per unit

length, the viscous damping coefficient, Young’s

modulus, the area moment of inertia, retardation time

[16] and time, respectively. PD and h are the amplitude

and circular frequency of the periodic axial force.

For simplicity, introducing following dimension-

less quantities:

X ¼ x

l
UY ¼ uy

l
UZ ¼ uz

l
a ¼ PD

Pcr

X ¼ X
x

H ¼ h
x

fe ¼
C

2mx
fi ¼

ai
2x

s ¼ xt

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
Y þ U2

Y

q

where l is the length, Pcr = p2EI/l2 is the buckling

force of a non-spinning simply supported shaft, x ¼
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=ml4
p

is the natural bending frequency of non-

spinning shaft for the first mode, X is dimensionless

spinning speed, H is dimensionless exciting fre-

quency, fe is viscous damping ratio, fi is reduced

retardation time, U is the composition of UY and UZ.
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Then, Eq. (1) can be written as

o2UY

os2
� 2X

oUZ

os
� X

2
UY þ 2fe

oUY

os
þ 2fi

p4

o5UY

osoX4

þ 1

p4

o4UY

oX4
þ a cosðHsÞ

p2

o2UY

os2
¼ 0

o2UZ

os2
þ 2X

oUY

os
� X

2
UZ þ 2fe

oUZ

os
þ 2fi

p4

o5UZ

osoX4

þ 1

p4

o4UZ

oX4
þ a cosðHsÞ

p2

o2UZ

os2
¼ 0 ð2Þ

And Eq. (2) can be changed into

o2UY

os2
¼ 2X

oUZ

os
þ X

2
UY � 2 fe

oUY

os

� 2fi
p4

o5UY

osoX4
� 1

p4

o4UY

oX4
� a cosðHsÞ

p2

o2UY

os2

o2UZ

os2
¼ �2X

oUY

os
þ X

2
UZ � 2fe

oUZ

os

� 2fi
p4

o5UZ

osoX4
� 1

p4

o4UZ

oX4
� a cosðHsÞ

p2

o2UZ

os2

ð3Þ

The boundary conditions are

Uð0;sÞ¼Uð1;sÞ¼0;
o2Uð0;sÞ

oX2
¼o2Uð1;sÞ

oX2
¼0 ð4Þ

2.2 Discrete singular convolution and procedure

In the DSC algorithm originally introduced by Wei

[30], the function f(x) and its derivatives with respect

to the x coordinate at a grid point xi are approximated

by a linear sum of discrete values f(xk) in a narrow

bandwidth [x - xW, x ? xW]. This expression can be

written as follows [40, 53]

dnf ðxÞ
dxn

�

�

�

�

x¼xi

¼ f ðnÞðxÞ �
X

W

k¼�W

dðnÞD;rðxi � xkÞf ðxkÞ

n ¼ 0; 1; 2; . . .ð Þ
ð5Þ

where superscript(n) denotes the nth-order derivative

with respect to x and 2 W ? 1 is the computational

bandwidth which is centered around x and is usually

smaller than the whole computational domain. d is a

singular kernel. The DSC algorithm can be realized by

using many approximation kernels [45, 46]. Recently,

an efficient kernel—regularized Shannon kernel

(RSK) [37–40, 42, 43] was proposed to solve applied

mechanic problems. The RSK is given as [39]

dD;rðx� xkÞ ¼
sin½ðp=DÞðx� xkÞ�
ðp=DÞðx� xkÞ

exp �ðx� xkÞ2

2r2

" #

;

r[ 0

ð6Þ

where D is the grid spacing. The parameter r
determines the width of the Gaussian envelope and

often varies in association with the grid spacing,

r = rD. Here r is a parameter chosen in computation.

It is also known that the truncation error is very small

due to the use of the Gaussian regularizer. When the

regularized Shannon’s kernel is used, the detailed

expressions for dðnÞD;r can be easily obtained. Readers

may refer to some published references [40, 42, 44].

