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Abstract A Legendre wavelet spectral collocation

method is proposed here to solve three boundary layer

flow problems ofWalter-B fluid namely the stagnation

point flow, Blasius flow and Sakiadis flow. In the

proposed method, we first transform the boundary

value problems into initial value problems using

shooting method. We then split the semi infinite

domain into subintervals and the governing initial

value problems are transformed to system of algebraic

equations in each subinterval. The solutions of these

algebraic equations yield an approximate solution of

the differential equation in each subinterval. The

overshoot in the velocity profile associated with the

stagnation point and Blasius flows and undershoot in

the Sakiadis flow is controlled. Physically realistic

solutions are presented for both weakly and strongly

viscoelastic parameters. The residual error validates

the correctness, convergence and accuracy of the

obtained solutions.

Keywords Legendre wavelet spectral collocation

method � Walter-B fluid � Stagnation point flow �
Blasius flow � Sakiadis flow � Overshoot velocity
profile

1 Introduction

One of the key problems which mathematicians,

physicists and numerical analyst come across during

the solutions of flow problems of viscoelastic fluids is

the higher order derivative term appearing in the

governing equation when compared with the Navier–

Stokes equations. In resulting equation the viscoelastic

parameter appears as the coefficient of highest order

derivative. Moreover, the order of the equation is

reduced at the starting point of integration and in the

limiting case when viscoelastic fluid tends to viscous

fluid. This sort of singularity in the governing equation

poses special challenges to mathematicians, physicists

and numerical analysts. The boundary value problem

of the stagnation point flow of Walter-B fluid with
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such singularity is already attempted by many

researchers. For weakly viscoelastic fluids Beard and

Walters [1] employed perturbation technique to

investigate an analytic solution up to first order. The

solution in [1] showed that velocity exceeds the

mainstream velocity inside the boundary layer which

is not realistic physically. Furthermore the velocity

oscillates about free stream velocity outside the

boundary layer. The classical stagnation point flow

problem has attracted many researchers due to this

overshoot in velocity inside the boundary layer.

According to Frater [2] this overshoot is due to the

approximate perturbation solution. The same bound-

ary value problem is attempted by Serth [3]. In [3]

orthogonal collocation method with Laguerre polyno-

mials as trial functions is employed. A hybrid method

based on the combination of finite difference method

and the shooting method has been developed by Ariel

[4]. Stagnation point flow of Walter-B fluid is

analyzed in study [4]. The obtained solutions through

hybrid method depict the same overshoot in velocity

inside the boundary layer. In another paper Ariel [5]

used the generalized Gear’s method to obtain a

numerical solution of higher accuracy than that of

hybrid method. It is important to mention that in all

these studies the solutions possess a velocity overshoot

inside the boundary layer.

The other two classical problems attempted in this

paper are the Blasius and Sakiadis flows of Walter-B

fluid. The transformed boundary value problems for

these flows also possess the similar singularity at the

starting point of calculation as discussed in detail for

stagnation point flow. In a recent study by Tonekaboni

et al. [6], the solutions of the three boundary layer

flows of Walter-B fluid that includes stagnation point

flow, Blasius flow and Sakiadis flow have been

computed using predictor–corrector finite difference

method. The results in [6] clearly show that the

velocity overshoots in the case of stagnation point and

Blasius flows and undershoots in Sakiadis flow. The

velocity overshoot/undershoot inside the boundary

layer is not physically realistic and it occurs due to the

numerical scheme adopted for the solution of the

relevant problems. This motivated us to develop a

numerical algorithmwhich overcomes the difficulty of

velocity overshoot appearing in studying the boundary

layer flows of viscoelasticWalter-B fluid. Having such

fact in mind we revisited the boundary value problems

discussed in [6] by using a Legendre wavelet spectral

collocation method for large domains [7].

