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Abstract The inviscid temporal stability analysis of

two-fluid parallel shear flow with a free surface, down

an incline, is studied. The velocity profiles are chosen

as piecewise-linear with two limbs. The analysis

reveals the existence of unstable inviscid modes,

arising due to wave interaction between the free

surface and the shear-jump interface. Surface tension

decreases the maximum growth rate of the dominant

disturbance. Interestingly, in some limits, surface

tension destabilises extremely short waves in this flow.

This can happen because of the interaction with the

shear-jump interface. This flowmay be compared with

a corresponding viscous two-fluid flow. Though

viscosity modifies the stability properties of the flow

system both qualitatively and quantitatively, there is

qualitative agreement between the viscous and invis-

cid stability analysis when the less viscous fluid is

closer to the free surface.

Keywords Free surface flow � Linear stability
analysis � Inviscid instability � Wave interaction

1 Introduction

Motivated by different applications, a large number of

inviscid instability studies have been carried out on

parallel shear flows that include flows between parallel

plates [1–5], flows bounded by two free surfaces or

wall bounded flows bounded by a free surface from

above [6–12]. These investigations have employed

various piecewise linear velocity profiles in their

models and analysis, with different aims. As we shall

describe below, one of the recurrent aims has been to

represent viscous flows by selecting the closest

inviscid flow profiles, to evaluate the inviscid nature

of the instabilities in viscous flows. Our aim here is the

same, and the viscous flow we would like to make a

correspondence with is that of a two-fluid film flow on

an inclined surface. The two fluids have different

viscosities but the same density, with viscosity varying

from one fluid’s value to the next within a thin layer of

mixed fluid.

This study is in fact motivated by the recent study

on the linear stability of miscible two-fluid free-

surface flows of varying viscosity down an inclined

substrate examined by Usha et al. [13]. The results

reveal the occurrence of new instability modes when

the critical layer of dominant disturbance overlaps the
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viscosity gradient. A configuration with a less viscous

wall layer is identified to be the most stable configu-

ration at moderate miscibility, with respect to both

overlap and surface modes. However, when a less

viscous fluid is adjacent to the free surface, the

configuration is unstable which is in contrast with the

immiscible interface dominated two-fluid free surface

flow [14]. An increase in the inclination angle

enhances the destabilization. It is of interest to

understand the physical mechanism responsible for

flow instabilities in the above flow system and one

needs to find out whether the instabilities arise due to

viscosity stratification and/or diffusivity and/or invis-

cid mechanism. In view of this, in the present study, an

inviscid flow model of the above free surface flow

problem is developed and the instability of two-fluid

parallel shear flow down an incline separated by a

jump in viscosity is analyzed. For the inviscid model,

we consider base velocity profiles as continuous

piecewise linear profiles with a slope change across

the viscosity interface such that the asymptotic

behaviour of the viscous velocity profile is maintained

(see Fig. 2).

It is worth mentioning that a similar analysis was

performed by Sahu and Govindarajan [15], in which

they have investigated the viscous instability of free

shear layer in the vicinity of a viscous stratified mixed

layer. Their results show that diffusivity has no

influence on the stability of this class of shear flows

but viscosity stratification has a significant role on the

stability characteristics. This requires an explanation

as to why there is no influence of diffusivity on the

stability in this system. The authors have pointed out

that ‘‘it could be due to viscosity stratification acting

on the stability in an inviscid nondiffusive way’’. In

order to understand this, they have considered an

inviscid model flow with a slope change across the

interfaces where viscosity is stratified. The ratio of the

slopes across the middle interface represents the

inverse of the viscosity ratio. The existence of an

unstable inviscid mode for small wave numbers has

been shown. In addition, a qualitative agreement

between viscous and inviscid results through the trend

of growth rate and the influence of the location of the

slope change on the dominant growth rate have been

observed. These authors have concluded that this

broad qualitative agreement between the viscous and

the inviscid model results indicate that an inviscid

non-diffusive mechanism has a role to play through a

change in the velocity profile above and below the

stratified layer.

In line with the above investigation, our goal in the

present study is to understand the mechanism by

which viscosity stratification acts in free surface flows.

It is important to note that viscosity stratification

across two different fluid phases can give rise to

instabilities that are neither inviscid nor of the TS type

[16–21]. There are also inviscid models of two-phase

flows or free-shear layer flows which are inviscidly

unstable to infinitesimal perturbations, under certain

conditions. The inviscid framework is sufficient to

describe the disturbance evolution at large Reynolds

numbers [22–24]. In addition, the present study

provides information on the inviscid analysis on wall

bounded flows bounded by a free surface from above.

It is to be noted that, in spite of a number of

engineering applications such as spilling breakers [6,

7], coating of a substrate or manufacture of photo-

graphic films [25, 26] and environmental flows such as

rock glaciers [8, 27] in which one comes across

instabilities in a film with a free surface, there are only

few inviscid studies on flows bounded by a free

surface. Bakas and Ioannou [10] have studied modal

and non-modal growth of inviscid planar perturbations

in shear flows with a free surface by approximating the

mean flow with one kind of piecewise linear profile.

They have examined the interaction of edge waves that

arise at the density discontinuity at the surface and

vorticity waves that are supported at the mean vorticity

gradient discontinuities in the interior. Renardy’s

investigation [11] on plane parallel shear flows

bounded by two free surfaces shows that the flow

system has long-wave instabilities for all types of

velocity profiles that are not uniform. Kaffel and

Renardy [12] have considered the linear stability of

plane Poiseuille flow between two parallel free

surfaces and the analysis reveals that there are short

wave instabilities for a velocity profile with a shear

rate increasing towards the free surface. However, a

broad class of wall bounded flows are stable and there

is no smooth velocity profile that is unstable to short

waves.

Rayleigh’s criterion for wall bounded flows states

that the base flow profile must have an inflection point

for instabilities to exist. Yih [28] and Hur and Lin [29]

have extended Rayleigh’s criterion for wall bounded

flows to free surface flows. They have claimed that all

monotonic profiles with inflection points have long-
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wave instabilities. Correcting the errors in the argu-

ments presented by Yih [28] and Hur and Lin [29],

Renardy and Renardy [30] in their investigation on the

linear stability of inviscid parallel shear flow in a

geometry bounded by a wall at the bottom and with a

free surface subject to gravity show that the stability

characteristics of a free surface flow are different from

those for wall bounded flows. Their conclusions are

based on the three specific flows U(y) namely,

Poiseuille flow (with no inflection point but has

velocity extremum), flow with a hyperbolic tangent

shear layer (has an inflection point at y ¼ 0, U and U00

have opposite signs), and a cubic base profile (has an

inflection point at y ¼ 0, U and U00 have same signs).

