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Abstract The present study considers the application

of stochastic dimensional reduction (low-dimensional

approximation of stochastic dynamical systems) to a

11-dimensional nonlinear aeroelastic problem exhibit-

ing a Hopf bifurcation, with one critical mode and

several stable modes. The analysis is performed close to

the critical value of the bifurcation parameter (the

freestream airspeed) that induces flutter in a 2-D airfoil.

The system is excited bymultiplicative and additive real

noise processeswhose power spectral densities are given

by the Dryden wind turbulence model. The homoge-

nization procedure yields a two dimensional Markov

process characterized by a generator. Further simplifi-

cation yields a one dimensional stochastic differential

equation that characterizes the amplitude of the critical

mode of the original system. This simplified low-

dimensional coarse-grained model, which captures the

essential stochastic dynamics close to flutter instability,

is used to efficiently simulate the long-term statistics of

the slow variables. The explicit forms of the homoge-

nized drift and diffusion coefficients of the reduced

stochastic differential equation are determined. The

explicit formulas contain both the stochastic perturba-

tions in the unstable and stable modes as well as the

action of the nonlinear terms. The reduced order (coarse-

grained) model is verified by comparison of distribution

functions, obtained computationally, with the original

system. Additionally, the top Lyapunov exponent found

analytically compares well with the exponent obtained

by numerical experiments using the original system.

This analysis provides a transparent medium for apply-

ing the homogenization procedure andmay beof interest

to aircraft designers.

Keywords Flutter � Homogenization � Stochastic
Stability � Dimensional Reduction � Stochastic
Bifurcation

1 Introduction

In the present work, we examine the flutter character-

istics of an airfoil in turbulent flow, modeled as a rigid

flat plate. Turbulence is a common factor in airplane

accidents, for example loss of in-flight control asso-

ciated with wind gusts, which can cause substantial

damage to the aircraft and injuries to crew and

passengers (see Belcastro and Foster [1]). Although
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the effects of turbulence depend on aircraft size, we

consider a nontrivial classical airfoil model as a basis

for developing a unified framework for studying the

effects of nonlinearity and noise in amulti-dimensional

system that exhibits flutter instability (i.e. when the

deterministic system undergoes a Hopf bifurcation).

The dynamics of a structurally nonlinear two

dimensional airfoil has been studied numerically by

Lee et al. [2] and Poirel and Price [3]. This paper

provides novel, theoretically sound results for effi-

ciently studying instabilities and associated stochastic

bifurcation scenarios in the neighborhood of the flutter

airspeed. Specifically, the work presented here

• revisits the stochastic multiscale problem studied

in Namachchivaya and Van Roessel [4], in which

the martingale problem approach is used to

rigorously obtain a reduced-order representation

of a dynamical system with rapidly oscillating and

decaying components, driven by white noise. This

paper extends the findings of Namachchivaya and

Van Roessel [4] to a system driven by real noise, in

this case a 2-degree-of-freedom airfoil model with

wind gust/turbulence forcing. We obtain a 1-di-

mensional representation of the critical mode of

the 11-dimensional aeroelastic system, in the

vicinity of the flutter airspeed.

• validates the asymptotic results through compar-

ison of numerical simulations of the original and

reduced-order models. To the best of our knowl-

edge, this is one of few examples in which the

asymptotic solution for stability and bifurcations

are compared to the numerical simulation of a

11-dimensional real application.

The main result is a 1-dimensional homogenized

stochastic differential equation that captures the com-

bined amplitude of pitch and heave oscillations when

the system is close to flutter. This homogenized

stochastic differential equation has the potential to

serve as a computational inexpensive platform for

accurately capturing the essential flutter characteristics

of an airfoil undergoing instantaneous probabilistic

dynamic instability. Appropriate vulnerability crite-

rion that capture these instabilities can be formulated

and incorporated in the airfoil design for improved

passengers, crew, and aircraft safety. In this spirit, we

derive the explicit formula for the homogenized

stochastic differential equation based on model

parameters. The results are hoped to be flexible enough

for aircraft designers to obtain the reduced stochastic

differential equations corresponding to their models.

Furthermore, the homogenization procedure presented

here can be adopted by other researcherswhomaywish

to obtain accurate localized results for noisy systems in

the proximity of a critical systemparameter. Below,we

provide an outline of the work presented here.

First, in Sect. 2, we adopt the 2-degree of freedom

ordinary differential equation for a thin airfoil origi-

nally derived by Fung [5], and explain the associated

aerodynamic forces. The latter entails consideration of

the displaced mass and circulatory terms from aero-

dynamics. The circulatory terms are modified to

account for the effects of horizontal and vertical

components of wind gust/turbulence, as done by many

authors (see, for example, [3]). The ciculatory terms

are found to comprise of exponential kernels, which

makes analysis mathematically intractable. Two aux-

iliary second order oscillators are adopted to overcome

this hurdle, which increases the dimension of the

system. Wind gust in the circulatory terms is modeled

using two stochastic differential equations. Specifi-

cally, the time correlation of the solutions to these

stochastic differential equations corresponds to the

power spectral density of real turbulence determined

in Yeager [6] (the Dryden model).

Second, in Sect. 3 we outline the reduction tech-

nique, which is at the crux of this work. This technique

requires appropriate scalings to be introduced (for

time and nonlinearities) so that the stochastic dynam-

ics of the overall system (including noise processes)

can be characterized by slow, intermediate, and fast

components. Readers may be aware of asymptotic

techniques that handle such multiscale problems in the

deterministic context, for example the method of

multiple scales (see, for example, [7]). However, in the

stochastic context, the main task is to obtain a reduced-

order representation using a martingale problem

approach for Markov processes, which is an ideal tool

for studying weak convergence of Markov processes,

as explained in Ethier and Kurtz [8]. Reduced-order

models were obtained with rigorous proof in Namach-

chivaya and Van Roessel [4] (Theorem 4.2) and are

extended here without proof for the real noise case.

The slow and intermediate components are associated

with the ‘‘critical’’ and ‘‘stable’’ modes of the system,

respectively. The fast component is the driving wind
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gust, enters the equations of motion as a noise process.

The noise process is assumed to satisfy certain mixing

conditions (Doeblin’s condition that guarantees that

the fast variable rapidly attains its invariant measure)

to facilitate the ensuing homogenization. The under-

pinning of classical homogenization is a separation of

time scales, which involves the convergence of a

sequence fxeðtÞg of processes parameterized by e to a

limit process in some sense. It is important that the

limit process x0ðtÞ obtained by this procedure be much

more mathematically tractable than the true physical

process, and the parameter value e, corresponding to

the physical process, be small enough to yield a good

approximation. The most widely used sense of the

limit is that of weak convergence of measures as

discussed in Namachchivaya and Van Roessel [4] and

references therein. In essence, the problem boils down

to solving a set of Poisson equations associated with

the generator of the multi-scale Markov process.

Then, in Sect. 4, numerical simulations using the

original and reduced-order systems are presented to

validate the theoretical result obtained from solving

the Poisson equations in Sect. 3. The top Lyapunov

exponent (which characterizes the exponential growth

rate of trajectories starting from two nearby points) for

the reduced system is calculated analytically and

compared with the top Lyapunov exponent obtained

by numerically simulating the critical modes of the

original system. Finally, in Sect. 5, we conclude with a

discussion of our results.

2 The nonlinear aeroelastic dynamical system

We consider a two-dimensional airfoil with two

degrees of freedom (Fig. 1): a rotation around the

airfoil’s elastic axis and a vertical translation (heave

motion). Rotation about the elastic axis, denoted by a,
is positive when the airfoil is pitched up. Heave

motion, denoted by h, is the vertical translation of the

elastic axis from a mean position, and is positive

downwards. The configuration a ¼ 0 corresponds to a

null angle of attack relative to the freestream. No angle

of incidence is considered, so the airfoil pitch motion

corresponds to the angle of attack. The pitch (a) and
heave (h) motions are governed by the following (dots

represent derivative with respect to physical time t):

mxab€aþ m€hþ Khh ¼ �LðtÞ; ð2:1aÞ

IEA€aþ mxab€hþ Kaaþ K3a
3 ¼ MEAðtÞ: ð2:1bÞ

The above equations of motion are obtained by

considering the balance of aerodynamic forces and

moments about the elastic axis of the airfoil. The form

of (2.1) is a result of modifying the equations that

govern the dynamics of a two-dimensional airfoil (see

Fung [5]) to include a cubic torsional stiffness (see

Poirel and Price [3]). There is no coupling between the

two degrees-of-freedom when the airfoil is balanced

(i.e., the center of mass coincides with the elastic axis,

xa ¼ 0). Coupling arises from the inertia terms when

xa 6¼ 0.

The terms L and MEA on the right hand side

of (2.1a) and (2.1b) represent the aerodynamic loads:

the lift force and the aerodynamic moment about the

elastic axis, respectively. We now briefly review the

historical development of the lift force expression.

Wagner [9], developed a model for the unsteady lift

acting on a two-dimensional airfoil for arbitrary

pitching motion. Wagner analytically computed the

effect of an idealized planar wake vorticity on the

circulation around the airfoil in response to a step input

for the angle of attack. Then, a model to study flutter

instability was developed by Theodorsen and Mutch-

ler [10]. Both Wagner’s and Theodorsen’s theories

were derived analytically for an idealized two-dimen-

sional flat plate airfoil moving through an inviscid,

incompressible fluid. The motion of the flat plate is

assumed to be infinitesimal, leaving behind an ideal-

ized planar wake. Both of these theories modified the

quasi-steady thin airfoil theory (which ignores the

effect of wake around the airfoil) by including the

effect of the wake history on the induced circulation

around the airfoil. The effect of the wake can be quite

Fig. 1 Two-dimensional airfoil with degrees of freedom a and h
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significant as it effectively reduces the magnitude of

the aerodynamic forces acting on the airfoil. This

reduction in turn can have a significant effect on the

flutter velocity.

