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Abstract The flow of an upper shear-driven New-

tonian fluid above an otherwise still non-Newtonian

fluid is considered. The lower fluid is modelled as a

generalized Newtonian fluid and set into motion by

interfacial shear. By means of similarity transforma-

tions, the governing partial differential equations for

the two-fluid problem transform exactly into two sets

of ordinary differential equations coupled only at the

interface. The successful transformation of the two-

fluid problem is applied to the particular case when the

lower fluid obeys power-law rheology. The resulting

three-parameter problem is solved numerically for

some different parameter combinations by means of a

direct integration approach with the density ratio fixed

to unity. We observed that the interfacial velocities

decreased with increasing values of the power-law

index n in the range from 0.6 to 1.4 whereas the shear-

induced motion of the lower fluid penetrates far deeper

into a shear-thinning (n\ 1) than into a shear-

thickening (n[ 1) fluid. This phenomenon is ascribed

to a corresponding increase of the non-linear viscosity

function with lower n-values.

Keywords Two-fluid problems � Interfacial
coupling � Shear-driven flow � Mixing-layers �
Non-Newtonian fluids � Similarity solutions

1 Introduction

Two-fluid problems, in which the motion of two

different fluids interacts through an interface, have

been extensively studied in the past. In many practical

situations, both in nature and engineering, two differ-

ent immiscible fluids are moving almost parallel to

each other at different speeds. Lock [1], for instance,

obtained similarity solutions in terms of a fluid

property parameter and the ratio between the velocity

of the lower and upper fluid. That situation was also

examined by Wang [2], but in his case the upper fluid

exhibited a uniform shear rate rather than a uniform

velocity as in [1]. Herczynski et al. [3] found similarity

solutions for two-fluid jets and wakes by matching the

fluid velocity and shear stresses at the two-fluid

interface. In these and other two-fluid problems, the

two fluids have different densities and viscosities, but

both fluids exhibit Newtonian, i.e. linear, rheology.
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Non-Newtonian fluids are, however, frequently

studied in one-fluid problems. Of particular relevance

here is the sheet-driven boundary layer problem

which originates from the works of Sakiadis [4] and

Crane [5] and recently was revisited by Al-Housseiny

and Stone [6] to include the sheet mechanics via the

stress balance in the sheet. The Crane-problem was

generalized to non-Newtonian power-law fluids by

Andersson et al. [7] and further analysed by Ander-

sson and Kumaran [8]. The velocity profiles turned

out to vary with the fluid properties, i.e. the so-called

power-law index n. The shearing stress at the moving

sheet as well as the thickness of the momentum

boundary layer exhibited significant n-dependence.

More recently Guedda [9] considered the shear-driven

flow of a power-law fluid along a plane solid surface.

Power-law fluids are also encountered in many

industrial processes [10] as well as in nature [11],

but such other applications are outside the scope of

the present study.

The popular power-law model is known to be

unrealistic at high and low shear rates. These short-

comings can be remedied by more elaborate, but yet

purely viscous, non-Newtonian fluid models; see e.g.

Chapter 6 in Irgens [12]. Unsteady boundary layer

flows over moving walls, i.e. the classical Stokes’ first

and second problems, were analysed for power-law

fluids by Pascal [13] and Pritchard et al. [14],

respectively, and subsequently extended to general-

ized Newtonian fluids by Duffy et al. [15].

The purpose of this paper is to show that similarity

solutions exist also for two-fluid problems in which

one of the fluids exhibits non-Newtonian rheology.

More specifially, we consider the shear-driven motion

of a Newtonian fluid above an otherwise still non-

Newtonian fluid. The motion of the lower fluid is

induced solely by the interfacial shear stress exerted

by the upper fluid. One may therefore conjecture that

the resulting flow resembles that of the sheet-driven

boundary layers by Sakiadis [4] and Crane [5] and the

more recent extension to power-law fluids by Ander-

sson and Kumaran [8]. However, the generalized

Newtonian fluid model is adopted herein to represent

the non-Newtonian rheology. The investigation will

therefore apply for any purely viscous fluid, similarly

as the recent analysis of Stokes’ first problem by Duffy

et al. [15]. A power-law fluid is thereafter chosen to

illustrate both shear-thinning and shear-thickening

effects.