In solution procedure for governing differential

equations of rotating shafts, the DSC discrete

scheme Eq. (5) is utilized for the spatial discretization

and the fourth-order Runge–Kutta (RK4) scheme is

used for the time discretization [23, 27–29, 64]. The

computational domain of coordinate X is [0,1], and the

coordinate X is equally spaced, the grid sizes are

denoted by DX = (1 - 0)/N (N is the total number of

partition grid on the computational domain [0,1]), the

grid points are denoted by Xj = (j - 1)DX (j = 1,

2,…, N ? 1). So Xj - Xj?k = -kDX. The approxi-

mate values of UY and UZ at the grid point Xj are

Fig. 1 The rotating shaft

and coordinate systems
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expressed as UY,i and UZ,i. Then, Eq. (2) can be

expressed as

o

os
UY ;j

UZ;J

� �

¼ VY ;j

VZ;j

� �

o

os
VY ;j

VZ;J

� �

¼ �2fe2X
�2X � 2fe

� �

VY ;j

VZ;j

� �

� 2fi
p4

o

oX4

VY ;j

VZ;j

� �

þ X
2 UY ;j

UZ;j

� �

� 1

p4

o4

oX4
þ a cosðHsÞ

p2

o2

oX2

��

UY ;j

UZ;j

� �

j ¼ 1; 2; . . .;N þ 1ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð7Þ

Let

fY1;jg¼fY1;1; Y1;2; . . .;Y1;2Nþ2g
¼fUY ;1 ;UY ;2; . . .;UY ;Nþ1;VY ;1 ;VY ;2; . . . ;VY ;Nþ1g

fY2;jg¼fY2;1; Y2;2; . . .;Y2;2Nþ2g
¼fUZ;1;UZ;2; . . .;UZ;Nþ1;VZ;1;VZ;2; . . .;VZ;Nþ1 g
ðj¼1;2; . . .;2Nþ2Þ

When j = 1, 2,…, N ? 1

Fi;j ¼ Yi;jþNþ1 ði ¼ 1; 2Þ ð8Þ

and when j = N ? 2, N ? 3,…, 2 N ? 2

(

F1;j

F2;j

� �

¼ �2fe2X

�2X� 2fe

" #

Y1;j

Y2;j

� �

� 2fi
p4

o

oX4

Y1;j

Y2;j

� �

þ X
2 Y1;j�N�1

Y2;j�N�1

� �

� 1

p4

o4

oX4
þ a cosðHsÞ

p2

o2

oX2

��

Y1;j�N�1

Y2;j�N�1

� �

: ð9Þ

Then, we have a unified semi-discretized equation.

oYi;j

os
¼ Fi;j ði ¼ 1; 2; j ¼ 1; 2; . . .; 2N þ 2Þ ð10Þ

The temporal discretization expressions of Eq. (10)

by using fourth-order Runge–Kutta method are given as

Ynþ1
i;j ¼ Yn

i;j þ DsYn
i;jþNþ1 þ

Ds2

6
ðLi;jþNþ1;1

þ Li;jþNþ1;2 þ Li;jþNþ1;3Þ
ði ¼ 1; 2; j ¼ 1; 2; . . .;N þ 1Þ

ð11Þ

Ynþ1
i;j ¼ Yn

i;j þ
Ds
6
ðLi;j;1 þ 2Li;j;2 þ 2Li;j;3 þ Li;j;4Þ

ði ¼ 1; 2; j ¼ N þ 2;N þ 3; . . .; 2N þ 2Þ
ð12Þ

where Li;j;1 ¼ Fn
i;j;1, Li;j;2 ¼ Fn

i;j;2, Li;j;3 ¼ Fn
i;j;3, Li;j;4 ¼

Fn
i;j;4(i = 1,2, j = N ? 2, N ? 3, …, 2 N ? 2), and

here superscript n denotes time level, Ds is the time

step, so s = nDs. Using DSC discrete scheme Eq. (5),

the discretization expressions for Fn
i;j;1, Fn

i;j;2, Fn
i;j;3,

Fn
i;j;4 are

(

L1;j;1

L2;j;1

� �

¼
Fn

1;j;1

Fn
2;j;1

� �

¼ �2fe2X

�2X�2fe

� �

Yn
1;j

Yn
2;j

� �

�2fi
p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞ
Yn

1;jþk

Yn
2;jþk

� �

þX
2 Yn

1;j�N�1

Yn
2;j�N�1

� �

� 1

p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞþacosðHsÞ
p2

X

þW

k¼�W

dð2ÞD;rð�kDXÞ
! 