The quasi-steady thin airfoil theory assumes that

the pitch, a, and heave, h, motions of the airfoil are

relatively small. Thus, the effects of _a and _h appear as

an effective angle of attack and an effective camber,

respectively, which may be combined into a total

effective angle of attack for the entire airfoil. How-

ever, thin airfoil theory breaks down for rapid

maneuvers and therefore it becomes necessary to

include displaced-mass and circulatory terms. Theo-

dorsen’s model extends the quasi-steady thin airfoil

theory to include displaced-mass forces and wake

vorticity effects. Based on Theodorsen’s model, the

lift force acting on a strip of unit span is:

LðtÞ ¼ LCðtÞ þ qpb2 €h� ahb€aþ U _a
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

¼:LDðtÞ
ð2:2Þ

In Eq. (2.2), LDðtÞ constitutes non-circulatory forces.

It is associated with the fluid inertia (i.e., apparent

mass forces). The circulatory forces LCðtÞ model the

effects of boundary vorticity and shed wake convect-

ing downstream at a constant velocity U. In the

following, we describe the expression for LCðtÞ,
obtained based on the physical assumption that flow

velocity at the trailing edge is finite. The equivalent

of (2.2) for MEAðtÞ in (2.1b) can be obtained by

similar arguments:

MEAðtÞ ¼
1

2
þ ah

� �
bLCðtÞ þ ahbL

DðtÞ

� 1

2
� ah

� �
bLDðtÞ � qpb4

8
€a:

From the theory of oscillating airfoils (see Fung [5]

and references therein), under bending and pitching

oscillations, the circulation about the airfoil is deter-

mined by an effective downwash velocity acting at the
3
4
-chord point from the leading edge of the airfoil.

Under constant airspeed U, circulatory lift is

LCðtÞ ¼ 2pbqUw3
4
ðtÞUWðtÞ;

where UWðtÞ is Wagner’s indicial response function,

b is half the chord length (see Fig. 1), and q and U are

the freestream density and constant airspeed, respec-

tively. Downwash at the 3
4
-chord is given by

w3
4
ðtÞ ¼ _hðtÞ þ UaðtÞ þ b _aðtÞ 1

2
� ah

� �
:

The first term _h represents a uniform downwash due to

vertical translation h. The second term represents

uniform downwash corresponding to the pitch angle a
(using approximation U sin a � Ua for small a). The
last term represents non-uniform downwash due to _a.
Before proceeding further with the description of

circulatory lift, we will recast the problem in the time-

varying freestream airspeed and unsteady flow setting.

The extension of lift Eq. (2.2) to the case of time-

varying airspeedwas basedondevelopments in helicopter

aerodynamics theory, specifically the works of Dinyavari

and Friedmann [12], Friedmann [13] and Friedmann and

Robinson [14], which extended Greenberg’s theory (see

Greenberg [15])to the general case of arbitrary airfoil

motion and time-varying velocity. First, the airspeed

U becomes a time-dependent quantity,U(t). Additionally,

transient loads that occur due to external disturbances

need to be modeled. Disturbance velocities that are

normal to the flight path are called gusts, or turbulence,

and they influence the circulatory terms. They are

captured by downwash at the leading edge and at the 3
4
-

chord-point. The circulatory terms in turn affect the

airfoil motion via the aerodynamic loads. Turbulence

is decomposed into longitudinal/horizontal and verti-

cal components, uT and wT , that are separated by a. It
is worth noting that uT and wT act as parametric and

additive forcings to the overall system, respectively.

uT enters the equations of motion as part of the

freestream velocity while wT is equivalent to down-

wash at the leading edge [as can be seen in (2.9)]. This

is consistent with previous work (see Poirel and Price

[3] and references therein) for including gust/turbu-

lence effects in the airfoil equations of motion.

Based on the preceding discussion, we rewrite the

airspeed and circulatory lift expressions accordingly.

It is assumed that non-uniformity in the flow around

the airfoil is a result of small disturbances superim-

posed on a uniform steady flow. Hence, the airspeed

term now comprises of a constant part UH

m (mean

airspeed) and a time varying part uTðtÞ (horizontal

component of turbulence):

UðtÞ ¼ UH

m þ fðtÞ; where fðtÞ ¼ euTðtÞ;

where e is a small scalar quantity. Equivalently, we

write
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UðtÞ ¼ UH

m ð1þ �HuTðtÞÞ; where �H ¼def e
UH

m

:

ð2:3Þ

Unsteady effects due to the horizontal component

of turbulence are captured using Wagner’s indicial

response function UWðtÞ (see Fung [5] and Wagner

[9]) that has been discussed earlier. Circulatory effects

due to the vertical component of turbulence are

captured using Küssner’s gust penetrating function

UKðtÞ (see Fung [5] and Kussner [16]), and are

included in the system via an additional term in LCðtÞ.
In this time-varying, unsteady flow setting, the circu-

latory lift term takes the following form, with time-

varying airspeed and an additional component due to

downwash at the leading edge (vertical component of

turbulence, wT ):

LCðtÞ ¼ 2pbqUðtÞw3
4
ðtÞUWðtÞ þ 2pbqUðtÞwTðtÞUKðtÞ:

ð2:4Þ

The approximate expressions of Wagner’s and Küss-

ner’s functions have the same form:

UIðtÞ � 1� AI
1e

�bI
1

UH
m t

b � AI
2e

�bI
2

UH
m t

b ; t[ 0;

where we use superscript I ¼ W ;K to represent the

expressions for Wagner’s and Küssner’s functions,

respectively. The coefficients are AW
1 ¼ 0:165,

AW
2 ¼ 0:335, bW1 ¼ 0:0455, bW2 ¼ 0:3 [17] and AK

1 ¼
0:5791, AK

2 ¼ 0:4208, bK1 ¼ 0:1393, bK2 ¼ 1:802 (see

Leishmann [18]). Note that in the setting of (2.3), Van

der Wall and Leishman [19] justified the assumption

that the airspeed in UWðtÞ can be set as a constant UH

m

when the frequency and amplitude of airspeed vari-

ations are small.

We now turn to modeling the turbulence compo-

nents. The two-sided power spectral densities for the

horizontal and vertical components of turbulence are

given by the Dryden Model (see Yeager [6]) as

SuT ðxÞ ¼
r2T

l
UH

m

p
1

1þ l
UH

m
x

� �2 ; ð2:5aÞ

SwT
ðxÞ ¼

r2T
l

UH
m

2p

1þ 3 l
UH

m
x

� �2

1þ l
UH

m
x

� �2� �2
; ð2:5bÞ

respectively. The overall characteristics are governed

by the scale of turbulence l and intensity r2T , which are
common to both components. After transforming the

above turbulence spectra into the time domain via the

inverse Laplace transform (with Gaussian white noise

as input and the respective turbulence velocity as the

output), we arrive at the following set of stochastic

differential equations for turbulence components:

duTðtÞ ¼ �CHuTðtÞdt þ rT

ffiffiffiffiffiffiffiffiffi
2CH

p

s

dW1
t ;

ð2:6aÞ

dwTðtÞ ¼ �CHwTðtÞ þ cðtÞ

 �

dt þ rT

ffiffiffiffiffiffiffiffiffi
3CH

p

s

dW2
t ;

ð2:6bÞ

where cð�Þ satisfies

dcðtÞ ¼ �CHcðtÞdt þ 1�
ffiffiffi
3

p� �
rT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CH
� 
3

p

s

dW2
t :

ðW1;W2Þ represent two independent Wiener pro-

cesses, and CH ¼def U
H

m

l
.

We now return to the discussion of the expression

for circulatory lift. Note that the expressions for

circulatory lift due to downwash at the 3
4
-chord length

(horizontal turbulence) and leading edge (vertical

turbulence) are similar, differing by Wagner’s and

Küssner’s functions. Therefore, we will discuss both

terms simultaneously, using superscript I ¼ W ;K to

indicate Wagner’s and Küssner’s functions, respec-

tively. If we consider an impulsive increment in the

downwash then the circulatory lift per unit span (2.4)

can be found to be

2pqbUðtÞ UIðtÞwIð0Þ þ
Z t

0

wIðsÞ dU
Iðt � sÞ
ds

ds

� �
;

ð2:7Þ

where wWð�Þ ¼def w3=4ð�Þ, wKð�Þ ¼def wTð�Þ.
Now, the memory term in (2.7) is given in terms of

an exponential kernel, which constitutes to an integro-

differential equation. To make analysis tractable, we

would like to replace the integral portion in (2.7) with

the output of a forced oscillator. Thus, let us consider

an auxiliary oscillator:

€.I þ bI1 þ bI2
� 
UH

m

b
_.I þ bI1b

I
2

UH

m

b

� �2

.I ¼ wIðtÞ: ð2:8Þ
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A straightforward calculation (see, for example, [23])

reveals that the expression in the square brackets

in (2.7) is equal to

� cIbI1b
I
2

UH

m

b

� �2

.I � AI
1b

I
1 þ AI

2b
I
2

� 
UH

m

b
_.I

þ wIð0Þ þ UIð0ÞwIðtÞ;

where cW ¼ 1
2
, cK ¼ 1.

All the preceeding arguments for circulatory lift

force can be translated to the aerodynamic moment. In

view of these arguments for aerodynamic loads, (2.1a)

and (2.1b) become

mxab€aþ m€hþ Khh

¼ � qpb2ð€h� ahb€aþ UðtÞ _aÞ



þ 2pqbUðtÞ w3
4
ðtÞUWð0Þ � �.W

h i

þ 2pqbUH

m ½wTðtÞUKð0Þ � �.K �
�
; ð2:9aÞ

IEA€aþ mxab€hþ Kaaþ K3a
3

¼ qpb2 €hahb� b
1

2
� ah

� �
UðtÞ _a� b2 a2h þ

1

8

� �
€a

� �

þ 2pqb2UðtÞ ah þ
1

2

� �
w3

4
ðtÞUWð0Þ � �.W

h i

þ 2pqb2UH

m ah þ
1

2

� �
½wTðtÞUKð0Þ � �.K �; ð2:9bÞ

with auxiliary variables

�.I ¼def .I � wIð0Þ

¼ � bI1b
I
2

2

UH

m

b

� �2

.I � AI
1b

I
1 þ AI

2b
I
2

� 
UH

m

b
_.I ;

for I ¼ W ;K.
With appropriate initial conditions, (2.9) describe

the system states (airfoil degrees of freedom), with

appropriate forcing functions given by (2.8) (aerody-

namic degrees of freedom). Equations (2.9) and (2.8),

along with (2.6), represent a well-defined problem for

the present study to be conducted.