To this end we consider an incompressible purely

viscous and potentially non-Newtonian fluid. The

rheological equation of state for a generalized New-

tonian fluid reads:

sij ¼ þ2l _cf gDij where _c ¼ ð2DijDijÞ1=2 ð1Þ

in Cartesian tensor notation; see e.g. Irgens [12]. The

extra stress tensor sij depends non-linearly on the

deformation rate tensor Dij ¼ ðoui=oxj þ ouj=oxiÞ=2
whenever the viscosity function l _cf g varies with the

magnitude of the shear rate _c. The constitutive Eq. (1)
simplifies to that of a Newtonian fluid when the

viscosity function is independent of the shear rate and

the constant l is then referred to as the dynamic

viscosity of the fluid.

While the boundary-layer flow of a power-law fluid

along a solid surface studied by Guedda [9] was driven

by an external free-stream exhibiting a prescribed

power-law shear, the present boundary-layer flow of

an underlying non-Newtonian fluid is driven by the a

priori unknown shear imposed by the overlying

Newtonian boundary-layer flow. The coupling

between the upper Newtonian fluid and the lower

non-Newtonian fluid is at the interface, i.e. through the

interfacial boundary conditions. This coupling is

linear in the case of two different Newtonian fluids,

but becomes non-linear when the lower fluid is non-

Newtonian. In spite of this non-linear boundary

condition, along with the non-linearity introduced in

the momentum boundary layer equation, similarity

solutions can be found, as we will show in Sect. 3.

Although the self-similar solutions can be obtained for

any generalized Newtonian rheology, we adopt the

power-law fluid in Sect. 4 with the view to illustrate

such solutions. A direct numerical integration

approach based on a double shooting technique is

described in Sect. 5. Numerical solutions of the two-

fluid problem are presented in Sect. 6 and further

discussed in Sect. 7 in order to elucidate the influence

of the non-Newtonian rheology on the shear-driven

fluid motion.

2 Formulation of the two-fluid problem

We consider the boundary layer flow of a non-

Newtonian fluid driven solely by the shearing motion

of a Newtonian fluid as depicted in Fig. 1. Let u0 and v0

be the velocity components of the upper fluid in the x0
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and y0 directions, respectively. The Newtonian fluid

has density qu and kinematic viscosity mu = l/qu. The
upper fluid has a linear shearing velocity u0 = by0 for
x0 \ 0 and for large y0; see Fig. 1. The lower non-

Newtonian fluid is quiescent at large distances away

from the two-fluid interface at x0 = X0 [ 0;

y0 = Y0 = 0. It should be noted that the vertical

coordinate axes y0 and Y0 are in opposite directions.We

assume that the Froude number is sufficiently large so

that the interface remains horizontal.

After normalization with the length scale mu=bð Þ1=2

and the velocity scale mubð Þ1=2 the momentum bound-

ary layer equation for the upper fluid becomes:

owu

oy

o2wu

oxoy
� owu

ox

o2wu

oy2
¼ o3wu

oy3
: ð2Þ

Here wu is the stream function defined in terms of

the velocity components as u ¼ owu=oy and

v ¼ �owu=ox.

The lower non-Newtonian fluid is modelled as a

generalized Newtonian fluid (1) for which the extra

stress tensor sij depends non-linearly on the shear rate

_c. In two-dimensional boundary layers, 1=2oU0=oY 0 is
by far the largest component of the deformation rate

tensor Dij and the magnitude of the shear rate

simplifies to:

_c ¼ oU0

oY 0

� �2 !1=2

¼ � oU0

oY 0

����
����: ð3Þ

The motion of the lower non-Newtonian fluid is driven

by the interfacial shear caused by the upper Newtonian

fluid. The second part of Eq. (3) is therefore based on

the assumption that oU0=oY 0 � 0. The only stress

component of dynamic significance becomes

sxy ¼ syx ¼ 2l _cf gDxy ¼ l _cf g oU
0

oY 0 ð4Þ

where the shear rate _c is given in Eq. (3).