The numerical techniques, based on spectral meth-

ods, are very powerful and efficient for solving the

boundary value problems in all disciplines of science

and engineering. For details readers are referred to the

book by Boyd [8]. Particularly the applications of

spectral methods for viscous fluids can be seen in the

book by Canuto et al. [9]. The numerical results

through spectral methods possess an exponential

accuracy. Bhrawy [10] implemented the Jacobi pseu-

dospectral approximation to nonlinear complex gen-

eralized Zakharov system. In another paper Bhrawy

and Zaky [11] used spectral tau method for multi-term

time–space fractional differential equation with

Dirichlet boundary conditions. A highly accurate

collocation method for 1 ? 1 and 2 ? 1 fractional

percolation equations is attempted by Bhrawy [12].

Recently, Bhrawy and Abdelkawy [13] investigated

the results for multi-dimensional fractional Schrodin-

ger equations using spectral method. In a recent

investigation Bhrawy et al. [14] presented a numerical

technique based on Legendre polynomials for solving

fractional KdV equation. Shifted fractional-order

Jacobi orthogonal functions are used to solve system

of fractional order differential equations by Bhrawy

and Zaky [15]. In another paper Bhrawy and Zaky [16]

discussed the solution for two-dimensional variable-

order fractional nonlinear cable equation using spec-

tral method. In the past two decades the wavelets have

been used for the analysis of differential equations. For

details the readers are referred to the articles Beylkin

et al. [17], Chen and Hsiao [18], Razzaghi and Yousefi

[19] and references therein. Islam et al. [20] solved the

boundary layer flow problems with convection using

Haar wavelet collocation method. Numerical solution

for elliptic boundary value problems using wavelets

collocation method is presented by Aziz [21].

The main objective of the present paper is to revisit

the three boundary value problems discussed by

Tonekaboni et al. [6] to resolve the anomalies

associated with the fluid velocity for the non-Newto-

nian Walter-B fluid. Keeping this fact in mind in the

present article we have implemented the Legendre

wavelet spectral collocation method in combination

with the shooting method [22] to discuss the stagna-

tion point, Blasius and Sakiadis flows of viscoelastic

Walter-B fluid. We have adopted the same concept of
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splitting the large domain into subintervals as imple-

mented by Dizicheh [7]. We then combined the

Legendre wavelets spectral collocation method with

the shooting method to achieve the convergent solu-

tions of the considered boundary layer flows. Through

implementation of this algorithmwe have successfully

controlled the velocity overshoot/undershoot in the

previous studies. The correctness, accuracy and con-

vergence of the proposed algorithm is evident from the

residual errors. The paper is organized as follows:

Sect. 2 contains the problems statements for the

stagnation point, Blasius and Sakiadis flows. The

details of the implemented algorithm are presented in

Sect. 3. Numerical results and discussion is included in

Sect. 4 while Sect. 5 consists of concluding remarks.

2 Problems statements

Here the three boundary layer flows namely the

stagnation point, Blasius and Sakiadis flows ofWalter-

B fluid discussed by Tonekaboni [6] are considered.

We can refer the readers to study [6] for details of

formulation about these three problems.

2.1 Stagnation point flow

The nondimensional problem for the stagnation point

flow of Walter-B fluid is [6]:

f 000 þ ff 00 � f 02 þ 1þ K ff iv � 2f 0f 000 þ f 002
� �

¼ 0;

ð1Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 1: ð2Þ

where f is the dimensionless velocity, g is the

similarity variable and K is the Weissenberg number

characterizing the viscoelasticity of fluid. As a first

step we convert the boundary value problem (1) and

(2) into system of initial value problems through

shooting method [13]. Assuming

f 00ð0Þ ¼ s ð3Þ

and differentiating Eqs. (1) and (2) with respect to

s we get

g000 þ gf 00 þ fg00 � 2f 0g0 þ K gf iv þ fgiv � 2f 0g000
�

� 2g0f 000 þ 2f 00g00Þ ¼ 0;

ð4Þ

gð0Þ ¼ 0; g0ð0Þ ¼ 0; g00ð0Þ ¼ 1: ð5Þ

2.2 Blasius flow

Adopting the procedure of previous subsection, the

Blasius flow of Walter-B fluid is governed by the

following system of initial value problems:

f 000 þ 1

2
ff 00 þ K ff iv þ 2f 0f 000 � f 002

� �
¼ 0; ð6Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 0; f 00 0ð Þ ¼ s; f 0 1ð Þ ¼ 1;