The aeroelastic model (2.9) with auxiliary equa-

tions (2.8) can be combined and cast as a non-

dimensionalized spring-mass-damper system with a

cubic stiffness matrix:

½M�½z00� þ ½DðsÞ�½z0� þ ½KðsÞ�½z� þ ½K3�½z3� ¼ FT

ð2:10Þ

with z½ � ¼def a h .W .K

 �T

, FT ¼def 0 0 0 wT½ �T ,
and ð�Þ0 represents derivative with respect to non-

dimensional time s¼ UH

m t

b
. Equation (2.10) represents

a 4-degree-of-freedom nonlinear aeroelastic system

excited by real noise processes, uTðsÞ and wTðsÞ,
modeled by (2.6). The coefficient matrices in (2.10)

are shown in ‘‘Appendix 1’’. We note that a is the only
state that has not been non-dimensionalized and the

others have been scaled as follows (i.e., from dimen-

sional (t) ! non-dimensional ðsÞ):

h ! bh; UH

m ! bxaUm; uT ! bxauT ;

c1 ! bxac1; wT ! bxawT ;

.W ! b

xaUm

.W ; .K ! b

xaUm

.K ;

l ! bl; r2T ! ðbxaÞ2r2T ; �H ! 1

bxa
�:

In the above, for example, h ! bh is equivalent to

h ¼ bh0, where the prime on the non-dimensional

variable on the right side of the equality is dropped for

notational convenience. xa is the natural frequency of

pitch (frequency of the solution to the unforced

equation). Decomposing the damping and stiffness

matrices in (2.10) into their respective time invariant

and time varying components:

½DðsÞ� ¼ ½D0� þ �uTðsÞ½D1�;
½KðsÞ� ¼ ½K0� þ �uTðsÞ½K1�;

and defining q ¼def½z; z0�T , (2.10) can be cast as an eight-
dimensional system of differential equations in state

space,

q
s
0 ¼ ½A0�qs þ �½B0�uTðsÞqs þ ½C0�q3s þ �2}½N̂�:

ð2:11Þ

We shall tune the parameter } accordingly in the

ensuing analysis to see the effect of the vertical gust

component (inside ½N̂�) in the framework of the

original problem. For the subsequent analysis, (2.11)

forms the basis of the model that will be considered

and it collapses to the aeroelastic problem for the case

} ¼ 1
�.

The system (2.11) cannot be solved explicitly.

However, under some assumptions made with respect

to the nonlinearities, we can obtain approximate

solutions. These assumptions are based on the physics
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of the problem and the phenomena that one is

interested in studying. To this end, we shall be more

specific and study the effects of noise on systems that

are close to certain bifurcation points, i.e. we ana-

lyze (2.11) in a neighborhood of a critical system

parameter, Um ¼ Uc
m. We first introduce the following

scalings as in Namachchivaya and Van Roessel [4]:

q ! �q; Um � Uc
m

� 

! �2b:

The spatial scaling is justified from the fact that we are

considering perturbations about the trivial solution in

analyzing stability. Furthermore, the additive forcing

is of Oð�2Þ in (2.11) and so the system decays to the

trivial solution at steady state.

Consider a transformation,

q
s
¼ ½T � v�s


 �
ð2:12Þ

where [T] represents a matrix of eigenvectors of

½A0ðUc
mÞ� that have been arranged in accordance to the

real part of the corresponding eigenvalues sorted in

descending order. We remark that we also

study the unfolding of the linear critical system

½A0
0ðUc

mÞ� hence giving us the flexibility to explore

the bifurcation characteristics of the aeroelastic

system in the vicinity of the critical airspeed. Denote

by v� ¼defð ~X�
; Y �Þ 2 R2 � R6, where ~X

�
represents the

non-dimensionalized critical modes and Y � represents

the non-dimensionalized stable modes. Employ-

ing (2.12) and the previous arguments in (2.11), we

have

v�s
0 ¼ �b

0
v�s;U

c
m

� 

þ ��b

1
v�s; uTðsÞ;wTðsÞ
� 


þ �2�b
2
v�s;U

c
m

� 

;

v�s ¼ v;

ð2:13Þ

where the order 1 term in (2.13) is linear in v�. The

coefficient matrix is block diagonal, with the top 2� 2

square matrix being skew symmetric and the remain-

ing blocks being negative definite. Details of the terms

in (2.13) are given in ‘‘Appendix 1’’. (2.13), (2.6a),

and (2.6b) characterize the overall system.

3 Dimensional reduction

To proceed further, we define

v̂�s ¼
def

v�s; uTðsÞ; cðsÞ;wTðsÞ
� 


¼def ~X
�

s; Y
�
s ; uTðsÞ; cðsÞ;wTðsÞ

� 

;

where ð ~X�
; Y�; uT ; c;wTÞ 2 R2 � R6 � R� R� R.

uT is now the parametric noise given by the non-

dimensionalized form of (2.6a) and wT is now the

additive real noise given by the non-dimensionalized

form of (2.6b), which is dependent on the now non-

dimensionalized c. Let us further define

r ¼ R v̂�s
� 


¼defk ~X�kR2 ; h ¼ H v̂�s
� 


¼def arctan
~X
�

2

~X
�

1

 !

:

Our goal is to study the behavior ofRðv̂�sÞ and show
that the law ofRðv̂�sÞ converges to an identifiable limit

as � ! 0. The main result is an asymptotic description

of the dynamics of Rðv̂�sÞ:
The law of fRðv̂�sÞ; s� 0g converges to the law of

f�rs; s� 0g, where �r is the solution of the stochastic

differential equation:

d�rs ¼ bRð�rsÞdsþ rRð�rsÞdWs; �r0 ¼ RðvÞ: ð3:1Þ

bR and rR are the homogenized drift and diffusion

coefficients of Rðv̂�sÞ, respectively. The homogenized

drift coefficient contains two distinct components: (1)

the stochastic effects from the ‘‘critical’’ modes

comprising of the stochastic components in the

stable ‘‘heavily damped’’ modes, and (2) the nonlinear

terms.

Note that Rðv̂�sÞ is slowly varying. Therefore, we

need to look on a time scale of Oð 1
�2
Þ to observe

fluctuations. The Markov process v̂�s 2 R11 is charac-

terized by a time-scaled generator, which will be

crucial our investigation of the convergence of the

laws of various processes.

3.1 Problem formulation: homogenization

at a diffusive time scale

Let ðX;F ;PÞ be a probability space that characterizes
the process generated from (2.13) and consider

ð ~X�
; Y �; uT ; c;wTÞ ¼ ð ~X�ð ~xÞ; Y �ð ~xÞ; uTð ~xÞ; cð ~xÞ;wTð ~xÞÞ;

where ~x 2 X. In order to analyze the asymptotic

behavior of the process generated by the time-scaled

generator of (2.13) as � ! 0, it is necessary to remove
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the rapidly oscillating term 1
�2
½B� ~X�

in �b
0
(�b

0
is defined

in ‘‘Appendix 1’’) via a transformation

~X
�

s ¼ e
sB
�2X�

s: ð3:2Þ

This transformation induces an explicit s-dependence
in the rate of the multi-scale process—we introduce

h�s ¼
def x0s

�2
to avoid having to address time-averaging.

Hence we are considering a nonlinear R2-valued

critical process X�, an R6-valued stable process Y�, an

S-valued h� process (S ¼ ½0; 2p�), and an R3-valued

noise process Z� ¼defðuT ; c;wTÞ 2 R3. In view of the

previous arguments and a time change s ! �s, (2.13)
can be rewritten in a generic form:

dX�
s ¼

1

�
a0 X�

s; Y
�
s ; h

�
s; Z

�
s

� 

dsþ a1 X�

s; Y
�
s ; h

�
s

� 

ds;

X�
0 ¼ x 2 R2 ðcriticalÞ;

dY �
s ¼

1

�2
b0 Y�

s

� 

dsþ 1

�
b1 X�

s; Y
�
s ; h

�
s; Z

�
s

� 

ds

þ b2 X�
s; Y

�
s ; h

�
s

� 

ds;

Y �
0 ¼ y 2 R6 ðstableÞ;

dh�s ¼
1

�2
x0ds; h�0 ¼ h 2 S;

dZ�
s ¼

1

�2
c0 Z�

s

� 

dsþ 1

�
g0 Z�

s

� 

dWs;

Z�
0 ¼ z 2 R3 ðreal noiseÞ:

ð3:3Þ

It is worth noting that augmenting the real noise

processes (2.6) to Eq. (2.10) yields a 12-dimensional

system (including the intrinsic h) defined by (3.3)

excited by Wiener process.

Let G denote the generator of Z�, which contains a

diffusion term. In the limit as � ! 0, G has a unique

unique invariant measure lðdzÞ for each initial z, and

the following limit exits for measurable f:

�f ð�Þ ¼ lim
�!0

Z

R3

f ð�; z; �Þl�ðdzÞ:

The generator of the 12-dimensional process (3.3) is

given by

L� ¼def 1
�2
L

ðy;h;zÞ
F þ 1

�
L

ðx;yÞ
I þL

ðx;yÞ
S ; ð3:4Þ

where the fast, intermediate and slow generators are

defined as

L
ðy;h;zÞ
F ¼def b0ðyÞ o

oy
þ x0

o

oh
þ G;

L
ðx;yÞ
I ¼def a0ðx; y; h; zÞ o

ox
þ b1ðx; y; h; zÞ o

oy
;

L
ðx;yÞ
S ¼def a1ðx; y; hÞ o

ox
þ b2ðx; y; hÞ o

oy
:

For every fixed �[ 0, the processes X�; Y�; h�; Z�ð Þ
together form a Markov process that is characterized

by the infinitesimal generator L� acting on smooth

functions. The main objective of the homogenization

theory is to show that the slow process X� itself is a

Markov process in its own right as � ! 0, and identify

its generator Ly.
To sum up, our goal is to study (3.4) to (1) show that

as � ! 0, the dynamics of the slowly varying quantity

X�
s converges to a Markov process, and (2) identify the

generator of the limiting law. Our aim is to do this via

stochastic dimensional reduction, based on the results

of Papanicolaou et al. [20]. The technique used here is

based on that of Namachchivaya and Van Roessel [4].

To this end, we consider the Cauchy problem associ-

ated with the generator L� in the proceeding section.