Similarly as for the upper fluid, a dimensionless

stream function w‘ is defined in terms of the normal-

ized velocity componentsU and V of the lower fluid as

U ¼ ow‘=oY and V ¼ �ow‘=oX. Note that the same

length and velocity scales defined for the upper

Newtonian fluid are used also for the lower non-

Newtonian fluid. The normalized momentum bound-

ary layer equation for the lower generalized Newto-

nian fluid becomes:

ow‘

oY

o2w‘

oXoY
� ow‘

oX

o2w‘

oY2
¼ o

oY
~l

o2w‘

oY2

� �
ow‘

oY

� �
: ð5Þ

Here, ~l ¼ l _cf g=qumu is the normalized viscosity

function and the fluid pressure has been assumed to be

constant, just as in the upper fluid.

The upper and lower flow problems governed by

Eqs. (2) and (5), respectively, are subjected to the six

boundary conditions:

y ! 1; owu=oy ! y; ð6aÞ

Y ! 1; ow‘=oY ! 0; ð6bÞ

y ¼ Y ¼ 0; wu ¼ w‘ ¼ 0; ð6cÞ

y ¼ Y ¼ 0; owu=oy ¼ ow‘=oY ; ð6dÞ

y ¼ Y ¼ 0; o2wu=oy
2 ¼ ~l o2w‘=oY

2: ð6eÞ

Here, the boundary condition (6a) states that the

horizontal velocity component u varies linearly high

above the interface at y = Y = 0, whereas U should

decay to zero (6b) deep below the interface. The

conditions (6c) primarily serve to set the level of the

two stream functions wu and w‘, but as a consequence

also assure that the vertical velocity components v and

V in each of the two fluids vanish at the interface. The

Fig. 1 Sketch of the flow problem. The origins of the

coordinate system (x0, y0) for the Newtonian upper fluid and

(X0, Y0) for the non-Newtonian lower fluid are co-located. The x0-
and X0-axes are aligned whereas the Y0-axis points in the

opposite direction of the y0-axis
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velocities and the shear stresses match at the interface

y = Y = 0 according to (6d) and (6e), respectively.

3 Similarity transformations

We now introduce the similarity variable gu and the

dimensionless stream function f for the upper fluid as

follows:

gu ¼
y

x1=3
; wu ¼ x2=3f ðguÞ: ð7Þ

The momentum boundary layer Eq. (2) and the

boundary condtions (6a, 6c) for the upper Newtonian

fluid then become:

ðf 0Þ2 � 2ff 00 ¼ 3f 000 ð8Þ

f 00ðguÞ ! 1 as gu ! 1; f ð0Þ ¼ 0: ð9Þ

The prime signifies differentiation with respect to

the similarity variable gu.
Similarly for lower non-Newtonian fluid, the sim-

ilarity transformation

g‘ ¼
Y

X1=3
; w‘ ¼ X2=3gðg‘Þ ð10Þ

transforms the partial differential Eq. (5) and the

accompanying boundary conditions (6b, 6c) into

ðg0Þ2 � 2gg00 ¼ 3 ~lg00ð Þ0 ð11Þ

g00ðg‘Þ ! 0 as g‘ ! 1; gð0Þ ¼ 0: ð12Þ

It is essential to remember that the normalized

viscosity function ~l depends on the normalized shear

rate, i.e. ~l ¼ ~l g00f g. At the interface, i.e. gu = g‘ = 0,

the boundary conditions (6d, e) become:

f 0ð0Þ ¼ g0ð0Þ ð13aÞ

f 00ð0Þ ¼ ~l g00ð0Þf gg00ð0Þ: ð13bÞ

The governing momentum boundary layer equa-

tions and the accompanying boundary conditions

defined in Eqs. (2), (5), and (6) have thus been recast

into a set of two non-linear ordinary differential

Eqs. (8) and (11) for f and g subjected to the boundary

conditions (9), (12), and (13). The upper Newtonian

boundary layer problem and the lower non-Newtonian

bounder layer problem are only coupled through the

two interface conditions (13).