ð7Þ

g000 þ 1

2
gf 00 þ 1

2
fg00

þ K gf iv þ fgiv þ 2f 0g000 þ 2g0f 000 � 2f 00g00
� �

¼ 0; ð8Þ

g 0ð Þ ¼ 0; g0 0ð Þ ¼ 0; g00 0ð Þ ¼ 1: ð9Þ

2.3 Sakiadis flow

For Sakiadis flow of Walter-B fluid, the system of

initial value problems takes the form

f 000 þ 1

2
ff 00 þ K ff iv þ 2f 0f 000 � f 002

� �
¼ 0; ð10Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1; f 00 0ð Þ ¼ s; f 0 1ð Þ ¼ 0;

ð11Þ

g000 þ 1

2
gf 00 þ 1

2
fg00 þ K gf iv þ fgiv þ 2f 0g000 þ 2g0f 000

�

�2f 00g00Þ ¼ 0;

ð12Þ

g 0ð Þ ¼ 0; g0 0ð Þ ¼ 0; g00 0ð Þ ¼ 1: ð13Þ

It is clear from the governing equations that a

standard integration scheme like Runge–Kutta method

does not work since the coefficient of the highest

derivative terms vanishes at g ¼ 0 and K ! 0. It is

extremely difficult to get a solution of that problem

numerically by any standard integration scheme. Ariel

[4] applied the hybrid numerical method for solving

the stagnation point flow of Walter-B fluid. In another

paper Ariel [5] implemented the predictor–corrector

method and obtained the similar results as presented in
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[4]. Tonekaboni et al. [6] adopted the method

proposed in [5] to present numerical solutions of

stagnation point, Blasius and Sakiadis flows. These

numerical methods work well for weakly viscoelastic

fluids i.e. when K is small. When K is moderate or

large the velocity profiles in all the above cases

overshoots inside the boundary layer. Having such fact

in view, our intention in next section is to implement

the Legendre wavelet spectral collocation method for

the system of initial value problems given in the Sects.

2.1–2.3. The value of the missing condition i.e. s can

be modified after each iterative solution using New-

ton’s method.

3 Method of solution

In this section, all the necessary details regarding the

solution of stagnation point flow problem considering

of Eqs. (1)–(5) are given using the Legendre wavelet

spectral collocationmethod. First we briefly review the

Legendre wavelets, Legendre polynomials and inter-

polation of any function by using Legendre wavelets.

3.1 Legendre wavelets and Legendre polynomials

For any continuous function w the definition of

wavelets gives [7]

wa;b gð Þ ¼ aj j�
1
2w

g� b

a

� �
; a; b 2 R; a 6¼ 0; ð14Þ

in which a and b are respectively called the scale and

shift. The discrete wavelet transform is defined by

wm;n gð Þ ¼ a�
m
2w a�mg� nbð Þ; ð15Þ

in which am is scale and namb is shift for any

m; n 2 Z. When ðw ¼ w k; g1; n;m; gð Þ is derived

from Legendre polynomial of order m, we consider

wm;n gð Þ as a family of discrete wavelets where

k ¼ 1; 2; . . .; g1; n ¼ 1; 2; . . .; 2k�1g1: ð16Þ

Therefore the Legendre wavelets on the interval 0; TÞ½
are defined by

wn;m gð Þ ¼ mþ 1

2

� �1
2

2
k
2Lm 2kg� 2nþ 1
� �

;
n� 1

2k�1
� g\

n

2k�1

0; otherwise

;

8
<

:

9
=

;
;

ð17Þ

in which Lm gð Þ is the mth-order Legendre polynomial.