The results show that while neutral limiting modes

must have a wave speed equal to an inflection value of

the base flow profile for wall bounded case, a shear

flowwith a free surface can have a wave speed equal to

either the velocity at the bottom or to an extremum

value of velocity. Furthermore, short waves are

destabilized as the shear rate increases towards the

free surface.

Instabilities in shear flows have also been studied

in detail for base flows without inflection point, [12,

30–32] for flows with piecewise linear profiles [33,

34] and for continuous profiles [35]. The stability of

gravitational-capillary waves in the presence of

vertically non-uniform current analysed by Vorono-

vich et al. [34] shows that long waves are stable. In

their study, the bottom layer is infinite and a vortex

sheet is located at a fixed depth below the surface.

The velocity profile in the top layer is linear. If

however, it is constant, then, in the absence of a

vortex sheet, the long waves are unstable for an

infinite depth (Theorem 1.2 in Bresch and Renardy

[36]).

Bresch and Renardy [36] have revisited the prob-

lem analyzed by Voronovich et al. [34] for a config-

uration with a finite bottom layer, relaxing the

assumption of an irrotational flow and by including

the gravity effects. They have examined Kelvin–

Helmholtz instability with a free surface. The veloc-

ities of two-fluid layers are different. Long-wave

stability for sufficiently small gravity is shown for

smooth monotone velocity profiles of base flow. The

scenario in the wall bounded case is different; the flow

is unstable to all wavenumbers. Instabilities existing at

large wavenumbers are localized and are independent

of the boundary conditions.

Concerning shear flows without an upper free

surface, the classical inviscid problem considered by

Kelvin and Helmholtz that involves a vortex sheet (an

infinite surface of discontinuity) separating two

unbounded fluid layers of different velocity and

density is always unstable provided a velocity differ-

ence exists and it has largest growth rate in the absence

of density discontinuity. Following this, numerous

studies have attempted to understand the instability

characteristics of unbounded parallel inviscid flows

[37–41].

There are investigations on two-fluid flows strati-

fied by gravity and also between two rigid plates [1–5,

36]. The inviscid instability of immiscible fluids in a

shear layer examined by Pouliquen et al. [42] revealed

the existence of Holmboe waves for symmetric

broken-line profile. Though they ignored the viscosity

effects, the chosen velocity profile satisfied the

condition of continuity of shear stress at the interface.

When the symmetry is broken (the two fluids have

different densities with zero velocity at the interface),

they observed a single mode propagating in the same

direction as the less viscous fluid at high wavenum-

bers. The linear stability of inviscid density-stratified

shear layer flows are discussed in detail by Redekopp

[43]. The effects of surface tension, density and

velocity profile on inviscid instability of an unbounded

shear layer are examined by Alabduljalil and Rangel

[44]. In this study, they have taken the background

velocity profiles as (a) piecewise linear profile and

(b) error-function profile. The results reveal that

surface tension has a destabilizing effect and that the

unstable mode induced by surface tension is weak as

compared to the dominant mode. Instabilities at large

wavenumbers are observed with a background viscos-

ity jump at the interface. Although the above studies

deal with inviscid stability analysis of an unbounded

shear layer of two fluids, the viscosity has its role to

play on the background flow and influences the

stability characteristics of the flow. In the inviscid

analysis presented, the effect of viscosity appears

through its influence on the background velocity

profile.

There are also some earlier work relevant to the

present study [45–48]. The viscous temporal stability

problem of a planar gas–liquid mixing layer with a

single interface and without confinement is analyzed

by Yecko et al. [45] and Boeck and Zaleski [46] for

basic velocity profiles characterized by boundary
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layers adjacent to the interface. Boeck and Zaleski

[46] performed the inviscid computations for a

piecewise linear velocity profile with slopes corre-

sponding to the boundary layers associated with the

viscosity profile. When the base velocity profiles are

smooth and monotonic, the above investigations show

that there are three characteristic unstable modes in

different bandwidth of wavenumbers. These modes

arise due to (i) the difference in free-stream velocity

responsible for inviscid Kelvin–Helmholtz mecha-

nism, (ii) the TS mechanism in the gas boundary layer

and (iii) the viscosity contrast mechanism. These

modes occur distinctly in the limiting case of large

Reynolds numbers. They have observed difference

between the viscous and inviscid computations and

they have attributed this to the viscosity-contrast

instability mechanism. The instability that arises due

to viscosity contrast occurs at the interface between

the two fluids, occurs for short-wavelengths when

viscosity rather than inertia is the dominant physical

effect. The instability mechanism for the short-wave-

length instability due to viscosity contrast was anal-

ysed by Hinch [47], who postulated that this instability

requires a large viscosity contrast and a significant

vorticity diffusion (i.e. a high Schmidt number).

The viscous linear stability analysis of the gas–

liquid mixing layers considered by Otto et al. [48]

depends on the basic velocity profiles, the density ratio

and on the Reynolds number. Their inviscid compu-

tations for growth rates is only favourable for low air

velocities when the experimental frequencies are used

and a small or moderate velocity deficit is incorpo-

rated. Their spatial stability analysis predicts results

that agree very well with measured growth rates

obtained in air–water experiments.

The above investigations [45, 46, 48] indicate that it

is possible to gain insight into the perturbation growth

mechanism in the present study by understanding the

modal instabilities in terms of the interaction between

the interfaces, namely the free surface with or without

surface tension and the liquid–liquid interface with

viscosity jump. The paper is organized as follows:

Sect. 2 presents the governing equations, the base state

profiles and the derivation of the dispersion relation.

The results are discussed in Sect. 3; the equation for

the total rate of disturbance kinetic energy is derived in

Sect. 3.4; and the concluding remarks are given in

Sect. 4. The present study is only a model to check if

inviscid mechanism is important and hence the focus

is on investigating a base state which is just a profile

mimicking the viscous base state. In other words, we

perform the stability analysis of an inviscid base

profile which follows the characteristics and asymp-

totic behaviour of viscous base profile.

2 Mathematical formulation

2.1 Base state

As mentioned before, the idea is to investigate whether

viscosity change across a filmflowcan have an inviscid

effect on the stability, via changes in the velocity

profile. An inviscid and non-diffusive analogue of the

miscible two-fluid viscosity stratified flow down an

inclined substrate (Usha et al. [13]) is constructed

(Fig. 1). As is common in inviscid analyses [15, 46],

continuous piecewise linear velocity profiles are used

as base flow as shown in Fig. 2a. The jump in shear

stress at the interface is taken to be equal to the inverse

of the viscosity jump we are interested in comparing

with. The corresponding velocity profiles in a viscous

film are constructed by the approach described in Usha

et al. [13], and are shown in Fig. 2b. The viscosity jump

across the mixed layer is modelled by a corresponding

jump in the slope of the velocity profile at y ¼ d for the

inviscid analysis. The inviscid flow now supports two

sets of waves, one at the liquid–liquid interface

(y ¼ d) and another at the free surface (y ¼ 0).