3.2 Theoretical results: stochastic dimensional

reduction

Let L� be the generator as described previously.

Consider the following Cauchy problem:

ou�

os
ðx; y; h; z; sÞ ¼ L�u�ðx; y; h; z; sÞ;

u�ðx; y; h; z; 0Þ ¼ f ðxÞ:
ð3:5Þ

It is well known that u�ðx; y; h; z; sÞ ¼def E x; y; h; z
f X�

s

� 

 �
satisfies the Kolmogorov equation, with the

expectation taken with respect to the probability

measure of the process X�
s. However, due to coupling

between the stochastic processes, X�
s depends not only

on the starting point x of the process X�
s, but it also

depends on the starting point ðy; h; zÞ of ðY�
s ; h

�
s; Z

�
sÞ.

Let us now construct an expansion:

u�ðx; y; h; z; sÞ ¼ u0ðx; y; h; z; sÞ þ �u1ðx; y; h; z; sÞ

þ �2u2ðx; y; h; z; sÞ þ . . .þ �nunðx; y; h; z; sÞ:
ð3:6Þ
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In this section, we describe an outline of the calcula-

tions involved in obtaining a reduced-order descrip-

tion of the 12-dimensional system. Details of the

calculations are presented in ‘‘Appendix 2’’. They are

similar to the calculations of Namachchivaya and Van

Roessel [4].

Substituting the expansion (3.6) into (3.5), we

obtain a set of 3 Poisson equations at increasing

orders of �. From the first of these equations, we

observe that u0 is only a function of x and s, i.e.
u0ðx; y; h; z; sÞ ¼ uðx; sÞ (see (7.1), ‘‘Appendix 2’’).

The remaining two non-homogeneous partial differ-

ential equations (PDEs) are forced by u. The solution

of the second PDE can be obtained in terms of u by the

Feynman-Kac formula. Combining results from the

first two PDEs with application of the solvability

condition on the third PDE gives us a PDE of the form

Lyyuðx; sÞ � o

os
uðx; sÞ ¼ 0;

uðx; 0Þ ¼ f ðxÞ
ð3:7Þ

for u, where the reduced-order generator Lyy is a

differential operator in x only. (3.7) describes a

density-valued function of a process in R2, the state

space of X�. By the stochastic dimensional reduction

results of Papanicolaou et al. [20], we can find a

stochastic process in R2 that is close to X� in

distribution for small � (weak limit of X� as � ! 0)

based on the generator Lyy. That R2 process consists

of angle and amplitude coordinates, which live on

½0; 2p� � R � R2. For studying flutter, we will be

interested in the amplitude component. We obtain a

stochastic differential representation of the amplitude

component using Lyy in Sect. 3.3.

For the Feynman–Kac representation of u1 and the

solvability condition, the transient and invariant

densities of fast processes ð~Y �
; h�; Z�Þ with rate 1

�

in (3.3) are required ( ~Y
�
is the deterministic process

equivalent to Y� at rate 1
�; see ‘‘Appendix 2’’). The

coefficients of Lyy in (3.7) are in terms of averages

with respect to the transient and invariant densities of

ð~Y�
; h�; Z�Þ. ð~Y�

; h�; Z�Þ are mutually independent,

hence the joint density equals the product of the

densities. The densities of ~Y
�
and h� are known based

on (3.3): ~Y
�
is an asymptotically stable process that

decays to its initial condition and h� varies with

constant rate x0 on a circle with radius determined by

the initial conditions of x. The density of Z� need not

be obtained explicitly. Recall that Z� is the stochastic

process that represents the turbulence components

((2.6a), (2.6b)). Averages with respect to the density

of Z� are obtained in terms of power spectral densities,

which are determined from the Dryden model for

turbulence. Hence, Lyy is of the form

Lyy ¼
X2

i¼1

�biðxÞ
o

oxi
þ 1

2

X2

i;j¼1

âijðxÞ
o2

oxioxj
;

where �bðxÞ and âijðxÞ are in terms of power spectral

densities of turbulence (see ‘‘Appendix 2’’ for calcu-

lations and explicit expressions).

3.3 Amplitude process

At this point we wish to determine Ly that charac-

terizes the Markov process generated by r ¼ RðzÞ ¼def

kxkR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. To this end, let us apply Itô’s

formula on test functions of r, UðRðxÞÞ 2 CðR2Þ. We

have

LyðU 	 RÞðxÞ ¼ dU
dRðRðxÞÞðLyyRÞðxÞ

þ 1

2

d2U

dR2
ðRðxÞÞhdR; dRiðxÞ;

ð3:8Þ

where

bRð�rsÞ ¼ LyyR
� 


ðxÞ; r2Rð�rsÞ ¼ hdR; dRiðxÞ;

hdR; dRiðxÞ ¼def
X2

i;j¼1

âijðxÞ
oR
oxi

ðxÞ oR
oxi

ðxÞ:

In view of (3.1), the homogenized coefficients are

calculated to be

bRð�rsÞ ¼ d0b�r� �R�r3 þ �r

8
j1SuT ð0Þþ

3

2
j2S

cos
uT
ð2x0Þ

� �

þ �r

8
j3S

cos;j
uT

ðx0 þ cÞþ j4S
cos;j
uT

ðx0 � cÞ
h

�j5S
sin;j
uT

ðx0 þ cÞ� j6S
sin;j
uT

ðx0 � cÞ
i

þ �r

4

X4

r¼1

jsin;krSsin;kr
uT

ðx0Þ
"

þ
X4

r¼1

jcos;krScos;kr
uT

ðx0Þ
#

þ }

4�r
j8S

cos
wT
ðx0Þ;

and
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r2Rð�rsÞ ¼
�r2

8
2j1SuT ð0Þ þ j2S

cos
uT
ð2x0Þ

h i

þ }

2
j8S

cos
wT
ðx0Þ:

We have obtained, explicitly, the homogenized results

that capture the behavior of the critical modes of the

12-dimensional system (3.3). Both drift and diffusion

coefficients are given in terms of parameters of the

original system (2.10) (definitions of the terms

involved can be found in Appendices 2 and 3). It is

worth comparing the general results derived in

Namachchivaya and Van Roessel [4] for the white

noise case with the above drift and diffusion terms.

First, the noise contributions are given interns of sine

and cosine power spectral densities, as opposed to a

flat power spectral density for the white noise case in

Namachchivaya and Van Roessel [4]. The effects of

additive noise (vertical turbulence) are given by terms

with } in the above drift and diffusion terms. Since the

derivation of deterministic terms are unchanged, in the

presence of cudric nonlinearities in the aeroelastic

model, the modified R given in Namachchivaya and

Van Roessel [4] can be used in the reduced model.

The reduced model (3.1) will provide a framework

for computing standard statistical measures of stabil-

ity, exit time laws, and stationary solutions (see

Arnold et al. [21]). These results are verified in the

following section.

4 Numerical results

In this section, we present various numerical results

pertaining to the aeroelastic problem. The following

numerical values are used (see Poirel and Price [3])

Uc
m ¼ 4:31; ah ¼ �0:5; l ¼ 100; ra ¼ 0:5;

xa ¼ 0:25; k3 ¼ 400; l ¼ 50; rT ¼ 1:

ð4:1Þ

Note that as l goes to zero, the case of white noise

results since the power spectral density becomes flat.

4.1 Results for the real noise case: parametric

excitation

We present the results from using (3.8) with the

numerical values sampled at different frequencies

from the various power spectral densities. Figure 2

shows the cumulative distribution functions (CDFs) of

the critical modes of the original system and the

reduced system for the case of horizontal turbulence

(i.e., } ¼ 0). From the agreement of the plots, we can

assert that the distribution of the critical modes of the

original system are indeed captured by the reduced

system and hence this one dimensional model can be

used for investigating flutter further. The reduced

system in Fig. 2 is characterized by

bR¼ð0:0323bþ0:142336Þ�r�0:1171�r3þ3:84714
}

�r
;

r2R¼0:14725�r2þ7:69427}

[based on (3.1), with e ¼ 0:15, zero unfolding

(b ¼ 0), and the flow and system parameters as

in (4.1))] Numerical integration for the critical and

stable modes is performed using a combined predic-

tor-corrector scheme for the deterministic drift and

Oð2Þ weak stochastic Taylor scheme, similar to that

introduced in Talay [22]. A stochastic strong Taylor

Oð1:5Þ scheme is used for stochastic integration of the

turbulence processes.

4.2 Stability and bifurcation analysis: parametric

excitation

In investigating the stability of the critical system, the

Lyapunov exponent which quantifies the degree of

‘‘sensitivity to initial conditions’’ (i.e., local instability

in a state space) is used. For the critical system, the top

Lyapunov exponent is defined as

Fig. 2 CDF of the critical modes of the original system

(dashed) and the reduced system (solid)
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k ¼def lim
s!1

1

s
ln j�rsj almost � surely:

The top Lyapunov exponent gives us the rate of

divergence of two trajectories that started in the vicinity

of the equilibrium point after a long time. Hence, the

sign and the magnitude of this value is indicative of the

overall stability of the system after a long time.

It is known from Arnold et al. [21] that the top

Lyapunov exponent obtained by linearizing the original

system and employing Oseledec’s Multiplicative

Ergodic Theorem is equivalent to the top Lyapunov

exponent obtained from the homogenized system (3.1).