In Newtonian fluid mechanics, transformations

which exactly transform the governing partial differ-

ential equations into ordinary differential equations

are relatively rare, mainly due to the non-linear

convection terms. The additional non-linearity intro-

duced by the constitutive equation for generalized

Newtonian fluids generally prohibits self-similarity.

The present flow problem is therefore one of the

exceptions.

4 Example: power-law fluids

The mathematical formulation of the two-fluid prob-

lem in Sect. 2 and the coupled self-similar problem in

Sect. 3 are valid for any generalized Newtonian lower

fluid. The shear flow over a still Newtonian fluid was

recently explored by Andersson and Mukhopadhyah

[16] who demonstrated that that problem could be

expressed in terms of two independent parameters.

Rheological models for generalized Newtonian fluids

inevitably involve more than one fluid property. In

order to avoid a multi-dimensional parameter space,

the remaining parts of this paper is confined to power-

law fluids.

The lower non-Newtonian fluid is modelled as a

power-law (Ostwald-de-Waele), fluid which is a

special case of generalized Newtonian fluids defined

by the rheological equation of state (1) with viscosity

function:

l ¼ K _cn�1 ¼ Kð2DijDijÞðn�1Þ=2 ð14Þ

where K and n, i.e. the consistency coefficient and the

power-law index, are fluid properties; see e.g. Irgens

[12]. Equation (14) represents shear-thinning

(pseudo-plastic) fluids for n\ 1, shear-thickening

(dilatant) fluids for n[ 1, and the special case of a

Newtonian fluid is obtained for n = 1. In two-

dimensional boundary layers where 1=2oU=oY is the

dominant element of the strain rate tensor Dij, the

viscosity function (14) simplifies to:
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l ¼ K
oU

oY

� �2 !ðn�1Þ=2

¼ K � oU

oY

� �n�1

: ð15Þ

The only stress component of dynamic significance

(4) is therefore

sxy ¼ syx ¼ 2lDxy ¼ �K � oU

oY

� �n

; ð16Þ

see e.g. Andersson and Kumaran [8].

For the power-law fluid, the normalized momentum

boundary layer Eq. (5) reads:

ow‘

oY

o2w‘

oXoY
� ow‘

oX

o2w‘

oY2
¼ nbk � o2w‘

oY2

� �n�1
o3w‘

oY3

ð17Þ

and the continuity of the shear stress at the interface

(6e) becomes

y ¼ Y ¼ 0; o2wu=oy
2 ¼ �rbk � o2w‘=oY

2
	 
n

:

ð18Þ

The ratio between the density of the lower and upper

fluids is denoted r � q‘=qu � 1 and the non-dimen-

sional parameter

k̂ � K=q‘
mu

bn�1 ð19Þ

simplifies to the ratio between the kinematic viscosities of

the two different fluids for n = 1. For n 6¼ 1, however, k̂
depends not only on the properties of the two fluids but

also on the shear rate b driving the upper fluid.

By means of the similarity transformations in the

previous section, the resulting ordinary differential

Eq. (11) governing the momentum transport in the

lower fluid becomes

ðg0Þ2 � 2gg00 ¼ 3nk̂ �g00ð Þn�1
g000 ð20Þ

and the interfacial stress condition (13b) is:

f 00ð0Þ ¼ rk̂ �g00ð0Þ½ �n: ð21Þ

The two-fluid problem consisting of an upper shear-

driven Newtonian fluid above an otherwise quiescent

power-law fluid accordingly constitutes a three-pa-

rameter problem in r, k̂, and n. If the lower fluid

happens to be Newtonian, i.e. n = 1, the two-param-

eter problem studied by Andersson and Mukhopad-

hyay [16] is recovered.