Let U1BðyÞ and U2BðyÞ denote the base velocity

profiles in fluid layers 1 and 2 respectively. Taking the

Fig. 1 Schematic of the geometry for the flow system

considered. Fluids ‘1’ and ‘2’ occupy the regions near the

inclined plane (y = H) and near the free surface (y ¼ h2ðx; tÞ)
respectively. y ¼ h1ðx; tÞ represents the liquid–liquid interface

and h is the angle of inclination
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base profiles as piecewise linear and using the

conditions U1Bðy ¼ 1Þ ¼ 0, U2Bðy ¼ 0Þ ¼ 1 and

U1Bðy ¼ dÞ ¼ U2Bðy ¼ dÞ, these are obtained as

U1BðyÞ ¼
K1

Y
ð1� yÞ; ð1Þ

U2BðyÞ ¼
K2

Y
ðd � yÞ þ K1

Y
ð1� dÞ; ð2Þ

where the factor Y ¼ K2d þ 1� d appears upon

scaling the velocity with its value at the free surface.

In what follows, K1 is fixed as K1 ¼ 1 without loss of

generality. For comparing with a viscous flow of

viscosity ratiom ¼ l2=l1, an appropriate choice of K2

is 1 / m (as m ¼ 1=K2 makes the shear stress contin-

uous in the viscous case with viscosity ratio m). The

base velocity profiles for different values K2 (0.5, 1,

1.5) in the upper layer are presented in Fig. 2a.

Figure 2a suggests that, when K2\1 (K2 [ 1), the

velocity profile is convex (concave) function of

y. K2 ¼ 1 presents a single fluid flow with linear

velocity profile. The value K2 [ 1 corresponds to

m\1 and K2\1 to m[ 1 profiles in Fig. 2b for the

viscous case.

It is worth mentioning here that according to the

inviscid theory, a flow system with convex base

velocity profile is more inviscidly stable [2]. Our goal

is to develop an inviscid model for the miscible two-

fluid flow system to check if inviscid mechanism is

important or not.

2.2 Linear stability equations

The equations and the boundary conditions governing

the inviscid instability of the gravity-driven free

surface flow of two-fluids down an incline on

0� y�H (Fig. 1) are non-dimensionalized using the

following scales:

x� ¼ x

H
; y� ¼ y

H
; t� ¼ V

H
t; ðu�n; v�nÞ ¼

1

V
ðun; vnÞ;

p� ¼ p

qV2
; d� ¼ d

H
; h�n ¼

hn

H
;

ð3Þ

where V is the characteristic velocity at the free

surface,H is the height of the unperturbed film and q is

the fluid density; the sub-index n ¼ 1; 2 denotes to the

flow variables in fluid layers ‘1’ (d� y� 1) and ‘2’

(0� y� d) respectively; un, vn are the velocity com-

ponents in the x and y directions, respectively; pn and

t correspond to the pressure and time. h1ðx; tÞ, h2ðx; tÞ
are the deflections of the liquid–liquid interface and

the free surface with respect to y ¼ d and y ¼ 0,

respectively (see Fig. 1).

The boundary conditions are the no-slip condition

at the inclined plane (y ¼ 1), the continuity of normal

velocity, pressure and kinematic condition at the fluid–

fluid interface (y ¼ h1ðx; tÞ) together with the kine-

matic condition and the balance of pressure at the free

surface (y ¼ h2ðx; tÞ). They are linearized about the

base flow and in terms of disturbances ~un; ~vn; ~pn and ~hn

(a) (b)

0 0.2 0.4 0.6 0.8 1
UB

0

0.2

0.4

0.6

0.8

1

y

K2 = 0.5
K2 = 1.0
K2 = 1.5

0 0.5 1 1.5 2
UB , μB

0

0.2

0.4

0.6

0.8

1

y

m = 0.5
m = 1.0
m = 1.5

Fig. 2 Base velocity profiles: a for inviscid two-fluid free surface flow with slope change interface located at d ¼ 0:4 and b for the

corresponding viscous miscible two-fluid flow in Fig. 2 of Usha et al. [13]; curves with star symbols represent base viscosity profiles
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(n ¼ 1; 2) proportional to ei ax�xtð Þ with proportionality

constants ûn; v̂n; p̂n and ĥn (n ¼ 1; 2) respectively,

where i �
ffiffiffiffiffiffiffi

�1
p

, a and x ¼ ac are the wave number

and the frequency of the infinitesimal two-dimen-

sional disturbances; c is the complex wave speed. This

results in the following eigenvalue problem in the

form of Rayleigh equations for the two-dimensional

perturbations on the domain 0� y� 1 [after suppress-

ing hat ð^Þ symbols]:

ðUnB � cÞðD2 � a2Þvn � U00
nBvn ¼ 0: ð4Þ

Note that since the velocity profiles are linear,

U00
nB ¼ 0. The boundary conditions are given by

v1 ¼ 0 at y ¼ 1; ð5Þ

v1 ¼ v2 at y ¼ d; ð6Þ

p1 ¼ p2 at y ¼ d; ð7Þ

v1 ¼ iah1ðU1B � cÞ at y ¼ d; ð8Þ

v2 ¼ iah2ðU2B � cÞ at y ¼ 0; ð9Þ

p2 ¼ �a2Sh2 � G cotðhÞ at y ¼ 0: ð10Þ

In the above, G ¼ gH sinðhÞ
V2 is the dimensionless gravity

parameter, S ¼ r
qV2H

is the dimensionless surface

tension parameter, where r, g are the surface tension

coefficient between fluid-2 and air, and acceleration

due to gravity, respectively.