�
Yn

1;jþk�N�1

Yn
2;jþk�N�1

#"

L1;j;2

L2;j;2

� �

¼
Fn

1;j;2

Fn
2;j;2

� ��

¼ �2fe2X

�2X�2fe

� �

Yn
1;jþðDs=2ÞL1;j;1

Yn
2;jþðDs=2ÞL2;j;1

� �

�2fi
p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞ
Yn

1;jþkþðDs=2ÞL1;jþk;1

Yn
2;jþkþðDs=2ÞL2;jþk;1

� �

þX
2 Yn

1;j�N�1þðDs=2ÞYn
1;j

Yn
2;j�N�1þðDs=2ÞYn

2;j

� �

� 1

p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞþacosðHsÞ
p2

X

þW

k¼�W

dð2ÞD;rð�kDXÞ
 !

�
Yn

1;jþk�N�1þðDs=2ÞYn
1;jþk

Yn
2;jþk�N�1þðDs=2ÞYn

2;jþk

� �

(

L1;j;3

L2;j;3

� �

¼
Fn

1;j;3

Fn
2;j;3

� �

¼ �2fe2X

�2X�2fe

� �

�
Yn

1;jþðDs=2ÞL1;j;2

Yn
2;jþðDs=2ÞL2;j;2

� �

�2fi
p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞ

�
Yn

1;jþkþðDs=2ÞL1;jþk;2

Yn
2;jþkþðDs=2ÞL2;jþk;2

� �

þX
2 Yn

1;j�N�1þðDs=2ÞYn
1;jþðDs2=4ÞL1;j;1

Yn
2;j�N�1þðDs=2ÞYn

2;jþðDs2=4ÞL2;j;1

" #

�
 

1

p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞþacosðHsÞ
p2

X

þW

k¼�W

dð2ÞD;rð�kDXÞ
!

Yn
1;jþk�N�1þðDs=2ÞYn

1;jþkþðDs2=4ÞL1;jþk;1

Yn
2;jþk�N�1þðDs=2ÞYn

2;jþkþðDs2=4ÞL2;jþk;1

" #
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(

L1;j;4

L2;j;4

� �

¼
Fn

1;j;4

Fn
2;j;4

" #

¼ �2fe2X

�2X�2fe

" #

Yn
1;jþDsL1;j;3

Yn
2;jþDsL2;j;3

" #

�2fi
p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞ
Yn

1;jþkþDsL1;jþk;3

Yn
2;jþkþDsL2;jþk;3

" #

þX
2 Yn

1;j�N�1þDsYn
1;jþðDs2=2ÞL1;j;2

Yn
2;j�N�1þDsYn

2;jþðDs2=2ÞL2;j;2

" #

� 1

p4

X

þW

k¼�W

dð4ÞD;rð�kDXÞþacosðHsÞ
p2

X

þW

k¼�W

dð2ÞD;rð�kDXÞ
 !

�
Yn

1;jþk�N�1þDsYn
1;jþkþðDs2=2ÞL1;jþk;2

Yn
2;jþk�N�1þDsYn

2;jþkþðDs2=2ÞL2;jþk;2

" #

ðj¼Nþ2;Nþ3;...;2Nþ2Þ: ð13Þ

where [-W, ?W] is the computational bandwidth.

Kernels dð2ÞD;r and dð4ÞD;r can be easily obtained [40, 42,

44]. All of these coefficients are only dependent on

grid size. When the grid point distribution is given, the

coefficients can be computed once and stored for use

during the computation.

The overall calculation procedure can be summa-

rized as follows [23, 27–29]:

(a) with the initial values for Y0
i;j or the values of Yn

i;j

(i = 1, 2, j = 1, 2, …, 2N ? 2) at previous time

level n. And the values beyond the computa-

tional domain can be obtained by anti-symmet-

ric extension according to simply supported

boundary [45];

(b) values of Fn
i;j;1 ; F

n
i;j;2 ; F

n
i;j;3 ; F

n
i;j;4 (i = 1, 2,

j = N ? 2, N ? 3, …, 2N ? 2) at the time

level n can be obtained from Eq. (13);

(c) substituting the values in Eq. (13) into Eqs. (11)

and (12), values of Ynþ1
i;j (i = 1,2, j = 1, 2, …,

2N ? 2) at new time level n ? 1 can be

calculated;

(d) the computational time is advanced (i.e.

s = s ? Ds, n = n ? 1), and the whole proce-

dure above is repeated, until calculation preci-

sion is reached.

3 Numerical results and discussions

In this section, parametric instability regions for the

first mode of a rotating shaft with different spinning

speeds under a periodic axial force are presented.

Effects of spinning speed on instability regions of

rotating shaft without damping and with external

viscous and internal material damping are also

discussed, respectively.