To proceed with the analysis, let us first rewrite the

homogenized drift and diffusion coefficients as

bRð�rsÞ ¼ a�rs þ
c

2�rs
þ R�r3s ; r2Rð�rsÞ ¼ d�r2s þ c;

where

a ¼ d0bþ 1

8
j1SuT ð0Þ þ

3

2
j2S

cos
uT
ð2x0Þ

� �

þ 1

8
j3S

cos;j
uT

ðx0 þ cÞ þ j4S
cos;j
uT

ðx0 � cÞ
h

�j5S
sin;j
uT

ðx0 þ cÞ � j6S
sin;j
uT

ðx0 � cÞ
i

þ 1

4

X4

r¼1

jsin;krSsin;kr
uT

ðx0Þ þ
X4

r¼1

jcos;krScos;kr
uT

ðx0Þ
" #

;

R ¼ 3

8
ĝ1:111 þ ĝ1:122 þ ĝ2:112 þ ĝ2:222f g;

d ¼ 1

8
2j1SuT ð0Þ þ j2S

cos
uT
ð2x0Þ

h i
;

c ¼ }

2
j8S

cos
wT
ðx0Þ:

We now consider the case of parametric perturbations

only (i.e., c ¼ 0) in analyzing the stability of the trivial

solution. We note that, in the vicinity of the trivial

solution, the cubic nonlinearity should have little

effect on the stability of the critical system . Hence we

setR ¼ 0 (and valid only whenR
 0 which is true for

our case) for the following analysis. Application of

Itô’s formula on ln j�rsj gives, at b ¼ 0,

kR1 ¼ a� d

2

� �
¼ 0:068711; ð�r0 finiteÞ:

It is worth noting that the drift and diffusion terms bR
and r2R were derived for the airfoil model in which

wind gust is modeled using the Dryden model. This

was accommodated by augmenting the original equa-

tions of motion (2.1) with two stochastic differential

Eq. (2.6) representing colored noise that corresponds

to the power spectral densities in (2.5). Hence, kR1
evaluated above incorporates realistic turbulence. We

have used the fact that the steady state value of the

ratio of a martingale to its quadratic variation in the

limit as s ! 1 is zero. Using this result from the

reduced system, the top Lyapunov exponent of the full

system is estimated as �2kR1 . The positive top Lyapunov
exponent obtained indicates that a D-bifurcation has

occured, which is related to the loss of stability of the

reference measure (i.e., the invariant measure associ-

ated with the trivial fixed point of the reduced random

dynamical system—Dirac measure d0 at �r ¼ 0). Upon

further verification of this positive sign, we can assert

the almost-sure instability of the equilibrium point of

the nonlinear, dissipative dynamical system when at

the flutter speed (i.e., all solutions that start near the

equilibrium point of the system diverge away from

each other at a rate of �2kR1 ).
Figure 3 shows the results of determining the top

Lyapunov exponent of the full system by numerical

integration. The same numerical scheme as in

Sect. 4.1 is used for integration with e ¼ 0:5. Solid

lines are the quantity 1
s ln jrsj for 10 realizations while

the broken line shows the average over 2400 realiza-

tions. The linear fit of the mean solution (i.e., the slope

of which is the top Lyapunov exponent of the full

system, kF) is shown embedded within the same plot.

It is clear the actual Lyapunov exponent of the full

system is �2kF ¼ 8:6497� 10�4. Similarly, Fig. 4 is

for the reduced system.

The Lyapunov exponent estimated by the reduced

system is �2kR2 ¼ 9:2270� 10�4. We see that the

analytical top Lyapunov exponent, kR1 , is close to its

numerical counterpart, kR2 , and kR2 and differs from kF

by � 6 %.

Since the 2-dimensional homogenized random

dynamical system (generated by (7.6) in ‘‘Appendix

2’’) exhibits an S1-symmetry, the ð�rs; hÞ processes

decouple and hence the �rs process of the nonlinear

system is by itself a Markov diffusion process, and its

non-trivial stationary density is given by

pð�rÞ ¼ 2

CðmÞ
�R

d

� �m

�r2m�1 exp
R

d
�r2

� �
;

with m ¼def ad � 1
2
. In view of the definition of �r, the joint

stationary density is given by
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pðx1; x2Þ ¼
2

CðmÞ
�R

d

� �m

x21 þ x22
� 
m�1

2 exp
R

d
x21 þ x22
� 
� �

:

We now let bD (i.e., the D-bifurcation point) be the

value of b for which m ¼ 0 and we let bP (i.e., the

Phenomenological (P)-bifurcation point) be the value

of b for which m ¼ 1
2
. On one hand, for b\bD, we have

m\0 and the fixed point �r ¼ 0 is asymptotically

stable (i.e., the stationary probability density pð�rÞ is a
delta function at �r ¼ 0). The equilibrium point of the

full system looses its stability at the airspeed Um ¼
Uc

m þ �2bD. On the other hand, for b[ bP, we have

m[ 1
2
and the density is maximum at �r ¼

ffiffiffiffiffiffiffiffiffi
m�1

2

�R=d

q
. The

appearance of a new peak at bP where the probability

density first exhibits a crater is called a P-bifurcation

point and it occurs in the full system at the airspeed

Um ¼ Uc
m þ �2bP.

In Fig. 5, we present the bifurcation diagram to

illustrate better the D- and P-bifurcation points. Plots

of the stationary densities of the reduced system are

presented for an �2 neighborhood of b ¼ 0. It is clear

that at the D-bifurcation point, the top Lyapunov

exponent kR2 of the reference measure is zero. For

kR2\0, the trivial solution is stable and the nontrivial

solution does not exist. For kR2 [ 0, the trivial measure

is unstable and hence there exists a nontrivial invariant

measure. The nontrivial solution can be further

examined via the two distinct growth rates of the

process generated byLyy given in (7.6) in ‘‘Appendix

2’’. The sum of these growth rates are related through

the trace formula of the Stratonovich stochastic

differential equation characterized via the Hörmander

equivalent of Lyy as done in Arnold et al. [21].

Wenext consider themoment stability of the response,

�rs. If E½ð�rsÞp� tends to a finite value as s ! 1, then the

system will be stable in the p’th moment. Let us

formally define the pthmoment Lyapunov exponent for

the homogenized system with zero nonlinearity (i.e.,

R ¼ 0) and pure horizontal turbulence

gðpÞ ¼def lim
s!1

1

s
ln Ejrsjp for �r0 6¼ 0:

Following the work of Namachchivaya and Vedula

[24] and assuming that the specified conditions are

satisfied, the moment Lyapunov exponent for the

system can be approximated as

gðpÞ ¼ �2g2ðpÞ þ Oð�2Þ;

where

g2ðpÞ ¼
p

8

"

8d0bþ j2S
cos
uT
ð2x0Þ þ j3S

cos;j
uT

ðx0 þ cÞ

þ j4S
cos;j
uT

ðx0 � cÞ � j5S
sin;j
uT

ðx0 þ cÞ

� j6S
sin;j
uT

ðx0 � cÞ þ 2
X4

r¼1

jsin;krSsin;kr
uT

ðx0Þ
 

þ
X4

r¼1

jcos;krScos;kr
uT

ðx0Þ
!#

þ p2

16
2j1SuT ð0Þ þ j2S

cos
uT
ð2x0Þ

h i
;

and p 2 D � any compact subset in R.

Now, the top Lyapunov exponent kR1 can be found

alternatively by kR1 ¼ g0ð0Þ where the prime denotes

differentiation with respect to p. Furthermore, in light

of the large deviations result of Baxendale [25], the

nontrivial invariant measure undergoes a P-bifurcation

Fig. 3 Lyapunov exponent of the full system

Fig. 4 Lyapunov exponent of the reduced system
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at bP corresponding to gð�dÞ ¼ 0 where d ¼ dim Rd.

In particular, the bP correspoding to the homogenized

equation (see Fig. 5) occurs when d ¼ 1.

In Fig. 6, we present comparisons between CDFs of

the reduced and full system at regions of interest,

namely, 2bD; 10bP; 20bP to discuss the range of

validity of the homogenized stochastic differential

equation for studying essential characteristics with

respect to the two bifurcation points. From the relatively

good agreement of the CDFs (shown at the top in

Fig. 6), we can assert that the one dimensional stochas-

tic differential equation is indeed an accurate and

computationally efficient model that captures the

essential flutter characteristics of the aeroelastic model.

It is evident that this one-dimensional model is valid for

a large region hence adding to the robustness of this

model. Additionally, various joint probability densities

of the aerodynamic states taken from the full system are

presented in Fig. 6.

Figure 7 presents the top Lyapunov exponent

obtained at various b’s from the homogenized model.

These values are a good representation of the original

system’s result at the prescribed b due to the

agreement of the CDFs for the range 2bD through

20bP shown in Fig. 6.

A linear fit of the data in Fig. 7 results in kR
growing at a rate of 0:0322 with respect to b. This
corresponds to a positive growth rate of 4:3233�
10�4 in the top Lyapunov exponent with respect to

unfolding for the full aeroelastic model for the case of

pure parametric excitation.

4.3 Results for the real noise case: combined

excitation

The two-dimensional process Z ¼def½wT c�T given by

Eq. (2.6b) is linear and hence the solutions of these

stochastic differential equations are gaussian. Thus,

the stationary distribution of this process is distributed

normally with the two statistics, m1 and P1:

m1 ¼
0

0

� �
; P1 ¼ 1

p

1 �ðCHÞ2

2

�ðCHÞ2

2
ðCHÞ2ð1�

ffiffiffi
3

p
Þ

2

664

3

775;

withCH ¼ UH

m

L
:

Fig. 5 Bifurcation diagram for the homogenized system:

Change in the distribution and density of the critical modes

(x1, x2) as the bifurcation parameter b varies pass the D- and

P-bifurcation points. The top figures show the cdf of the

modulus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
, the bottom figures show the change in shape

of the joint density of (x1, x2). The joint density is a d-measure

before the D-bifurcation. As the system transitions from the

D- to P-bifurcation, the density stretches about the support of the

d-measure, until the P-bifurcation, where it takes a crater shape
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Fig. 6 Comparison of CDFs at nonzero unfolding, at 2bD, 10bP
and 20bP: The top figures show the cdf of the modulus of the

critical modes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
: Each figure shows the comparison

between the cdfs constructed using the full system (solid) and

homogenized system (dashed). a–c show the joint density of the

critical modes, d–f presents the joint density of pitch and pitch

rate, g–i gives the joint density of heave and its rate
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The stationary joint density of Zt can be easily found

via the multivarite normal distribution:

pstðwT ; cÞ ¼
1

2pjP1j1=2

� exp � 1

2
ðZt �m1ÞTP�1

1 ðZt �m1Þ
� �

:

Therefore, the initial conditions for the states of the

two-dimensional process Zt can now be sampled from

the previous stationary probability density and hence

the simulation of the full system can be facilitated. The

stationary density, pstð�rÞ, of the �r process in this setting
is given by

pstð�rÞ ¼
2f�m exp ð�fÞ

Cð�m; fÞ � d

c

� �
�r

d

c

� �
�r2 þ 1

� ��m�1

� exp
R

d
�r2

� �
;

with �m ¼def a�
d
2

d þ f; f ¼def �Rc
d2

, �m non-negative, and this

density satisfies the stationary Fokker-Planck

equation:

� o

o�r
bRð�rÞpstð�rÞð Þ þ 1

2

o2

o�r2
r2Rð�rÞpstð�rÞ
� 


¼ 0;

with initial condition: pstð�rs; sj�r0; s0Þ ! dð�rs � �r0Þ
as s ! s0. The homogenized coefficients bR; rR are

given in Sect. 4.1. In view of the definition of �r, the

joint stationary density is given by

Fig. 7 Lyapunov exponent from the reduced model for a range

of unfolding

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

r

F
(x
)

Fig. 8 CDFs of the critical modes of the original system

(dashed) and the reduced system (solid) for the case of

combined excitation

Fig. 9 Joint densities at b ¼ 0 for combined excitation: a shows the joint density of the critical modes, b presents the joint density of

heave and its rate, c gives the joint density of pitch and pitch rate
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pstðx1;x2Þ ¼
2f�m exp ð�fÞ

Cð�m;fÞ

� d

c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þ x22

q
d

c

� �
x21þ x22
� 


þ 1

� ��m�1

� exp
R

d
ðx21þ x22Þ

� �
:

In order to obtain asymptotic results, we consider

the case of } ¼ 1 and hence we are considering the

vertical component of turbulence to be at Oð�2Þ in

the original aeroelastic model given by Eq. (2.11).