The solutions of Eq. (4) are

v1ðyÞ ¼ P1e
ay þ Q1e

�ay; ð11Þ

v2ðyÞ ¼ P2e
ay þ Q2e

�ay; ð12Þ

where P1, Q1, P2, Q2 are arbitrary constants to be

determined. Substitution of v1, v2 in the boundary

conditions (5)–(10) yields the following dispersion

relation in wave speed ‘c’ and wave number ‘a’:

aðc� Ud
1BÞðead þ eað2�dÞÞ þ Ud

1Byðead � eað2�dÞÞ
h i

¼ M3 aðc� Ud
2BÞðead �M2e

�adÞ
�

þUd
2Byðead þM2e

�adÞ
i

;

ð13Þ

where

M1 ¼ aðc� U0
2BÞ;

M2 ¼
M1ðM1 þ U0

2ByÞ þ ða3Sþ aG cotðhÞÞ
M1ðM1 � U0

2ByÞ � ða3Sþ aG cotðhÞÞ

" #

;

M3 ¼
ead � eað2�dÞ

ead þM2e�ad

� �

:

and Ud
nB and U0

nB (n ¼ 1; 2) represent the values of

base velocity at y ¼ d and y ¼ 0 respectively. The

dispersion relation (13) is cubic in c for a given value

of a. Equation (13) can be simplified since the base

velocity profiles are piecewise linear and U0
2B ¼ 1,

K1 ¼ 1. Also, from equations (1) and (2), one obtains

Ud
1B ¼ Ud

2B ¼ ð1� dÞ=Y , Ud
1By ¼ �1=Y , Ud

2By ¼
�K2=Y , U

0
2By ¼ �K2=Y . Defining

f � G cot hþ Sa2; ð14Þ

and for ease of algebra, setting q � sinh½að1� 2dÞ�=
ðcosh aÞ, r � cosh½að1� 2dÞ�=ðcosh aÞ, x ¼ 1� d,

K2 ¼ k, y ¼ kd and t ¼ tanhðaÞ, Eq. (13) is rewritten
after some algebra as

c3 þ Bc2 þ Ccþ D ¼ 0; ð15Þ

where

B ¼ 1

ðxþ yÞ �3x� 2yþ ðk þ 1Þt þ qð1� kÞ
2a

� �

;

ð16Þ

C ¼ 1

ðxþ yÞ2
�

ðxþ yÞð3xþ yÞ

� t

a
xþ k � f þ 2ðxþ yÞf þ d2ðk � 1Þ2f

h i

þ ðk � 1Þ
2a2

kðr � 1Þ þ 2aðxþ yÞq½ �
�

;

ð17Þ

D ¼ � 1

ðxþ yÞ x� kxt

aðxþ yÞ

�

þ 1

2a
ðk � 1� 2xf Þt þ qðk � 1Þ½ �

þ ðr � 1Þðk � 1Þ
2a2

f þ k

ðxþ yÞ

� ��

:

ð18Þ

For a cubic equation with real coefficients, the only

two possibilities are that either all roots are real, or that
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one root is real and the other two are complex

conjugates of each other. Therefore, the flow system is

stable (unstable) accordingly as the discriminant,

D ¼ C2ðB2 � 4CÞ � 4B3D� 27D2 þ 18BCD ð19Þ

is positive (negative).

3 Stability results

3.1 Limiting cases

Before presenting the complete solution, it is revealing

to obtain some limiting solutions of this problem.

First, when d ¼ 0 and k ¼ 1, Eq. (15) reduces to that

for a single fluid, which, upon regrouping, can be

written as

ðc� 1Þ �ac2 þ cð2a� tanhðaÞÞ
� �

þðc� 1Þ ðf þ 1Þ tanhðaÞ � a½ � ¼ 0:
ð20Þ

The roots of Eq. (20) are

c1 ¼ 1;

c2;3 ¼
ð2a� tanhðaÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh2ðaÞ þ 4af tanhðaÞ
q

2a
;

which may be seen to be all real, since a	 0. Thus, a

film of a single fluid with a linear profile flowing down

an incline is inviscidly stable at all wavenumbers for

any surface tension and any inclination. We return to

the piecewise linear velocity profile, with k 6¼ 1.

3.1.1 Vertical wall, no surface tension

We notice that gravity and surface tension appear in

the problem only as the combination f, given by

Eq. 14. For a vertical wall (h ¼ 90
), in the absence of
surface tension (S ¼ 0), we have f ¼ 0. It may be

checked that 1þ Bþ C þ D ¼ 0, showing that c ¼ 1

is a root of the cubic equation (15). The other two roots

are those of the quadratic equation

c2 þ ð1þ BÞc� D ¼ 0: ð21Þ

The discriminant of Eq. (21) becomes (after some

algebra),

D ¼ ð1� kÞ
ðxþ yÞ2

2k

a2
ðr � 1Þ þ y

a
ðt þ qÞ þ t2

4a2
ð1þ 3kÞ

�

þ q2

4a2
ð1� kÞ þ tq

2a2
ð1þ kÞ

�

þ 1

ðxþ yÞ2
y� kt

a

� �2

Case (i) Short waves ða ! 1Þ: Here, D ¼
k2d2=ðkd þ 1� dÞ2 which is positive, showing that

the roots of Eq. (21) are real. Therefore, there is no

short wave instability for f ¼ 0.

Case (ii) Long waves ða ! 0Þ: In this case, D ¼
ð1� dÞ2=ðkd þ 1� dÞ2 and it is positive again, so

long-waves too are stable for any k when f ¼ 0.

3.1.2 Horizontal wall or large surface tension

In the limit of either cot h or S becoming extremely

large, f becomes very large. An examination of the

discriminant makes it evident that stability is decided

in this limit by the sign of �4C3. In this limit,

C ¼ � tf

a

	 


: ð22Þ

It is immediately evident that the discriminant is

always positive, which makes the flow always

stable when either the wall inclination goes to 0 or

surface tension is very large.

For the case when f 6¼ 0 but is finite, we examine

below the limits of diverging and vanishing shear

ratios.

3.1.3 Diverging shear ratio k

As the ratio of the slopes of the linear velocity profiles

tends to infinity (k ! 1), we have the velocity of the

lower fluid going to 0. One obtains from Eqs. (16)–

(18),

Bk!1 ¼ �2þ t � q

2da
;

Ck!1 ¼ 1þ 1

2a2d2
ðr þ 2adq� 1Þ � tf

a
;

Dk!1 ¼ 1

2a2d2
ð1� rÞð1þ df Þ � adðqþ tÞ½ �:

Case (i) Short waves: We note that,
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lim
a!1

t

a
¼ 0; lim

a!1

q

a
¼ 0; lim

a!1

q

a2
¼ 0; lim

a!1

r� 1

a2
¼ 0:

For short waves, in the absence of surface tension,

Bk!1 ¼�2, Ck!1 ¼ 1 and Dk!1 ¼ 0. The discrim-

inant D (Eq. 19) is zero in this case, showing that short

waves are stabilized as k!1 and S¼ 0. On the other

hand, when surface tension is present but small, i.e., in

the limit S 6¼ 0 but aS\\1, then, for short waves

Bk!1 ¼�2, Ck!1 ¼ 1� tSa and Dk!1 ¼ Sð1�rÞ
2d

and

the discriminant (19) becomes,

D ¼ � 1

4d2
8dSð1� rÞ þ 27S2ð1� rÞ2
h i

:

Since 1� r[ 0 for large a, D\0 showing that short

waves are unstable in the presence of surface tension

as k ! 1. This result shows that surface tension has a

destabilising effect on short waves in this inviscid

flow. The reason for this counter-intuitive effect is the

fact that there is an interaction with the layer of shear

jump, which can phase-lock the waves on the two

layers in an unstable configuration. Such phase

locking will be seen below in the solution of the

complete problem.