3.1 Parametric instability regions for shafts

with no damping

In order to discuss effects of spinning speed on

parametric instability regions for shafts with no

damping, values of different spinning speeds X are

chosen as 0.3, 0.5, 0.7. The initial conditions and

parameters in DSC algorithm are set: UYðiDX; 0Þ ¼
0:001 sinðiDXpÞ, UZðiDX; 0Þ ¼ 0, oUYðiKX; 0Þ=os ¼
oUZðiKX; 0Þ=os ¼ 0 (i = 0,1,2,…,N), N = 16,

W = 15, r = 2.5, Ds = 3.0 9 10-6. For the choice

of N, W and r, readers may refer to the works of [40,

42, 65].

Figure 2 shows dynamic responses of dimension-

less displacements at midpoint for a rotating shaft with

no damping and spinning speed X = 0.3. It is

observed that the dynamic responses for h/2x = 1.0

a = 0.05, h/2x = 0.9 a = 0.40 and h/2x = 1.1

a = 0.42 in Fig. 2a, c, e, are dynamically unstable;

while the dynamic responses for h/2x = 0.9 a = 0.38

and h/2x = 1.1 a = 0.40 in Fig. 2b, d, are dynami-

cally stable. The whole procedure above is repeated,

then the principal parametric instability region for the

first mode shown as Fig. 3 is plotted. It is found that

the parametric instability region determined by DSC

algorithm is coincident with that determined by

Floquet’s method [18] very well. The parametric

instability region is ‘V’ shape, and when the exciting

frequency is twice of the natural bending frequency of

non-spinning shaft (h/2x = 1.0), the parametric

instability is the most serious.

Similarly, parametric instability regions with dif-

ferent spinning speeds X = 0.5 and 0.7 for a rotating

shaft with no damping are plotted in Figs. 4 and 5. It is

observed from these figures that parametric instability

regions determined by DSC algorithm are in good

agreement with those determined by Floquet’s

method, respectively, which verifies applicability of

DSC algorithm to parametric instability analysis of

rotating shafts. And all the parametric instability

regions are ‘V’ shapes. It is also seen that there are

some errors in these figures, especially when the value
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Fig. 2 Dynamic responses of dimensionless displacements for a rotating shaft with no damping and spinning speed X = 0.3.

a h/2x = 1.0 a = 0.05, b h/2x = 0.9 a = 0.38, c h/2x = 0.9 a = 0.40, d h/2x = 1.1 a = 0.40, e h/2x = 1.1 a = 0.42
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of a is very large. The reasons for obvious errors are

that the first approximation [18] of Floquet’s method

and assumed mode method are applied to determine

the boundaries of instability regions. Due to neglecting

the second and higher-order terms, when the value of

the axial force (a) is very large, the application of the

first approximation will result in obvious error.

Moreover, the assumed mode is not the real mode of

the shaft subjected to a periodic axial force. The

difference of assumed mode and real mode gets very

obvious with large value of a, which also lead to

obvious error.

A comparison of parametric instability regions with

different spinning speeds for a rotating shaft with no

damping is shown in Fig. 6, and instability regions

Fig. 3 Parametric instability region for a rotating shaft with no

damping and spinning speed X = 0.3

Fig. 4 As Fig. 3, but X = 0.5, Key as for Fig. 3

Fig. 5 As Fig. 3, but X = 0.7, Key as for Fig. 3

Fig. 6 Effects of spinning speed on parametric instability

regions for a rotating shaft with no damping. a Parametric

instability regions by DSC and Floquet’s methods, b parametric

instability regions by DSC, Floquet’s and Bolotin’s methods
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determined by Floquet’s and Bolotin’s methods are

also plotted. It is observed from Fig. 6a that paramet-

ric instability regions determined by DSC and Flo-

quet’s methods are ‘V’ shapes, and do not vary

obviously with spinning speed increasing, which

means spinning speed has no significant influence on

parametric instability regions of rotating shafts with-

out damping. While seen from Fig. 6b, parametric

instability regions determined by Bolotin’s method

expand with spinning speed increasing [1–3, 6, 7],

which contradict the present numerical results by DSC

and those by Floquet’s method. From the above

comparison and contrast, it may be considered that the

present numerical results obtained by DSC support

Floquet’s method, but disagree with Bolotin’s method.

In the work of Pei [18], Bolotin’s method is considered

to result in the enlargement of instability regions for

rotating systems, and may be considered to be not

adapted to parametric instability analysis of rotating

systems. The present study further validates the

viewpoint in the work of Pei by using a direct

numerical simulation method, rather than a theoretical

method. Especially, to the authors’ knowledge, there

are no experimental reports on this problem. There-

fore, this numerical study appears especially important

to enhance understanding parametric instability of

rotating systems.