Figure 8 shows the plot of the CDFs of the critical

modes of the reduced and full systems at zero

unfolding, b ¼ 0. Figure 8 was generated with

e ¼ 0:05, using the same numerical scheme stated in

Sect. 4.1. From the relatively good agreement of the

CDFs in Fig. 8, we can assert the validity of this one

dimensional model in capturing the essential flutter

characteristics of the aeroelastic model in the vicinity

of the flutter airspeed for the combined vertical and

horizontal turbulence setting. Figure 9 presents the

various joint probability densities taken from the full

aeroelastic system whose CDF of the critical modes is

given in Fig. 8. It has been verified for a range of

nonzero unfolding (i.e., b 6¼ 0) that all normalizable

joint densities (i.e., probability density) exhibit a

crater shape. Thus, a D-Bifurcation does not occur in

the case of combined excitation (see Fig. 5 for a lucid

picture of the transition of the densities between

bifurcation points). This result is commensurate with

that obtained by Poirel and Price [3].

This homogenized model may further be used to

study the effect of combined excitation on the full

aeroelastic model for a range of nonzero unfolding.

Although not considered in the present work, this

homogenized model can additionally be used to

accurately estimate the top Lyapunov exponent of

the full aeroelastic system when excited by both

multiplicative and additive noise.

5 Conclusion

We considered an 11-dimensional stochastic model

that represents a 2-degree-of-freedom aeroelastic

problem, with aerodynamic forcings generated by

an additional 2-degree-of-freedom model and a 3-di-

mensional turbulence model, and extensively charac-

terized the modeling involved. A method of stochastic

dimensional reduction based on the work of Papani-

colaou et al. [20], Namachchivaya and Lin [26] and

Namachchivaya and Van Roessel [4] was developed,

for non-white noise excitations. In developing the

stochastic averaging scheme, it is assumed that the

random perturbations are small, but over a long time

their effects are significant. In order to understand

these effects, the reduced model encoded the structure

of the unperturbed dynamical system which allowed

one to look at the quantities of interest on an

appropriate time scale. The averaging principle per-

mits us to obtain the equations governing the evolution

of these slow variables. The method was then applied

to the aeroelastic problem in the vicinity of the critical

bifurcation parameter. This simplified low-dimen-

sional coarse-grained model was used to efficiently

simulate the long-term statistics of the slow variables.

The goal of this technique was to obtain a one

dimensional reduced model that would characterize

the stochastic dynamics exhibited by the critical

modes of the original system and in turn allow for

aerodynamic flutter to be investigated in the presence

of turbulence. This technique was facilitated by the

fact that the system under consideration comprised of

components that rapidly oscillate and decay, and noise

processes that satisfy strong mixing conditions, so that

they attain invariant measures very quickly and hence

could be averaged out. Explicit formulas for the

homogenized drift and diffusion coefficients were

derived and these quantities were given in terms of

various power spectral densities that could be readily

found from the Dryden model. The formula contains

terms representing contribution from the stochastic

components in the stable ‘‘heavily damped’’ modes

and the ‘‘critical’’ modes (this contribution was

explicitly obtained for the first time in Namachchivaya

and Lin [26]).

One of the key findings is that, in addition to

providing a qualitative behavior of the stochastic

dynamics, the results from asymptotic methods are

capable of capturing the quintessence of noise-

induced instability and stochastic bifurcations of the

original system, as shown in Figs. 2, 3, 4, and 8.

Numerical experiments were conducted for the cases

of pure longitudinal and combined excitations and the

CDFs of the critical modes of the original and reduced

systems converged in both instances. This verifies the

results obtained from the homogenization procedure.

Finally, the top Lyapunov exponent was calculated
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analytically for the one-dimensional system and

compared with the numerical value obtained from

the nine-dimensional system for the case of parametric

excitation. The Lyapunov exponent values were found

to be relatively close to each other, allowing us to

comment on the overall stability of the full system

using the one-dimensional system.
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Appendix 1

The terms in (2.10) of Sect. 2 are as follows:

M½ � ¼

1þ
a2h þ

1

8
lr2a

xa

r2a
� ah

lr2a
0 0

xa �
ah

l
1þ 1

l
0 0

0 0 1 0

0 0 0 1

2

666666664

3

777777775

;

DðsÞ½ � ¼

u�
1

2
� ah

� �2

lr2a
�
u�

1

2
þ ah

� �

lr2a
�
2u�

1

2
þ ah

� �
AW
1 b

W
1 þ AW

2 b
W
2

� 


lr2a
�
2

1

2
þ ah

� �
AK
1 b

K
1 þ AK

2 b
K
2

� 


lr2a

u�
3

2
� ah

� �

l
u�

l

2u� AW
1 b

W
1 þ AW

2 b
W
2

� 


l

2 AK
1 b

K
1 þ AK

2 b
K
2

� 


l

ah �
1

2
�1 bW1 þ bW2 0

0 0 0 bK1 þ bK2

2

66666666666664

3

77777777777775

;

KðsÞ½ � ¼

1

U2
m

�
ðu�Þ2 1

2
þ ah

� �

lr2a
0

ðu�Þ2

l
xh=xað Þ2

U2
m

�u� 0

0 0

2

6666666664

�
ðu�Þ2 1

2
þ ah

� �
bW1 b

W
2

lr2a
�
2

1

2
þ ah

� �
bK1 b

K
2

lr2a
u�bW1 b

W
2

l
2bK1 b

K
2

l
bW1 b

W
2 0

0 bK1 b
K
2

3

7777777775

;

K3½ � ¼

K3

U2
m

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2

66664

3

77775
;
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where u� ¼def 1þ �uTðsÞ, w� :¼ �wTðsÞ, and xh and xa

are the natural frequencies of heave and pitch [fre-

quencies of the solutions to the decoupled, unforced

Eq. (2.1)].

As mentioned in Sect. 2, the damping and stiffness

matrices [D] and [K] can be decomposed into their

respective time invariant and time varying components:

½DðsÞ� ¼ ½D0� þ �uTðsÞ½D1�;
½KðsÞ� ¼ ½K0� þ �uTðsÞ½K1�;

where

The coefficient matrices in (2.11) of Sect. 2 are as

follows:

A0½ � ¼ Z½ ��1
L½ �; B0½ � ¼ Z½ ��1

Q½ �;
C0½ � ¼ Z½ ��1

G½ �; N̂

 �

¼ Z½ ��1
N½ �;

where

½Z� ¼
I 0

0 ½M�

� �
; ½L� ¼

0 I

�½K0� �½B0�

� �
;

½Q� ¼
0 0

�½K1� �½D1�

� �
½G� ¼

0 0

�½K3� 0

� �

½N� ¼

0

0

0

wT

2

6664

3

7775
:

D0½ � ¼

1

2
� ah

� �2

lr2a
�

1

2
þ ah

� �

lr2a
�
2

1

2
þ ah

� �
AW
1 b

W
1 þ AW

2 b
W
2

� 


lr2a
�
2

1

2
þ ah

� �
AK
1 b

K
1 þ AK

2 b
K
2

� 


lr2a
3

2
� ah

� �

l
1

l

2 AW
1 b

W
1 þ AW

2 b
W
2

� 


l

2 AK
1 b

K
1 þ AK

2 b
K
2

� 


l

ah �
1

2
�1 bW1 þ bW2 0

0 0 0 bK1 þ bK2

2

66666666666664

3

77777777777775

;

D1½ � ¼

1

2
� ah

� �2

lr2a
�

1

2
� ah

� �

lr2a
1

l
3

2
� ah

� �
1

l
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0 0

2
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�
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W
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W
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W
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l
0
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3

7777777775
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1

U2
m

�

1

2
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� �

lr2a
0

1

l
xh=xað Þ2

U2
m

�1 0

0 0

2

6666666664

�

1

2
þ ah

� �
bW1 b
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bK1 b
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7777777775

;

K1½ � ¼

�
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þ ah

� �
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0 �

2
1
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� �
bW1 b

W
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bW1 b
W
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l
0
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:
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The terms in (2.13) of Sect. 2 are as follows:

�b
0
v�s;U

c
m

� 

¼ SA0 Uc

m

� 

T


 �
v�s ¼ A Uc

m

� 

 �
v�s;

�b
1
v�s; uTðsÞ;wTðsÞ
� 


¼ }½S�½N̂� þ ½SB0T �uTðsÞv�s
¼ }½v� þ ½�B�uTðsÞv�s;

�b
2
v�s;U

c
m

� 

¼ Fu�s þ G v�s

� 
3h i
;

F ¼ b SA0
0 Uc

m

� 

T


 �
¼ b A0 Uc

m

� 

 �
;

G ¼ ½S�½C0�;

v�s
� 
3¼

X8

i¼1

T1iv
�;ðiÞ
s

 !3

; . . .;
X8

i¼1

T8iv
�;ðiÞ
s

 !3
2

4

3

5

T

;

½v� ¼ wTðsÞ½S18; . . .; S88�T ;where ½S� ¼ ½T ��1:

Due to the block diagonal form of the linear operator,

AðUc
mÞ, we can write

A Uc
m

� 

¼

B 0 0

0 R 0

0 0 C

2

64

3

75; whereB ¼
0 � x0

x0 0

� �
; x0 2 Rþ

R ¼
�j �c

c �j

� �
; andC ¼ diagðkiÞ; ki\0; i ¼ 1; . . .; 4:

The remaining terms are

A0 Uc
m

� 

¼

D E

H J

� �
; ½�B� ¼

�K �M

�N �L

� �
;

G u�s
� 
3¼

�g1 u�s
� 


..