Case (ii) Long waves: For long waves, we have

lim
a!0

t

a
¼ 1; lim

a!0

q

a
¼ 1� 2d;

lim
a!0

r � 1

a2
¼ 2dðd � 1Þ;

the coefficients are Bk!1 ¼ �1, Ck!1 ¼ �G cot h
and Dk!1 ¼ G cot hð1� dÞ. The discriminant D is

then,

D ¼ 4G3 cot3 hþ G2 cot2 hð3d � 2Þ2

� 12G2 cot2 hð3d � 1Þðd � 1Þ þ 4G cot hð1� dÞ:

The stability properties are independent of surface

tension for long waves. Now, for a vertical wall

(h ¼ 90
), D ¼ 0 and the system is stable. For any

h 6¼ 90
, the system is stable for 1
3
\d\1, while at

other d the flow may be stable or unstable.

3.1.4 Vanishing shear ratio k

We note that due to the presence of a no penetration

surface at y ¼ H and a free surface at y ¼ 0, the limits

k ! 1 and k ! 0 will not yield the same result. We

therefore consider the latter case separately here,

where the upper fluid is at a constant velocity of 1.

When k ! 0, we have from Eqs. (16)–(18),

Bk!0 ¼ �3þ 1

2ax
ðt þ qÞ;

Ck!0 ¼ 3� 1

ax
ðt þ qÞ � tf

a
;

Dk!0 ¼ �1þ 1

2ax
ðt þ qÞ þ tf

a
� f

2a2x
ðr � 1Þ:

ð23Þ

Case (i) Short waves: In the case of short waves,

Bk!0 ¼ �3; Ck!0 ¼ 3� tSa;

Dk!0 ¼ �1þ tSaþ S

2x
ðr � 1Þ:

The inclination of wall has no influence on the

stability properties. In the absence of surface tension,

Bk!0 ¼ �3; Ck!0 ¼ 3; Dk!0 ¼ �1 and D ¼ 0;

hence the short waves are stable.

If surface tension is present but Sa\\1 then

Bk!0 ¼ �3, Ck!0 ¼ 3; Dk!0 ¼ �1þ S
2x
ðr � 1Þ. The

discriminant is

D ¼ � 27

4

S2

x2

	 


ðr � 1Þ2;

and is negative for all x and r. Therefore, in the

presence of small surface tension, the short waves

(a ! 1) are destabilized.

Case (ii) Long waves: For long waves, Bk!0 ¼ �2,

Ck!0 ¼ 1� G cot h and Dk!0 ¼ G cot hð1� dÞ. The
discriminant in this case is

D ¼ 4G cot hðG cot h� 1Þ2

þ 9G2 cot2 hð1þ 3dÞð1� dÞ;

which is zero foraverticalwall (h ¼ 90
) and positive for
any other wall inclination (h) less than 90
. Therefore
there is no long wave instability when k ! 0.

Although the configurations and base state profiles

are different, it is worth mentioning the different

limiting cases examined by Bresch and Renardy [36]

for the Kelvin–Helmholtz instability with a free

surface for the wall bounded case. The authors exhibit

scenarios similar to the limiting cases of the present

study for long and short wavelengths for constant-

shear base velocity profiles. They have shown that

there is no long-wave instability (a ! 0) when gravity
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(G) satisfies the condition 0�G� 1=2. In the case of

short waves (a ! 1) there is Kelvin–Helmholtz type

instability and it is independent of gravity. Farther, the

results reveal that stability of long waves for small

gravity generally holds for monotone profiles. The

base velocity profiles in the present study are always

monotone.

Having examined these limiting cases for long and

short waves for extreme values of k, we move on to the

stability results for finite k and moderate wave

numbers. These are obtained numerically from the

dispersion relation and presented in the next section.

3.2 Numerical results

The Eq. (15) describes the stability problem for the

two layer inviscid fluid flow system. It is an equation

for the wave speed c with real coefficients. The

stability of the base flow, approximated by a piecewise

linear profile is considered. The behaviour of eigen-

modes for the case when surface tension S ¼ 0; 0:02

and gravitational parameter G 6¼ 0 is first examined.

Figure 3 provides a typical result showing the real

(cr) and imaginary (ci) parts of the eigenvalues of

Eq. (13) as functions of wavenumber a, when

K1 ¼ 1;K2 ¼ 1:5 ðm\1Þ; d ¼ 0:4; G ¼ 5=6, for two

different values of S ¼ 0 (Fig. 3a, b for h ¼ 90
 and

Fig. 3c, d for h ¼ 45
) and S ¼ 0:02 (Fig. 3e, f for

h ¼ 90
). Figure 3a, b shows the three modes for the

case when f ¼ 0 (zero surface tension and vertical

wall). In this case the existence of the third mode with

cr ¼ 1 and ci ¼ 0 has been shown in the Sect. 3.1.1.

When surface tension is non-zero or the wall is not

vertical, this third mode displays a phase speed

different from 1, but is always neutrally stable. In

each case instability occurs in a window of wave

numbers, where two of the eigenvalues occur in a

complex conjugate pair, with one decaying and the

other growing. Outside this window, the modes are all

neutrally stable and travel with different phase speeds.

The figure thus suggests that both long and short

waves are inviscidly stable for a vertically falling two-

fluid film. Surface tension dampens the maximum

growth rate for the unstable mode (compare Fig. 3b, f)

for a vertical wall. In the configuration with h ¼ 45
,
surface tension has a strong stabilising effect, and S ¼
0:02 is stable for all wave numbers (as we shall see in

Fig. 7c).