5 A direct integration approach

We proceed to solve the coupled similarity problems

in a direct manner as described by Andersson and

Mukhopadhyay [16], i.e. for given parameter valuesr,

k̂, and n. The two third-order ordinary differential

Eqs. (8) and (20) are written as a set of six first-order

equations:

f 0 ¼ z; z0 ¼ p; p0 ¼ ðz2 � 2fpÞ=3 ð22aÞ

g0 ¼ w; w0 ¼ q; q0 ¼ w2 � 2gq
	 


= 3nk̂ �q½ �n�1
� �

:

ð22bÞ

The six required initial conditions can be written as:

f ð0Þ ¼ gð0Þ ¼ 0; zð0Þ ¼ wð0Þ ¼ b;

pð0Þ ¼ a; qð0Þ ¼ � a=rk̂
� �1=n

:
ð23Þ

However, the interfacial values a and b are a priori

unknown and will be determined as a part of the

numerical solution for given combinations of the

parameters r, k̂, and n.

In order to integrate Eqs. (22) as an initial value

problem, initial values for z and p, i.e. f 0ð0Þ ¼ b and

f 00ð0Þ ¼ a, are required. These initial values are first

guessed and then serve also as initial values for w and

q in accordance with Eq. (23). In this double-shooting

approach, it is essential to determine appropriate finite

values of gu and g‘ where the far-field boundary

conditions (9) and (12) as gu ! 1; g‘ ! 1 can be

enforced. Proper finite values of the extent of the

integration domain depend on the actual flow problem

and also on the rheological properities of the fluids.

For the boundary layer flow of a power-law fluid along

a linearly stretching sheet Andersson and Kumaran [8]

reported an extreme thickening of the boundary layer

for highly shear-thinning fluids, i.e. n\ 0.5. Here,

however, the power-law index is within the range

0:6� n� 1:4 and gu = 14 and g‘ = 14 appeared to be

adquate choices for the domain sizes in the upper and

lower fluid, respectively. These values were based on

earlier experiences [7, 8] and sensitivity tests using

some different domain sizes. The six differential

Eqs. (22) are therefore integrated by means of a

classical fourth-order Runge–Kutta method with step

size 0.01 up to gu = g‘ = 14. The unknown interface

values a and b are successively adjusted by means of

Newton’s method until the outer boundary conditions
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f 00ðgu ¼ 14Þ ¼ 1 and g0ðg‘ ¼ 14Þ ¼ 0 are satisfied to

within the desired accuracy of 1�10-5.

6 Results

The present two-fluid problem involves three different

dimensionless parameters r, bk, and n. Here, r and n

are fluid properties, whereas bk combines both fluid

properties and the shear rate b into one single

parameter. The three-parameter problem simplifies

to a two-parameter problem in the particular case of a

Newtonian fluid (n = 1.0) and bk becomes equal to the

ratio between the viscosities of the lower and upper

fluids. If so, the dimensionless flow problem in Sect. 4

becomes independent of the imposed shear rate b. For

the sake of simplification, the density ratio r is taken

as 1.0 in this paper, whereas bk ¼ 0:5; 1:0; and 2.0 and

n is varied in the range from 0.6 to 1.4, i.e. from a

shear-thinning to a shear-thickening power-law fluid.