Figure 7 shows dimensionless displacements of

midpoint on the shaft under different spinning speeds

with h/2x = 0.9 a = 0.38. It is found that the

amplitudes of displacements increase with spinning

speed increasing. Therefore, it may be considered that

the increase of spinning speed does not affect the size

of parametric instability regions of rotating shafts with

no damping obviously, while results in the increase of

the amplitude of displacement.

3.2 Parametric instability regions for shafts

with damping

In this sub-section, effects of spinning speed on

parametric instability regions of rotating shafts with

external viscous damping and internal material damp-

ing are discussed. And influence of increase of

damping on parametric instability regions is also

analyzed.

Figure 8 shows dynamic responses of dimension-

less displacements at midpoint for a rotating shaft with

spinning speed X = 0.3 and external damping

fe = 0.05. It is seen that the dynamic responses for

h/2x = 1.0 a = 0.20, and h/2x = 0.9 a = 0.42 from

Figs. 8b, d, are dynamically unstable; while the

dynamic responses for h/2x = 1.0 a = 0.18 and h/

2x = 0.9 a = 0.40 from Fig. 8a, c, reduce with time

increasing, and are dynamically stable. The whole

procedure above is repeated, then the parametric

instability region with X = 0.3, fe = 0.05 shown as

Fig. 9 is plotted. Similarly, the parametric instability

regions with different spinning speeds X = 0.5 and

0.7 for rotating shafts with damping fe = 0.05 are

presented in Figs. 10 and 11. In order to analyze

damping effects, the instability regions for rotating

shafts with no damping are also plotted in Figs. 9, 10

and 11.

In Figs. 9, 10 and 11, it is found that the parametric

instability regions determined by DSC algorithm

agree well with those determined by Floquet’s

method, respectively, although there are some errors.

It is also observed from Figs. 9, 10 and 11 that the

boundaries of parametric instability regions for a

rotating shaft with external damping intersect with

those for a rotating shaft with no damping in certain

cases, respectively. Furthermore, this phenomenon

gets more obvious with spinning speed increasing, and

is quite different from that for non-spinning beams.

According to conclusions in the book of Bolotin [24],

the boundaries of parametric instability regions for

beans with external damping are included in those for

beams with no damping, and these two kinds of

Fig. 7 Dynamic responses of transverse displacements under

different speeds with h/2x = 0.9 a = 0.38
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Fig. 8 Dynamic responses of transverse dimensionless displacements for a rotating shaft with external damping fe = 0.05 and

spinning speed X = 0.3. a h/2x = 1.0 a = 0.18, b h/2x = 1.0 a = 0.20, c h/2x = 0.9 a = 0.40, d h/2x = 0.9 a = 0.42

Fig. 9 Dynamic instability region of a rotating shaft with

X = 0.3 fe = 0.05
Fig. 10 As Fig. 9, but X = 0.5, Key as for Fig. 9
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boundaries cannot intersect each other. To the authors’

knowledge, this phenomenon for rotating shafts has

not been reported in the published works [1–3, 6, 7].

Therefore, this phenomenon is a new found, which can

enhance more understanding to parametric instability

of rotating systems. However, on the cause of this

phenomenon, further investigation on this problem is

needed.

A comparison of parametric instability regions with

different spinning speeds for rotating shafts with

external damping fe = 0.05 is shown in Fig. 12. It is

found that the instability regions for rotating shafts

with damping determined by DSC and Floquet’s

method are enlarged as spinning speed increases,

which means that the increase of spinning speed leads

to enlargement of instability regions for rotating shafts

with damping, but has little influence on instability

regions for rotating shafts without damping seen from

Fig. 6. Therefore, due to the existence of damping,

spinning speed has a significant influence on paramet-

ric instability regions of rotating shafts. In addition,

effect of the increase of damping on parametric

instability regions is demonstrated in Fig. 13. It is

seen that the increase of damping results in the

reduction of parametric instability region, which

improves dynamic stability of systems. And the effect

is very obvious when the exciting frequency is near

twice of the natural frequency.