The dimensionless disturbance growth rates xi ¼
aci as a function of wave number a are presented in

Fig. 4, when S ¼ 0 (Fig. 4a, b) and S ¼ 0:02 (Fig. 4c, d)

for different upper layer slopes (K2) (Fig. 4a, c;

d ¼ 0:4) and for different distances between two

interfaces d (Fig. 4b, d; K2 ¼ 1:5). The other param-

eters are K1 ¼ 1; h ¼ 90
 and G. Here G is taken as

G ¼ 1=ðK2d þ 1� dÞ. Figure 4a reveals that an

increase in slope discontinuity (K2) enhances the

growth rate and widens the bandwidth of unsta-

ble wave numbers for a vertically falling film in the

absence of surface tension. As the location of the

liquid-liquid interface (d) approaches the solid sub-

strate, the unstable region is shifted towards the

smaller wave numbers (Fig. 4b; K2 ¼ 1:5). The long-

wave cut-off emerges and reveals the bandwidth of

unstable wave numbers in the long-wave regime. The

wavelength of the dominant perturbation scales with

the distance d between the liquid–liquid interface and

the free surface. There is diminishing of growth rate,

destabilization of long waves and stabilization of short

waves. The amax in the range of unstable wave

numbers ½amin; amax� decreases as the lower layer/

upper layer thickness decreases/increases. This may

be due to the weak wave interaction between the

liquid–liquid interface and free surface when the

distance between them (d) increases.

When S ¼ 0:02 (Fig. 4c), the bandwidth of unsta-

ble wave numbers ½amin; amax� is such that amin
decreases with an increase in K2 indicating destabi-

lization of long waves and amax has non-monotonic

behaviour. When d ¼ 0:2, the growth rate is zero (for

all a values considered) for S ¼ 0:02 (Fig. 4d), while it

is positive for S ¼ 0 (Fig. 4b). On the other hand, for

d ¼ 0:4, the short waves are destabilized when S ¼
0:02 in contrast to the stabilization of this configura-

tion for S ¼ 0. There is dampening of maximum

growth rate for S 6¼ 0 as compared to S ¼ 0 for each

value of d.

The influence of surface tension (S) on the

growth rate as a function of wave number (a) is

evident from Fig. 5a, when K2 ¼ 1:5; d ¼
0:4; h ¼ 90
; G ¼ 5=6. Recall from the previous

section that in the limit of high surface tension, this

flow was expected to be stable under all circum-

stances. Consistent with this, we see that increasing

surface tension has a significant stabilising effect, with

the wave-number range and growth rate of instability

at S ¼ 0:03 much lower than that at S ¼ 0. The
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limiting case of short waves above had given us to

expect that surface tension could have an interesting

and counter-intuitive destabilising effect on short

waves. Consistent with this, we see that the growth

rate of the instability displays a non-monotonic

behaviour at higher wave numbers. Increasing the

(a) (b)
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Fig. 3 Real and imaginary parts of eigenmodes as a function of

wave number a when K1 ¼ 1;K2 ¼ 1:5; d ¼ 0:4 and G ¼ 5=6:
a, b for h ¼ 90
; S ¼ 0; c, d for h ¼ 45
; S ¼ 0. e, f For surface

tension parameter S ¼ 0:02 with h ¼ 90
. Here cr and ci
represent real and imaginary parts of the eigenmodes
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Fig. 4 Influence of upper layer slope (K2) and effect of distance

between the two interfaces (d) on the growth rate xi ¼ aci for
K1 ¼ 1; h ¼ 90
; G ¼ 1=Y . a, b without surface tension

(S ¼ 0) and in c, d surface tension S ¼ 0:02. In a, c, d ¼ 0

and in b, d, K2 ¼ 1:5
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Fig. 5 a Influence of surface tension on the growth rate (xi) and b Phase lag between the waves, at the free surface (h2) and the liquid–

liquid interface (h1) for different surface tension parameter (S) value. The other parameters are K2 ¼ 1:5; d ¼ 0:4; h ¼ 90
; G ¼ 5=6
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surface tension from zero has a significant destabilis-

ing effect on the short waves.

That this counterintuitive effect is caused by the

interaction with the shear-jump interface is seen in

Fig. 5b, which shows the phase lag/phase shift

between the maxima in disturbance heights, h2 of the

free surface, and h1 of the shear-jump interface, as a

function of wave number (a).Wemay check that in the

range of wave numbers where the phase lag locked

into a positive value, the flow has positive growth rate

(see Fig. 5a). It is clear that at small values of surface

tension, short waves are destabilised by the increase of

surface tension, but as the surface tension is further

increased, the phase-locking into a positive value is

restricted to a small range of wavenumbers, and short

waves are stabilised. The mechanism for instability in

the inviscid system may thus be attributed to the

interaction between the waves at the two interfaces

(The positive phase lag (more than 0
 and less than

180
) corresponds to the inviscid interaction between

the waves at the free surface and the liquid–liquid

interface. On the other hand, zero phase lag indicates

that there is no wave–wave interaction). The effect of

the magnitude and the location of the slope change, as

well as surface tension, on the most unstable eigen-

mode is summarised in Fig. 6 by the contour plot of

maximum growth rate xi;max in the K2 � d plane.

Fig. 6 presents results in the absence of surface tension

(S ¼ 0) (a) and in its presence (b). For a fixed d, as K2

decreases (m increases), the flow becomes more stable.

In addition, the flow is always more stable in the

presence of surface tension. The strongest stabilisation

due to surface tension is seen at low d, i.e. when the

separation between the jump in shear stress and the

free surface is small. We note that for K2\1 (m[ 1),

the configuration is inviscidly stable for all values of

d in the range considered. At extremely small values of

K2, extremely short waves are destabilised by surface

tension, but this limit is not shown here.

As the slope of the inclined substrate is decreased

(Fig. 7a; S ¼ 0), the growth rate is decreased and the

unstable region is shifted towards shorter wave

lengths. However, the bandwidth of unstable wave

numbers is decreased, indicating the stabilizing effect

of decrease in inclination angle h. In the presence of

surface tension (Fig. 7b; S ¼ 0:02), a decrease in h
decreases the maximum growth rate, reduces the

bandwidth of unstable wave numbers and stabilizes

both long and short waves.

3.3 Comparison to viscous results

Having examined various aspects of the inviscid

instability, we return to the flow which motivated this

study, namely the viscous miscible two-fluid film flow

on an inclined wall, whose base state was seen in

Fig. 2b. It is not possible to make a firm statement on

whether the instability due to viscosity stratification is

caused by inviscid means or not. We therefore restrict

ourselves to pointing out, by means of Fig. 8, that the

two instability growth rates display a qualitative

similarity in terms of the range of unstable wavenum-

bers, and in terms of the increase in growth rate with

increasing viscosity contrast 1 / m (or K2), when h ¼
90
 (S ¼ 0 in Fig. 8a and S ¼ 0:02 in Fig. 8b).
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Fig. 6 Contour plot of maximum growth rate xi;max in K2 � d plane: a in the absence of surface tension (S ¼ 0); b for surface tension

parameter S ¼ 0:02. The other parameters are K1 ¼ 1; h ¼ 90
; G ¼ 1=Y
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The present inviscid analysis shows the existence of

an unstable mode, with cr\1 at moderate wave

numbers for a wide range of parameters (Fig. 3). The

growth rate of this mode decreases with an increase in

the distance between the liquid–liquid interface and

the free surface (Fig. 4). These results are observed for

the configuration with K2 [ 1 which corresponds to

m\1 in the viscous case (see Fig. 8 for comparison).