The resulting flows of the upper and lower fluids for

bk ¼ 0:5 are shown in Figs. 2 and 3, respectively. The

velocity f 0ðguÞ increases monotonically upwards from

the interface and gradually approaches the imposed

linear shear rate, i.e. f 00ðguÞ ¼ 1. Although the upper

fluid is Newtonian, the boundary layer adjacent to the

interface is affected by the non-Newtonian rheology of

the lower fluid such that the interface velocity f 0ðgu ¼
0Þ decreases with increasing power-law index and the

interface shear f 00ðgu ¼ 0Þ increases with n. The

dependence of the motion of the upper fluid on the

Fig. 2 Profiles of the

streamwise velocity and

shear rate in the upper fluid

forr = 1.0 and bk ¼ 0:5 and
five different values of the

power-law index

n. a Streamwise velocity

f 0ðguÞ. b Shear rate f 00ðguÞ.
The solid lines correspond to

a Newtonian lower fluid

(n = 1)
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power-law index n of the lower fluid is brought about

only by the interfacial boundary conditions (13a) and

(21).

In the following we will focus on the flow of the

underlying power-law fluid and the interface veloc-

ity and shear stress. The motion of the lower fluid

is driven solely by the interfacial shear. The

velocity profiles in Fig. 3b show that the velocity

g0ðg‘Þ decays asymptotically to zero below the inter-

face. At a given depth, however, g0ðg‘Þ increases with
decreasing values of n and the higher velocity is

accompanied by an increasing boundary layer thick-

ness. The shear-induced motion seems to penetrate

about twice as deep into the shear-thinning fluid with

n = 0.7 as in the shear-thickening fluid (n = 1.3).

This is consistent with the trend observed by Ander-

sson et al. [7] for boundary layer flow over a linearly

stretching sheet.

The magnitude of the shear rate �g00ðg‘Þ is highest
at the interface between the Newtonian and the non-

Newtonian fluids and decays downwards and

eventually approaces zero. It is noteworthy that the

most shear-thinning fluid (n = 0.7) gives rise to the

highest shear rate not only in the immediate vicinity of

the interface but also at large depths, but surprisingly

not at intermediate depths 0:7� g‘ � 2. The inset in

Fig. 3b shows that the shear-rate profiles intersect

such that the monotonically decreasing trend of the

shear rate with increasing n next to the interface

reverses beyond g‘ � 0:8.

To illustrate the effect of the non-dimensional

parameter bk defined in Eq. (19), computed profiles of

the fluid velocities and shear rates for bk ¼ 2:0 are

presented in Figs. 4 and 5. The results for the upper

fluid in Fig. 4 show the same qualitative behaviour as

the profiles in Fig. 2 for bk ¼ 0:5, but the influence of

the power-law index of the underlying non-Newtonian

fluid is now more accentuated. The significant effect

of n is even more pronounced in the profiles for the

lower fluid in Fig. 5. In particular, the shear rate

distributions for different n-values do no longer

Fig. 3 Profiles of the

streamwise velocity and

shear rate in the lower fluid

forr = 1.0 and bk ¼ 0:5 and
five different values of the

power-law index n. a
Streamwise velocity g0ðg‘Þ.
b Shear rate g00ðg‘Þ. The
solid lines correspond to a

Newtonian lower fluid

(n = 1)
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intersect as they did for bk ¼ 0:5 in Fig. 3b. The

highest shear rate �g00ðg‘Þ is obtained for the most

shear-thinning fluid all through the boundary layer. It

is furthermore noteworthy that the thickness of the

power-law fluid boundary layer is significantly larger

for bk ¼ 2:0 in Fig. 5 than for bk ¼ 0:5 in Fig. 3.

7 Discussion

The trends observed from Figs. 2, 3, 4 and 5 were

based on five different values of the power-law index.

However, the two-fluid problem was solved for

altogether 9 different values of n in the range from

0.6 to 1.4. The most essential parts of the results are

presented graphically in Fig. 6, from which the

following trends can be seen: The interface velocities

f 0ð0Þ ¼ g0ð0Þ decrease with bk in the range from 0.5 to

2.0. The interfacial shear rate f 00ð0Þ increases with bk
whereas the strain rate �g00ð0Þ in the lower fluid

decreases. The displacement thickness d‘ of the

power-law fluid boundary layer increases with bk from

0.5 to 2.0. It is noteworthy that these trends are the

same for all values of the power-law index n consid-

ered, i.e. for shear-thinning as well as for shear-

thickening fluids.