The Legendre–Gauss quadrature formula gives

r
1

�1

F xð Þdx ffi
XM�1

j¼0

wjF xj
� �

; ð18Þ

where xj;wj : j ¼ 0; 1; . . .;M � 1 are respectively the

Legendre–Gauss collocation points and the corre-

sponding weights. These collocation points are the

roots of Lm xð Þ in the interval �1; 1ð Þ which are

arranged in ascending order. The weights are deter-

mined through the expression

w ¼ 2

1� x2j

� �
L0M xj
� �� �2 ; j ¼ 0; 1; . . .;M � 1:

ð19Þ

For any interval (a, b) the Legendre–Gauss quadra-

ture formula takes the form

Zb

a

F xð Þdx ¼ b� a

2

Z1

�1

F
b� að Þxþ aþ b

2

� �
dx

’ b� a

2

XM�1

j¼0

wjF
b� að Þxj þ aþ b

2

� �

¼
XM�1

j¼0

wjF
b� að Þxj þ aþ b

2

� �

ð20Þ

with

wj ¼
b� að Þwj

2
j ¼ 0; . . .;M � 1: ð21Þ

3.2 Interpolation by Legendre wavelets

Any function f 2 L2 0; g1Þ½ can be expanded in terms

of the Legendre wavelets in the following form

f gð Þ ¼
X1

n¼1

X1

m¼0

fnmwn;m gð Þ; ð22Þ

where fn:m are

fnm ¼
Z n=2k�1

n�1=2k�1ð Þ
f gð Þwn;m gð Þdg

’
XM�1

j¼0

wjf xnj
� �

wn;m xnj
� �

; ð23Þ
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with

wj ¼
wj

2k
; xnj ¼

xj

2k
þ 2n� 1

2k
;

j ¼ 0; . . .;M � 1; n ¼ 1; . . .; 2k�1g1:
ð24Þ

If the series is truncated atM � 1 and 2k�1g1, we have

from Eq. (22)

f gð Þ ’
X2k�1T

n¼1

XM�1

j¼0

Inj gð Þf xnj
� �

; ð25Þ

where Inj gð Þ is defined by

Inj gð Þ ¼ wj

X2k�1T

n¼0

wn;m xnj
� �

wn;m gð Þ;

j ¼ 0; . . .;M � 1; n ¼ 1; . . .; 2k�1g1;

ð26Þ

together with Inj xnið Þ ¼ dij.

3.3 Solution for the stagnation point flow

In this section we approximate the solution of the

stagnation point flow governed by the initial value

problems through Eqs. (1)–(5). In order to solve

Eqs. (1)–(5) we divide the domain 0� g\g1 into

subintervals given by n� 1ð Þ=2k�1; n=2k�1
��

for

n ¼ 1; . . .; 2k�1g1. Therefore,

wpj gð Þ ¼ 0 for any p 6¼ n and

g 2 n� 1ð Þ=2k�1; n=2k�1
�� ð27Þ

and hence the Legendre wavelet interpolation approx-

imation to the functions f gð Þ and g gð Þ on the nth

subinterval follows Eq. (26) and is given by

f gð Þ ’ Fn gð Þ ¼
X2k�1T

p¼1

XM�1

j¼0

Ipj gð Þfpj ¼
XM�1

j¼0

Inj gð Þfnj;

for g 2 n� 1

2k�1
;

n

2k�1

�
:

	

ð28Þ

In a similar way we define that

g gð Þ ’ Gn gð Þ ¼
XM�1

j¼0

Inj gð Þgnj; ð29Þ

FðmÞ
n gð Þ ’

XM�1

j¼0

I
ðmÞ
nj gð Þfnj; GðmÞ

n gð Þ ’
XM�1

j¼0

I
ðmÞ
nj gð Þgnj;

ð30Þ

Applying the points xnj


n ¼ 1; . . .;

�
2k�1g1; j ¼

3; . . .;M � 1g into Eqs. (1) and (4) we get

F000
n þ FnF

00
n � F02

n þ 1þ K FnF
iv
n � 2F0

nF
000
n þ F002

n

� �

¼ 0;

ð31Þ

G000
n þ GnF

00
n þ FnG

00
n � 2F0

nG
0
n

þ K GnF
iv
n þ FnG

iv
n � 2F0

nG
000
n � 2G0

nF
000
n þ 2F00

nG
00
n

� �

¼ 0;

ð32Þ

where the initial conditions in the first subinterval are

F1 0ð Þ ¼ 0; F0
1 0ð Þ ¼ 0; F00

1 0ð Þ ¼ s; G1 0ð Þ ¼ 0;
G0

1 0ð Þ ¼ 0; G00
1 0ð Þ ¼ 1:

ð33Þ

Substituting Eqs. (28)–(30) into Eqs. (31)–(33) we get

the following nonlinear algebraic system of equations

1� 2K
XM�1

j¼0

I0nj xnj
� �

fnj

 !" #
XM�1

j¼0

I 000nj xnj
� �

fnj

 !