As the slope (K2) of the upper layer increases from

one, maximum growth rate (xi;max) increases (Fig. 8).

Moreover, the stabilizing effect of h and S observed in
the inviscid model are also seen in the viscous case

(Fig. 12 in Usha et al. [13]). Another inviscid mode,

with phase speed cr [ 1, that is shown to exist in this

study, may be associated with the inviscidly stable free

surface mode of the viscous case [13], since the phase

speed cr for both the modes is greater than one.

However, the viscous forces destabilized this mode as

shown by Usha et al. [13].

Figure 9 presents comparison of eigenmodes for

h ¼ 90
 (Fig. 9a) and h ¼ 45
 (Fig. 9b) between the

viscous case (filled circles) and the inviscid case

(square symbols). We observe from Fig. 9a that the

overlap modes (O1 and O2 modes) in viscous case and

the Modes-1, 2 of the inviscid case have phase speed

cr\1. The surface mode (S-mode) in the viscous case
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Fig. 7 Influence of angle of inclination h on the growth rate xi ¼ aci for K1 ¼ 1;K2 ¼ 1:5; d ¼ 0:4: S ¼ 0 in (a) and S ¼ 0:02 in (b).
The dimensionless gravity parameter, G ¼ 5=6

(a) (b)

0.2 0.4 0.6 0.8
d

0

0.2

0.4

0.6

0.8

ωi,max

m = 0.67(V)
m = 0.40(V)
K2 = 1.5(I)
K2 = 2.5(I)

0.2 0.4 0.6 0.8
d

0

0.2

0.4

0.6

0.8

ωi,max

m = 0.67(V)
m = 0.40(V)
K2 = 1.5(I)
K2 = 2.5(I)

Fig. 8 Comparison of inviscid result (I) with viscous results

(V): a S ¼ 0 and b S ¼ 0:02. In the inviscid case, xi;max is given

as a function of the distance (d) between the liquid–liquid

interface and free surface for different upper layer slopes (K2).

In the viscous case, xi;max is presented as a function of the

distance (d) of the thin mixed layer from the free surface for

different viscosity ratios (m). Here m ¼ 1=K2. The other

parameters are, in the viscous case Re ¼ 100; h ¼ 90
; Sc ¼
100 and in the inviscid case h ¼ 90
; K1 ¼ 1; G ¼ 1=Y
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and the Mode-3 in the inviscid case have cr [ 1. A

similar scenario is observed in Fig. 9b for h ¼ 45
.
While both the inviscid (Mode-2) and viscous modes

(overlap modes) are unstable for h ¼ 90
; we see that
when h ¼ 45
, only viscous overlap modes are

unstable. Figure 9c and d present growth rate curves

for different angle of inclinations when S ¼ 0 and S ¼
0:02 respectively. The other parameters are K1 ¼
1:0;K2 ¼ 1:5;G ¼ 5=6 and d ¼ 0:4. Curves with

symbols are for inviscid case and other curves are

for viscous case. Without surface tension (Fig. 9c), in

the viscous case, the O2 overlap mode is the most

unstable mode, and this mode is relatively unaffected

by inclination angle. In the inviscid case, the most

unstable mode (Mode-2) is heavily affected by

inclination angle both in terms of growth rate and

wavelength. In the presence of surface tension

(Fig. 9d), the inviscid modes are heavily stabilized

for most inclinations lower than 90 degrees, while

viscous modes remain unstable for all inclinations

shown. Hence, while the inviscid Mode-2 shows

qualitative similarity with viscous O2 for h ¼ 90


inclination (Fig. 8), we conclude that viscosity

modifies the stability properties of the flow quanti-

tatively and qualitatively for most other incli-

nations.
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Fig. 9 Comparison of eigenvalues (a, b) and growth rates (c,
d) between viscous and inviscid flow. In a, h ¼ 90
; S ¼ 0 and

in b, h ¼ 45
; S ¼ 0:02. The other parameters are m ¼
0:67; Re ¼ 100; h ¼ 90
; Sc ¼ 100 in the viscous case and in

the inviscid case K2 ¼ 1:5; h ¼ 90
; K1 ¼ 1; G ¼ 5=6. The

curves with circle symbols in c (for S ¼ 0:0) and d (for

S ¼ 0:02) present the inviscid results
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3.4 Kinetic energy of disturbances

The disturbance kinetic energy is examined through an

energy budget analysis. The analysis explains how the

unstable disturbances extract their energy growth from

the base flow or the opposite for the stable distur-

bances. The energy budget equation is derived using a

standard procedure [2].

The x and the y momentum equations for the

perturbed quantities are multiplied by the respective

components of velocity perturbations; the resulting

equations are added and integrated over one wave-

length k ¼ 2p
a of the disturbance in a domain bounded

by the free surface at y ¼ 0 and the wall at y ¼ 1.

Using all the boundary conditions, the following

energy disturbance equation for the two-fluid inviscid

free surface flow down an incline is obtained [after

substituting the normal modes for the perturbations

and suppressing hat ð̂ Þ symbols]:

KEN ¼ RESþ STE þ HYD; ð24Þ

where,

KEN¼xi

2

Z

0

d

ðju2j2þjv2j2Þdyþ
xi

2

Z

d

1

ðju1j2þjv1j2Þdy;

RES¼�1

4

Z

0

d

U
0

2Bð�u2v2�u2�v2Þdy

�1

4

Z

d

1

U
0

1Bð�u1v1�u1�v1Þdy;

STE¼�a2S
4

v2�h2þ�v2h2ð Þ
�

�

�

at y¼0

� �

;

HYD¼�GcotðhÞ
4

v2�h2þ�v2h2ð Þ
�

�

�

at y¼0

� �

:

In the above, an over-bar ð�Þ represents the complex

conjugate; KEN is the time rate of change of the total

disturbance energy and RES is the rate of energy

transfer between the base flow and the disturbance

(commonly known as ‘‘Reynolds stress’’ term); STE

and HYD respectively correspond to the surface

energy due to surface tension at the free surface and
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Fig. 10 Energy terms for different S when h ¼ 30
. The other parameters are taken as K1 ¼ 1;K2 ¼ 1:5; d ¼ 0:4 and G ¼ 0:02
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the gravity potential energy. The terms in Eq. (24) are

plotted as a function of wave number a for different

surface tension parameter (S) values, after scaling by

the factor ‘SKL’ given by

SKL ¼
Z

0

d

ðju2j2 þ jv2j2Þdyþ
Z

d

1

ðju1j2 þ jv1j2Þdy;

for h ¼ 30
 (Fig. 10). The other parameters are taken

as K1 ¼ 1; K2 ¼ 1:5; d ¼ 0:4 and G ¼ 0:02 (Fig. 10).