.

�g8 u�s
� 


2

664

3

775;

where D and �K are 2� 2 matrices, E and �M are 2� 6

matrices, H and �N are 6� 2 matrices, and J, �L are

6� 6 matrices, and

�gmðxÞ ¼
def

ĝm:ijkxixjxk ¼ ĝm:111x
3
1

þ ĝm:222x
3
2 þ 3ĝm:122x1x

2
2 þ 3ĝm:112x

2
1x2

for m ¼ 1; . . .; 8, and ĝm:ijk are constants.

Appendix 2

Here, we describe the calculations involved in

Sect. 3.2. Substituting the expansion (3.6) into (3.5),

we have a set of Poisson equations at increasing orders

of �:

L
ðy;h;zÞ
F u0ðx;y;h; z;sÞ ¼ b0ðyÞou0

oy
ðx;y;h; z;sÞ

þx0

ou0

oh
ðx;y;h; z;sÞ

þ Gu0ðx;y;h; z;sÞ ¼ 0;

L
ðy;h;zÞ
F u1ðx;y;h; z;sÞ ¼�a0ðx;y;h; zÞou0

ox
ðx;y;h; z;sÞ

� b1ðx;y;h; zÞou0
oy

ðx;y;h; z;sÞ;

L
ðy;h;zÞ
F u2ðx;y;h; z;sÞ ¼�a0ðx;y;h; zÞou1

ox
ðx;y;h; z;sÞ

� b1ðx;y;h; zÞou1
oy

ðx;y;h; z;sÞ

� a1ðx;y;hÞou0
ox

ðx;y;h; z;sÞ
�

þb2ðx;y;hÞou0
oy

ðx;y;h; z;sÞ

�ou0

os
ðx;y;h; z;sÞ

�
;

..

.

ð7:1Þ

SinceG is an operator in z alone, it is clear from the first

equation of (7.1) that u0ðx;y;h; z;sÞ ¼ uðx;sÞ. Thus,
the second and third equations of (7.1) simplifies to

L
ðy;h;zÞ
F u1ðx; y; h; z; sÞ ¼ �a0ðx; y; h; zÞ ou

ox
ðx; sÞ;

L
ðy;h;zÞ
F u2ðx; y; h; z; sÞ ¼ �a0ðx; y; h; zÞ ou1

ox
ðx; y; h; z; sÞ

� b1ðx; y; h; zÞ ou1
oy

ðx; y; h; z; sÞ

� a1ðx; y; hÞ ou
ox

ðx; sÞ � ou

os
ðx; sÞ

� �
:

ð7:2Þ

We first investigate the Oð 1
�2
Þ dynamics in (3.3) to

obtain the transient and invariant measures of the fast

generator Ly;h;z
F . Let us denote by ws the flow map

induced by the deterministic vector field b0ðyÞ
of (3.3), i.e. wsðyÞ is the flow of Y � starting from y if

it was driven only by theOð 1
�2
Þ dynamics. The transient

measure is a delta measure centered atwsðyÞ: dwsðyÞðgÞ.
Since the vector field is asymptotically stable, we can

associate a measure defined by the following limit
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d1ðgÞ ¼ d0ðgÞ ¼def lim
s!1

d
wsðyÞ

ðgÞ:

For the h� process, all orbits live on a circle whose

radius is dictated by the values of the initial conditions

x1 and x2 of the process X
�
s. More precisely, contained

in a closed orbit, we can associate a measure defined

by the following limit

d1ðnÞ ¼ 1

2p
¼ lim

s!1

1

s

Z s

0

dhþx0sðnÞ ds:

For the noise process, it is natural to obtain the final

results in terms of the spectral densities of the input noise

Z� whose generator is G. To this end, we express the

solution in terms of the Green’s function gðf; s; z; 0Þ
for G�. The Green’s function for G� is the solution of

og

os
¼ G�g; gðf; 0; z; 0Þ ¼ d0ðz� fÞ:

Since they are independent, the transient density of the

Oð 1
�2
Þ components is

psðy; h; z; g; n; fÞ ¼ d
wsðyÞ

ðgÞ � dx0sþhðnÞ � gðf; s; z; 0Þ:

Now we are in a position to evaluate the PDEs (7.2).

The coefficients a0ðx; y; h; zÞ and b1ðx; y; h; zÞ in (3.3)

are both linearly dependent on the process Z�, which

invariant distribution has zero mean, so

E a0ðx; Y �; h�; Z�Þ

 �

¼ E b1ðx; Y �; h�; Z�Þ

 �

¼ 0;

where E½�� is expectation with respect to the invariant

density p1. Thus, the Fredholm alternative implies

that the first equation of (7.2) has a bounded solution.

Now employing the Feynman–Kac formula (see, for

example, Chapter 5 of Karatzas and Shreve [27]) and

defining

u0xðx; sÞ ¼
def ou

ox
ðx; sÞ; hðx; y; h; z; sÞ ¼def a0ðx; y; h; zÞu0x;

the bounded solution of the first equation of (7.2) is

given by

u1ðx; y; h; z; sÞ ¼ Ey;h;z

Z 1

0

h Yx
s ; h

x
s ; Z

x
s ; x; s

� 

ds

� �

¼
Z 1

0

ds

Z

R6

Z

S

Z

R3

a0ðx; g; n; fÞu0xðx; sÞ

psðg; n; f; y; h; zÞ dgdndf; ð7:3Þ

where x and s are parameters and the transient density

does not depend on x due to the fact that the fast

components of Y �; h�; Z� are independent of the slow

process X�. Furthermore, we note once again that y, h
and z represent the starting points of the processes

Y �
s ; h

x
s; Z

�
s respectively. Since E a0ðx; Y�; h�; Z�Þ½ � ¼ 0

(see above), the centering condition is automatically

satisfied:

Z

R6

Z

S

Z

R3

hðg; n; f; x; sÞ p1ðg; n; fÞ dgdndf ¼ 0:

Making use of the above expression for the transient

density, (7.3) can be written as

u1ðx; y; h; z; sÞ ¼
Z 1

0

Z

R6

Z

S

Z

R3

a0ðx; g; n; fÞu0xðx; sÞ

� d
wsðyÞ

ðgÞ � dx0sþhðnÞ � gðf; s; z; 0Þ dgdndf:

Now, let us consider the last of the Poisson equations

in (7.2) more carefully:

L
ðy;h;zÞ
F u2ðx; y; h; z; sÞ ¼ �a0j ðx; y; h; zÞ

ou1

oxj
ðx; y; h; z; sÞ � b1j ðx; y; h; zÞ

ou1

oyj
ðx; y; h; z; sÞ

� a1j ðx; y; hÞ
ou

oxj
ðx; sÞ � ou

os
ðx; sÞ

� �
: ð7:4Þ

Note that the transient and invariant measures are not

functions of the slowvariable x, but only of the initial point

ðy; h; zÞ. Keeping this in mind and integrating with

respect to gð¼ yÞ and nð¼ hÞ we can rewrite (7.4) as

L
ðy;h;zÞ
F u2ðx; y; h; z; sÞ ¼ �a0j ðx; y; h; zÞ

�
Z 1

0

ds

�Z

f2R3

�
oa0i
oxj

x;wsðyÞ;x0sð

þ h; f

�
u0xiðx; sÞþa0i x;wsðyÞ;x0sð

þ h; fÞu00xixjðx; sÞ
�
gðf; s; z; 0Þ dfÞ

� b1j ðx; y; h; zÞ
Z 1

0

ds
o

oyj

�Z

f2R3

a0i ðx;wsðyÞ;x0s

þ h; fÞu0xiðx; sÞgðf; s; z; 0Þ df
�

� a1j ðx; y; hÞ
ou

oxj
ðx; sÞ � ou

os
ðx; sÞ

� �

¼: uðx; y; h; z; sÞ:
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Applying the solvability condition uðx; y; h; z; sÞ; p1h
ðy; h; zÞi ¼ 0, where p1ðy; h; zÞ is in the kernel of

L
ðy;h;zÞ
F :

Equation (7.5) yields the homogenized equation for

uðx; sÞ.
We now provide a brief overview of the computa-

tion involved at this point. The complete details can be

found in Singh [11]. In order to simplify the calcula-

tions further, we look at �b
1ðv�; uT ;wTÞ, �b

2ðv�;Uc
mÞ

in (2.13) and note the change of coordinates in (3.2)

that motivates an appropriate structure for the vari-

ables a0ðx; y; h; zÞ, b1ðx; y; h; zÞ, a1ðx; y; hÞ. These

variables are defined in terms of the matrices �K, �M,

S, �N, �L, D as given in (2.13) as well as in terms of

functions of the respective noise processes: u1ðuTÞ,
u2ðc;wTÞ. Furthermore, the invariant measure is given

as

p1ðy; h; zÞ ¼ d0ðyÞ � m1ðz1Þ � m2ðz2; z3Þ
2p

;

where m1 � m2 is the invariant measure of the real noise

process, which are independent. The transition density

of the noise process can be decomposed as

gðf; s; z; 0Þ ¼ g1ðf1; s; z1; 0Þ � g2ðf2; f3; s; z2; z3; 0Þ:

We treat f2; f3ð Þ in g2ðf2; f3; s; z; 0Þ as one quantity in

the analysis that follows.