Of particular relevance in the present study is the

effect of the power-law index n which represents the

rheology of the lower non-Newtonian fluid. Irrespec-

tive of the value of bk, the interfacial velocities f 0ð0Þ ¼
g0ð0Þ decrease monotonically with n all through the

parameter range from 0.6 to 1.4. The interfacial shear

rate f 00ð0Þ increases with n whereas �g00ð0Þ decreases.
A normalized displacement thickness for the lower

power-law fluid can be defined in the same way as

suggested by Andersson et al. [7]:

Fig. 4 Profiles of the

streamwise velocity and

shear rate in the upper fluid

for r = 1.0 and bk = 2.0

and five different values of

the power-law index

n. a Streamwise velocity

f 0ðguÞ. b Shear rate f 00ðguÞ.
The solid lines correspond to

a Newtonian lower fluid

(n = 1)
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d‘ �
Z1

0

g0ðg‘Þdg‘ ¼ lim
g‘!1

g� gð0Þ|{z}
¼0

: ð24Þ

In the present two-fluid problem this displacement

thickness is a measure of the thickness of the viscous

boundary layer in the underlying non-Newtonian fluid.

Figure 6c exhibits a substantial reduction of d‘ from
the most shear-thinning fluid with n = 0.6 to the

highly shear-thickening fluid with n = 1.4.

The most striking observation made is probably the

gradual thinning of the shear-driven boundary layer in

the lower fluid with increasing values of the power-

law index n, as seen in Fig. 6c. This may at first sight

seem to be in contrast with the monotonically

increasing interfacial shear stress which is propor-

tional to f00(0) in Fig. 6a. However, the viscosity

function l in Eq. (15) varies with the local shear rate
1=2oU=oY in the power-law fluid. In the present shear-

driven boundary layer, the shear rate decays with

depth from the interface and downwards, as can be

seen in Fig. 3b and Fig. 5b. As long as �g00ðg‘Þ is

smaller than unity, but yet larger for shear-thinning

fluids than for shear-thickening fluids, l reduces with

increasing n-values. Since the viscosity function

appears as a variable diffusion coefficient in the

momentum boundary layer Eqs. (5) and (11) for the

non-Newtonian fluid, the reduction of l tends to make

the boundary layer thinner. This is consistent with our

observation from Fig. 6c that the thickness of the

shear-driven power-law boundary layer is reduced

with increasing values of n. The thinning of the

underlying non-Newtonian boundary layer in the

present two-fluid problem is in qualitive agreement

not only with the behavior of the sheet-driven steady

boundary layer in a power-law fluid reported by

Andersson et al. [7] and Andersson and Kumaran [8],

but also with the unsteady boundary layer flow studied

by Duffy et al. [15].

Fig. 5 Profiles of the

streamwise velocity and

shear rate in the lower fluid

forr = 1.0 and bk ¼ 2:0 and
five different values of the

power-law index n. a
Streamwise velocity g0ðg‘Þ.
b Shear rate g00ðg‘Þ. The
solid lines correspond to a

Newtonian lower fluid

(n = 1)
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(a)

(b)

(c)

Fig. 6 Interfacial

velocities, shear rates, and

displacement thickness for

r = 1.0 with bk and n as

parameters. Dotted linesbk ¼ 0:5. Solid linesbk ¼ 1:0. Dashed linesbk ¼ 2:0. a Interfacial

velocity f 0ðgu ¼ 0Þ and
shear rate f 00ðgu ¼ 0Þ in the

upper fluid. The upper circle

identifies results for f 0ðgu ¼
0Þ and the lower circle

corresponds to results for

f 00ðgu ¼ 0Þ. b Interfacial

shear rate �g00ðg‘ ¼ 0Þ in
the lower fluid.

c Displacement thickness d‘
of the power-law fluid

boundary layer
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The boundary layer displacement thickness d‘ and
the interfacial shear rate �g00ð0Þ both increase as the

power-law n reduces, i.e. with increasing shear-

thinning of the lower fluid. The high shear rate in the

vicinity of the two-fluid interface tends to lower the

viscosity function l whereas the lower shear rate at

larger depths makes the fluid relatively more viscous.