Fig. 11 As Fig. 9, but X = 0.7, Key as for Fig. 9

Fig. 12 Effects of spinning speed on parametric instability

regions for a rotating shaft with external damping fe = 0.05

Fig. 13 Effects of the increase of damping on parametric

instability regions with X = 0.5

Fig. 14 Dynamic instability region of a rotating shaft with

X = 0.3 fi = 0.05
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Parametric instability regions of rotating shafts

with internal material damping under different spin-

ning speeds are plotted in Figs. 14, 15 and 16.

Similarly to Figs. 9, 10 and 11, it is observed from

Figs. 14, 15 and 16 that the boundaries of parametric

instability regions for rotating shafts with internal

damping intersect with those for rotating shafts with

no damping, respectively. Moreover, this phe-

nomenon gets more obvious as spinning speed

increases. Figure 17 shows the comparison of para-

metric instability regions with different spinning

speeds for rotating shafts with internal damping

fi = 0.05. It is found that the instability regions are

enlarged as spinning speed increases, that is to say the

increase of spinning speed leads to enlargement of

instability regions for rotating shafts with internal

material damping. These above conclusions are sim-

ilar to those for rotating shafts with external damping,

which means internal material damping has the same

influence on parametric instability regions of rotating

shafts as external viscous damping.

4 Conclusions

Parametric instability of a rotating shaft with different

spinning speeds subjected to a periodic axial force has

been studied by using DSC method. External viscous

damping and internal material damping (Voigt–

Kelvin model) are considered. Effects of spinning

speed and damping on parametric instability regions

for rotating shafts also have been investigated. The

following conclusions may have been drawn.

1. For rotating shafts with no damping, parametric

instability regions with different spinning speeds

determined by DSC method are ‘V’ shapes, and

do not vary obviously with spinning speed

increasing, which agree well with those deter-

mined by Floquet’s method, but are quite different

from those determined by Bolotin’s method. It

may be considered that the numerical results

obtained by DSC method support Floquet’s

method, disagree with Bolotin’s method, and

further validate the viewpoint in the work of Pei

Fig. 15 As Fig. 14, but X = 0.5, Key as for Fig. 14

Fig. 16 As Fig. 14, but X = 0.7, Key as for Fig. 14

Fig. 17 Effects of spinning speed on parametric instability

regions for a rotating shaft with internal damping fi = 0.05
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[18]. Therefore, it is strongly recommended that

Bolotin’s method should not be applied to para-

metric instability analysis for rotating systems.

Moreover, considering that experimental reports

on this problem have not been published, this

present numerical study appears especially impor-

tant to help us to better understand parametric

instability of rotating systems.

2. For rotating shafts with damping, the effects of

external viscous damping and internal material

damping on parametric instability regions are

similar. Parametric instability regions under dif-

ferent spinning speeds determined by DSC

method are enlarged significantly as spinning

speed increases, that is to say the increase of

spinning speed results in the enlargement of

instability region, which are in good agreement

with those obtained by Floquet’s method. The

present results further support Floquet’s method.

In addition, the increase of damping results in

reduction of parametric instability region, which

is helpful to improve dynamic stability of rotating

systems, especially when the exciting frequency is

near twice of the natural frequency.

3. The boundaries of parametric instability regions for

a rotating shaft with damping (external and internal

damping) intersect with those for a rotating shaft

with no damping in certain cases, respectively.

Moreover, this phenomenon gets more obvious

with spinning speed increasing, which is quite

different from that for non-spinning beams. This

phenomenon has not been studied in the published

works, which can enhance more understanding to

parametric instability of rotating systems.

4. The effects of spinning speed on parametric

instability regions are different from those in

some published works. It may be considered that

spinning speed has no significant influence on

parametric instability regions for rotating shafts

with no damping, while has a great effect on

parametric instability regions for rotating shafts

with damping including external and internal

damping. The parametric instability regions for

rotating shafts with damping are enlarged signif-

icantly as spinning speed increases. Of course, the

spinning speed considered here is lower to the

critical spinning speed.

5. Parametric instability regions are determined by

judging stability of displacement responses

obtained by using DSC procedure to directly

solve governing differential equations of rotating

shafts, which is quite different from the way by

using theoretical methods. The present study

further validates the viewpoint in the work of

Pei by using a direct simulation method–DSC,

rather than a theoretical method.

6. This study extends the application field of DSC

method from vibration and buckling analysis of

beams (boundary-value problem) to dynamic

response solution and parametric instability anal-

ysis of rotating shafts (initial-value problem). The

calculation procedure for solving governing dif-

ferential equations of rotating shafts can also be

used to solve other problems.
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