When h ¼ 90
 the termHYD has no contribution to the

energy budget for any value of G (since cot h ¼ 0).

Also, the term STE has no contribution to the energy

budget if surface tension parameter S ¼ 0.

Figure 10a shows the KEN term which corresponds

to the scaled growth rate (xi=2) for the indicated

parameters. So, the flow system is stable or unstable if

KEN\0 or KEN[ 0. Figure 10a reveals that, the

long-waves are stabilized by the presence of surface

tension and the maximum growth rate decreases with

an increase in surface tension parameter (S) value.

However, the presence of surface tension

(0\S� 0:025) at the free surface (y ¼ 0) creates a

disturbance and new set of damped and unstable short

wave modes exist at large wave numbers (for a[ 4

when S ¼ 0:02; Fig. 10a). Beyond this S value, the

short waves are also stabilized.

The contribution to the energy transfer from the

Reynolds stress (RES) is presented in Fig. 10b. When

S ¼ 0, Eq. (24) has KEN, RES and HYD terms, and so

KEN ¼ RESþ HYD. In this case, the instability arises

due to the production of energy by Reynolds stress

(RES) and there is contribution to the energy transfer

fromHYD term in Eq. (24), but it is small as compared

to other energy terms. It produces negative energy for

all S values considered indicating its stabilizing role

(Fig. 10d). When S is increased, contribution to the

energy transfer comes also from the STE term and it is

negative for all unstable wave numbers (Fig. 10c).

For moderate wave numbers, the surface tension

displays a stabilizing effect by overcoming the desta-

bilizing effect of Reynolds stress. The rate of kinetic

energy disturbance decreases due to the contribution

of negative energy from surface tension at the free

surface. As S increases, this stabilizing effect is

enhanced for this range of moderate wave numbers.

Short waves are destabilized for small surface tension

value (S ¼ 0:02) as the destabilizing effect of

Reynolds stress overcomes the stabilizing effect of

surface tension (for a	 4). However, as S increases in

addition, the destabilizing effect of RES is suppressed

by the damping effect of surface tension and the flow

becomes neutrally stable beyond S	 0:03.

4 Conclusions

The inviscid temporal stability of two-fluid parallel

shear flow in the presence of a free surface down an

inclined substrate is analyzed. The base velocity

profiles in the two layers are approximated by

piecewise linear profiles. The choice of base velocity

profile for the inviscid case ensures that its character-

istic features such as asymptotic velocity values in

each layer match with that of the viscous case. The

viscosity stratification of the background flow is thus

incorporated through a slope change in the base

profiles, at the interface between the two fluids. The

analytical results of the limiting cases of the dispersion

relation reveal that:

• In the absence of surface tension, for any inclina-

tion of the wall, the short waves are stabilized as

K2 ! 1. But, surface tension destabilizes short

waves.

• For a vertical wall, in the presence or absence of

surface tension, there is no long-wave instability as

K2 ! 1. In fact, long-wave instability is inde-

pendent of surface tension effects, when K2 ! 1.

• In the absence of surface tension and for a vertical

wall, K2 ! 0 limiting case is inviscidly stable for

any position of the interface.

• Also, when K2 ! 0 there is no long-wave (short-

wave) instability for a vertical wall in the presence

(absence) of surface tension. But, the presence of

small surface tension (with Sa\\1) destabilizes

the short waves as K2 ! 0. However, the inclina-

tion of the wall has no influence, in this case.

• In the absence of surface tension (S ¼ 0), for a

vertical wall (h ¼ 90
), there is no long or short-

wave instabilities for any value of upper layer

slope (K2).

In the above K2 ! 0 corresponds to the case where

the velocity of the upper layer is very high as

compared to the lower layer. On the other hand K2 !
1 implies that the upper layer has a uniform constant

velocity.
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The numerical solution of the dispersion relation

produces results consistent with the limiting cases

above. In addition, it shows that in the absence of

surface tension (S ¼ 0), for a vertically falling film

(h ¼ 90
), two inviscid modes occur with phase speed

less than the free surface velocity (cr\1), when the

upper layer slope is greater than one (K2 [ 1) and one

of the modes is unstable for moderate wave numbers.

In this case, the long and short waves are inviscidly

stable. As the inclination of the substrate is decreased,

a new neutrally stable mode is found with phase speed

cr [ 1. This scenario is also observed when S 6¼ 0.

The unstable mode is destabilized by increasing the

upper layer slope and stabilized by placing the liquid–

liquid interface closer to the wall (Fig. 4). Although

surface tension (S) dampens the maximum growth rate

of the dominant disturbance, the system is unstable for

short waves when S is small (Fig. 3; S ¼ 0:02). This

may be due to the interaction of the inviscid waves at

the free surface and the liquid–liquid interface. A

detailed wave interaction approach [49, 50] is required

for a complete and thorough understanding and will be

pursued in future. In order to understand the distur-

bance evolution and the role of surface tension, we

have performed an energy budget analysis. The energy

transfer from the base flow to the disturbances

(through the Reynolds stress term) is responsible for

the inviscid instability and surface tension has a non-

monotonic effect on the energy transfer depending on

the wave number.

When m[ 1 (K2\1), we observe the existence of

unstable modes due to viscosity stratification in

viscous flow [13]. The inviscid analysis shows that

for K2\1, the flow system is inviscidly stable. This

suggests that the unstable modes that occur for m[ 1

in the viscous case arise due to viscosity stratification

and diffusivity mechanism. On the other hand, for

K2 [ 1, the inviscid analysis has identified twomodes:

one unstable mode with phase speed cr\1 and another

neutrally stable mode with cr [ 1. In the viscous flow

system, for m\1, Usha et. al. [13] have shown the

existence of two types of unstable modes namely, the

overlap modes with cr\1 and a surface mode with

cr [ 1. This indicates that, for a flow configuration

with the less viscous fluid adjacent to the free surface

(m\1; K2 [ 1), the inviscid mechanism is also

responsible for the occurrence of unstable modes.

This is evident from the qualitative agreement

between the inviscid model results and the viscous

case (m\1; K2 [ 1 as shown in Fig. 8). Viscous

effects modify the stability properties of the flow

system quantitatively.
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