This explains why the shear rate profile for n = 0.7 in

Fig. 3b twice intersects the profile for the Newtonian

fluid (n = 1).

For the sake of reducing the parameter space from

three to two dimensions, the density ratio r was kept

equal to unity in Sect. 6. The parameter bk turned out to
have a major effect on the computed results and,

indeed, bk controls the ratio between the interfacial

shear stresses in the upper Newtonian and the lower

power-law fluid in accordance with Eq. (21) and

thereby explains why the shear rate �g00ð0Þ decreases
with increasing values of bk. At first sight this seems to

be conflicting with the observation that the displace-

ment thickness d‘ increases as bk increases in Fig. 6c.

However, the diffusion term in the momentum

boundary layer Eq. (20) is proportional with n bk.
Therefore the increasing diffusion of streamwise

momentum more than outweighs the reduction of the

driving interfacial shear.

The effect of the density ratio r has been explored

for the simpler case when also the lower-lying fluid is

Newtonian and the non-dimensional parameter bk
defined in Eq. (19) becomes independent of the shear

rate b which drives the upper fluid. Wang [2] showed

that the shear-driven upper boundary layer could be

formulated as a one-parameter problem in r2bk,
whereas Andersson and Mukhopadhyah [16] demon-

strated that the underlying boundary layer flow not

only depended on the parameter combination r2bk but

also on rbk. The interfacial velocity f 0ðgu ¼ 0Þ ¼
g0ðg‘ ¼ 0Þ was observed to decrease monotonically

from &0.9343 for r2bk ¼ 1 to zero with increasing

values of r2bk. For values of r 	 1 also the present

two-fluid problem simplifies such that the simple

analytical solutions:

f ¼ 1

2
g2; f 0 ¼ g; f 00 ¼ 1 ð25aÞ

g ¼ 0; g0 ¼ 0; g00 ¼ 0 ð25bÞ

apply in the limit as r ? ?. This implies that

shearing motion in the upper fluid is unable to set the

lower fluid in motion. Such situations arise only when

the underlying fluid is much heavier than the upper

fluid, for instance a gas above a liquid, and the higher

inertia suffices to keep the liquid in rest. Indeed, for

airflow above water (r ¼ 833) the numerical solution

by Andersson and Mukhopadhyah [16] was surpris-

ingly close to the analytic solutions (25).

8 Concluding remarks

We have considered the shear flow of a Newtonian

fluid over an otherwise quiescent non-Newtonian

fluid. The rheology of the lower fluid was modelled

as a generalized Newtonian fluid, similarly as in the

one-fluid problem studied by Duffy et al. [15].

In spite of the non-linearity which arose from the

rheological equation of state, also the coupled two-

fluid problem allowed for similarity solutions. The

coupled self-similarity formulation of the two-fluid

problem in Sect. 3 is therefore applicable for any

generalized Newtonian fluid, for instance Casson and

Herschel-Bulkley fluids which both are three-param-

eter models and the Carreau fluid which is a four-

parameter model.

The popular power-law fluid model was adopted for

illustrative purposes and two coupled two-point

boundary value problems were solved numerically

by means of a double shooting technique. The

interfacial coupling (13b) made the shear-layer of

the upper Newtonian fluid dependent on the non-linear

dependence of the viscosity function l on the shear

rate _c in the underlying non-Newtonian fluid. The

interfacial velocities decreased monotonically with

increasing values of the power-law index n in the

range from 0.6 to 1.4. The shear-induced motion of the

lower non-Newtonian fluid penetrated far deeper into

a shear-thinning than into a shear-thickening fluid.

This phenomenon can be ascribed to the non-linear

dependence of the viscosity function l on the power-

law index n.
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