þ 1

þ
XM�1

j¼0

Inj xnj
� �

þ KI00nj xnj
� �n o

fnj

" #
XM�1

j¼0

I00nj xnj
� �

fnj

 !

�
XM�1

j¼0

I0nj xnj
� �

fnj

 !2

þK
XM�1

j¼0

Inj xnj
� �

fnj

 !
XM�1

j¼0

Iivnj xnj
� �

fnj

 !

¼ 0

ð34Þ

1�2K
XM�1

j¼0

I0nj xnj
� �

fnj

" #
XM�1

j¼0

I000nj xnj
� �

gnj

 !

þ
XM�1

j¼0

Inj xnj
� �

þ2KI 00nj xnj
� �n o

fnj

" #
XM�1

j¼0

I00nj xnj
� �

gnj

 !

þ
XM�1

j¼0

I00nj xnj
� �

þKIivnj xnj
� �n o

fnj

" #
XM�1

j¼0

Inj xnj
� �

gnj

 !

�2
XM�1

j¼0

I0nj xnj
� �

gnj

 !
XM�1

j¼0

I0nj xnj
� �

þKI 000nj xnj
� �n o

fnj

" #

þK
XM�1

j¼0

Inj xnj
� �

fnj

 !
XM�1

j¼0

Iivnj xnj
� �

gnj

 !

¼ 0

ð35Þ
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XM�1

j¼0

I1j x1j
� �

f1j ¼ 0;
XM�1

j¼0

I01j x1j
� �

f1j ¼ 0;

XM�1

j¼0

I001j x1j
� �

f1j ¼ s;

ð36Þ

XM�1

j¼0

I1j x1j
� �

g1j ¼ 0;
XM�1

j¼0

I01j x1j
� �

g1j ¼ 0;

XM�1

j¼0

I001j x1j
� �

g1j ¼ 1;

ð37Þ

Now the procedure proceeds as follows: We set

n ¼ 1 and choose an approximate value for s. Then the

algebraic system given in Eqs. (34)–(37) is solved for

the coefficients fnj and gnj in the first subinterval

0; 1=2k�1
��
. The analytical solution is then obtained in

the first subinterval by using Eqs. (28) and (29).

Through the solutions in the first subinterval the initial

conditions for the second subinterval are evaluated

and thus solutions for the second subinterval are

computed. This process continues till the last interval.

Then the value of s is corrected through a zero finding

algorithm which leads to F0
2k�1g1

g1ð Þ ¼ 1:We choose

M and k in such a way that the residual error is within

an accuracy of 10�6. The similar procedure is adopted

for the solutions of the initial values problems for

Blasius and Sakiadis flows.

4 Numerical results and discussion

The numerical procedure based on the Legendre

wavelets spectral collocation method is implemented

in symbolic computation software mathematica for

finding an approximate solution of the stagnation

point, Blasius and Sakiadis flows of Walter-B fluid. In

the next subsections we respectively discuss the results

of these three problems through graphs and tabular

data.

4.1 Stagnation point flow

The key point in the solution of this problem is to

obtain the numerical values of the missing condition

i.e. s ¼ f 00 0ð Þ. The numerical solutions for the stagna-

tion point flow are evaluated by setting k = 4 and

M = 7. The numerical values of the missing condition

s ¼ f 00 0ð Þ are shown in Table 1 with the increasing

viscoelastic parameter K. The numerical values

obtained in the present case are smaller in magnitude

when compared with the available results in the

literature. Furthermore, in all previous studies no

result is available beyond K = 0.3257864. This fur-

ther ensure the efficiency of the proposed technique

over the others for highly viscoelastic fluids.