We then integrate out both y and h variables,

respectively, in the solvability condition that follows

from the previous remarks. We further note that the

cross terms between u1ðuTÞ, u2ðc;wTÞ have been

dropped because of the independence between the

horizontal and vertical noise. Additionally, we define

the covariances (time correlation) in terms of func-

tions of the respective noise processes u1ðuTÞ,
u2ðc;wTÞ as

Ru1
ðsÞ ¼defE½u1ðuTðsÞÞu1ðuTðsþ sÞÞ�

¼
Z

R

u1ðfÞm1ðfÞ
Z

f02R
u1ðf0Þg1ðf0; s; z; 0Þ df0

� �
df;

Ru2
ðsÞ ¼defE½u2ðcðsÞ;wTðsÞÞu2ðcðsþ sÞ;wTðsþ sÞÞ�

Z

R2

u2ðfÞm2ðfÞ
Z

f02R2

u2ðf0Þg2ðf0; s; z; 0Þ df0
� �

df:

Their time integrals are the power spectral densities:

SuT ð0Þ ¼
def

2

Z 1

0

Ru1
ðsÞds;

SwT
ð0Þ ¼def 2

Z 1

0

Ru2
ðsÞds;

Scos
uT
ðx0Þ ¼

def
2

Z 1

0

Ru1
ðsÞC0ðx0sÞds;

Ssin
uT
ðx0Þ ¼def 2

Z 1

0

Ru1
ðsÞS0ðx0sÞds;

Scos
wT
ðx0Þ ¼def 2

Z 1

0

Ru2
ðsÞC0ðx0sÞds;

Ssin
wT
ðx0Þ ¼

def
2

Z 1

0

Ru2
ðsÞS0ðx0sÞds;

�
Z

R6

Z

S

Z

R3

a0j ðx; y; h; zÞp1ðy; h; zÞ
Z 1

0

ds

Z

f2R3

oa0i
oxj

ðx;wsðyÞ;x0sþ h; fÞu0xiðx; sÞ
��

þa0i ðx;wsðyÞ;x0sþ h; fÞu00xixjðx; sÞ
�
gðf; s; z; 0Þ dfÞ dydhdz

�
Z

R6

Z

S

Z

R3

b1j ðx; y; h; zÞp1ðy; h; zÞ
Z 1

0

ds

�
Z

f2R3

oa0i
ofl

ðx; f;x0sþ h; fÞjf¼wsðyÞ
owl

sðyÞ
oyj

u0xiðx; sÞgðf; s; z; 0Þ df
� �

dydhdz

�
Z

R6

Z

S

Z

R3

p1ðy; h; zÞ a1j ðx; y; hÞ
ou

oxj
ðx; sÞ � ou

os
ðx; sÞ

� �
dydhdz ¼ 0:

ð7:5Þ
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which can be readily found from the Dryden Model.

We also define the (l, j)th element:

Scos;l
uT ;j

ðx0Þ ¼
def
Z 1

0

Ru1
ðsÞC0ðx0sÞ

owl
sðyÞ
oyj

jy¼0 ds;

Ssin;l
uT ;j

ðx0Þ ¼def
Z 1

0

Ru1
ðsÞS0ðx0sÞ

owl
sðyÞ
oyj

jy¼0 ds:

We define the various damped spectra as follows:

Scos;ki
uT

ðx0Þ ¼
def

2

Z 1

0

ekisRu1
ðsÞC0ðx0sÞds;

Ssin;ki
uT

ðx0Þ ¼
def

2

Z 1

0

ekisRu1
ðsÞS0ðx0sÞds

for i ¼ 1; . . .; 4, and

Scos;j
uT

ðx0Þ ¼def 2
Z 1

0

e�jsRu1
ðsÞC0ðx0sÞds;

Ssin;j
uT

ðx0Þ ¼def 2
Z 1

0

e�jsRu1
ðsÞS0ðx0sÞds:

Thus,

Now, the partial differential equation (7.5) is written

in terms of these power spectral densities. The

homogenized generator Lyy will be an operator that

depends only on the two dimensional slow variables

xs, hence the test functions associated withL
yy will be

of the form f ðxsÞ. Therefore, let f be a smooth function

of x only, and the generator that produces the slow

process is given by

Lyy ¼def
X2

i¼1

�biðxÞ
o

oxi
þ 1

2

X2

i;j¼1

âijðxÞ
o2

oxioxj
ð7:6Þ

with the homogenized coefficients given by

�biðxÞ ¼ xk

 

bpbik þ ðx21 þ x22Þp
�g
ik:þ

1

8
p1ikS

cos
uT
ð2x0Þ

h

þp2ikS
sin
uT
ð2x0Þ þ p3ikSuT ð0Þ

i

þ 1

8
p4ikS

cos;j
uT

ðx0 þ cÞ þ p5ikS
cos;j
uT

ðx0 � cÞ
h

þp6ikS
sin;j
uT

ðx0 þ cÞ þ p7ikS
sin;j
uT

ðx0 � cÞ
i

þ 1

4

X4

r¼1

psin;krik Ssin;kr
uT

ðx0Þ þ
X4

r¼1

pcos;krik Scos;kr
uT

ðx0Þ
" #!

Scos;l
uT ;j

ðx0Þ ¼

1

8
½Scos;j

uT
ðx0 � cÞ þ Scos;j

uT
ðx0 þ cÞ� 1

8
½Ssin;j

uT
ðx0 � cÞ � Ssin;j

uT
ðx0 þ cÞ� 0 0 0 0

1

8
½Ssin;j

uT
ðx0 þ cÞ � Ssin;j

uT
ðx0 � cÞ� 1

8
½Scos;j

uT
ðx0 � cÞ þ Scos;j

uT
ðx0 þ cÞ� 0 0 0 0

0 0
1

4
Scos;k1

uT
ðx0Þ 0 0 0

0 0 0
1

4
Scos;k2

uT
ðx0Þ 0 0

0 0 0 0
1

4
Scos;k3

uT
ðx0Þ 0

0 0 0 0 0
1

4
Scos;k4

uT
ðx0Þ

2

666
66666
666666
66664

3

777
77777
777777
77775

;

Ssin;l
uT ;j

ðx0Þ ¼

1

8
½Ssin;j

uT
ðx0 � cÞ þ Ssin;j

uT
ðx0 þ cÞ� 1

8
½Scos;j

uT
ðx0 þ cÞ � Scos;j

uT
ðx0 � cÞ� 0 0 0 0

1

8
½Scos;j

uT
ðx0 � cÞ � Scos;j

uT
ðx0 þ cÞ� 1

8
½Ssin;j

uT
ðx0 � cÞ þ Ssin;j

uT
ðx0 þ cÞ� 0 0 0 0

0 0
1

4
Ssin;k1

uT
ðx0Þ 0 0 0

0 0 0
1

4
Ssin;k2

uT
ðx0Þ 0 0

0 0 0 0
1

4
Ssin;k3

uT
ðx0Þ 0

0 0 0 0 0
1

4
Ssin;k4

uT
ðx0Þ

2

66666
66666
666666
664

3

77777
77777
777777
775

:
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and

âijðxÞ ¼
x21 þ x22

8
p1ijS

cos
uT
ð2x0Þ þ p2ijS

sin
uT
ð2x0Þ

h i

þ }

2
p8ijS

cos
wT
ðx0Þ þ p9ijS

sin
wT
ðx0Þ

h i

þ SuT ð0Þ
4

p10ij x
2
1 þ p11ij x

2
2 þ p12ij x1x2

� �
;

where the definitions of the various 2� 2 matrices pr

are given in ‘‘Appendix 3’’.

Appendix 3

pb ¼ d0 c0

�c0 d0

� �
; p�g ¼ ��R �~R

~R ��R

" #

;

p1 ¼
j2 0

0 j2

� �
; p2 ¼

0 j2
�j2 0

� �
;

p3 ¼
j1 � j7 2

ffiffiffiffiffiffiffiffiffiffi
j1j7

p

�2
ffiffiffiffiffiffiffiffiffiffi
j1j7

p
j1 � j7

� �
; p4 ¼

j3 j5
�j5 j3

� �
;

p5 ¼
j4 j6
�j6 j4

� �
; p6 ¼

�j5 j3
�j3 �j5

� �
;

p7 ¼
�j6 j4
�j4 �j6

� �
; psin;kr ¼ jsin;kr jcos;kr

�jcos;kr jsin;kr

" #

;

pcos;kr ¼ jcos;kr �jsin;kr

jsin;kr jcos;kr

" #

; p8 ¼
j8 0

0 j8

� �
;

p9 ¼
0 j8

�j8 0

� �
; p10 ¼

j1 � ffiffiffiffiffiffiffiffiffiffi
j1j7

p

� ffiffiffiffiffiffiffiffiffiffi
j1j7

p
j7

� �
;

p11 ¼
j7

ffiffiffiffiffiffiffiffiffiffi
j1j7

p
ffiffiffiffiffiffiffiffiffiffi
j1j7

p
j1

� �
; p12 ¼

2
ffiffiffiffiffiffiffiffiffiffi
j1j7

p
j1 � j7

j1 � j7 �2
ffiffiffiffiffiffiffiffiffiffi
j1j7

p
� �

;

d0 ¼ d11 þ d22

2
; c0 ¼ d12 � d21

2
; dij 2 D;

j1 ¼ ðk11 þ k22Þ2; j2 ¼ ðk11 � k22Þ2 þ ðk12 þ k21Þ2
n o

;

j3 ¼ ðm22 � m11Þðn22 � n11Þ þ ðm12 þ m21Þðn12 þ n21Þ;
j4 ¼ ðm22 þ m11Þðn22 þ n11Þ � ðm12 � m21Þðn12 � n21Þ;
j5 ¼ ðm12 þ m21Þðn22 � n11Þ � ðm22 � m11Þðn12 þ n21Þ;
j6 ¼ ðm22 þ m11Þðn12 � n21Þ þ ðm12 � m21Þðn22 þ n11Þ;

where mij 2 �M and nij 2 �N,

jsin;kr ¼ �m1ðrþ2Þnðrþ2Þ2 þ m2ðrþ2Þnðrþ2Þ1
� �

;

jcos;kr ¼ m1ðrþ2Þnðrþ2Þ1 þ m2ðrþ2Þnðrþ2Þ2
� �

;

for r ¼ 1; . . .; 4,

j7 ¼ðk12 � k21Þ2; kij 2 �K;

j8 ¼ f 21 þ f 22
� �

;

and

�R ¼� 3

8
ĝ1:111 þ ĝ1:122 þ ĝ2:112 þ ĝ2:222f g;

~R ¼� 3

8
ĝ1:112 þ ĝ1:222 � ĝ2:111 � ĝ2:122f g:
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