In Figs. 1 and 2 the residual errors for K ¼ 0:1 and

K ¼ 0:3 are presented. These Figs. depict that the

residual errors can be measured to an accuracy of 10-6

and thus the approximate solutions presented are the

solutions of the governing Eq. (1). The velocity

profiles varying with the Weissenberg number are

displayed in Fig. 3. It is evident from the velocity

Table 1 Numerical values of s ¼ f
00
0ð Þ for the present and

previously obtained results in case of stagnation point flow

K f 00 0ð Þ [present] f 00 0ð Þ [7–9] f 00 0ð Þ [6]

0 1.232588 1.232588 1.232587

0.05 1.294641 1.294647 1.294646

0.1 1.369185 1.369540 1.369538

0.2 1.574961 1.587330 1.587330

0.3 1.925867 2.110816 –

0.4 2.722857 – –

Fig. 1 Residual error for different g when K ¼ 0:1 in

stagnation point flow
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profiles that the velocity inside the boundary layer

does not exceed the free stream velocity and also it

does not oscillate about the free stream velocity. The

results show that the velocity overshoot (predicted in

the previous studies) is not observed here by the

present numerical scheme. Hence these solutions are

physically more realistic. The comparison of the

present solutions with those of the Tonekaboni [6]

solutions in the case of stagnation point flow for K ¼
0:3 is shown in Fig. 4. It is evident from this Fig. that

proposed algorithm provides a way to control the

velocity overshoot for highly viscoelastic fluids.

4.2 Blasius flow

The numerical values for the missing condition s ¼
f 00 0ð Þ obtained by implementing the Legendre wavelet

spectral collocation method for k = 3 and M = 7 are

given in Table 2. The residual errors for two different

Fig. 2 Residual error for different g when K ¼ 0:3 in

stagnation point flow

Fig. 3 Velocity profiles for different Weissenberg number K in

stagnation point flow

Fig. 4 Comparison of the present and Tonekaboni [6] solutions

for K ¼ 0:3 in the case of stagnation point flow

Table 2 Numerical values of s ¼ f 00 0ð Þ for the present and

previously obtained results in case of Blasius flow

K f 00 0ð Þ [present] f 00 0ð Þ [9]

0 0.332057 0.332057

0.1 0.296772 0.297075

0.2 0.266349 0.268321

0.3 0.240787 0.244406

0.4 0.219621 0.224465

0.5 0.201574 0.206886

0.6 0.186517 0.192371

0.7 0.173707 0.180430

0.8 0.162643 0.169826

0.9 0.152683 0.159889

1.0 0.144526 0.150579
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values of the Weissenberg number are shown in

Figs. 5 and 6. These Figs. elucidate that our obtained

numerical solutions are correct within an accuracy of

10-8. The velocity profiles for the Blasius flow are

plotted in Fig. 7. The plots show that the velocity

decreases and the boundary layer thickness increases

via larger Weissenberg number. Furthermore the

overshoot in velocity predicted in [6] through the

predictor corrector method does not appear in the

present numerical scheme. Therefore the present

results are more reliable physically. Figure 8 is made

to illustrate the comparison between the present and

Tonekaboni [6] solutions for Blasius flow when

K ¼ 1. This Fig. elucidate that the present solutions

does not show any overshoot in the velocity profile for

Fig. 5 Residual error for different g when K ¼ 0:4 in Blasius

flow

Fig. 6 Residual error for different g when K ¼ 1:0 in Blasius

flow

Fig. 7 Velocity profiles for different Weissenberg number K in

Blasius flow

Fig. 8 Comparison of the present and Tonekaboni [6] solutions

for K ¼ 1 in the case of Blasius flow
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strongly viscoelastic fluid as predicted by Tonekaboni

[6].

4.3 Sakiadis flow

The numerical values of s ¼ f 00 0ð Þ for the two

dimensional Sakiadis flow of Walter-B fluid are

presented in Table 3 when k ¼ 3 andM ¼ 7. Residual

error through Figs. 9 and 10 depict that the obtained

numerical solutions are correct and accurate within an

accuracy of 10-8. Figure 11 elucidates that both the

velocity and boundary layer thickness decrease by

increasing the Weissenberg number. The results

presented for the same flow problem in [6] depicts a

velocity undershoot. However, our numerical results

do not show velocity profile going below the free

stream velocity and therefore the results here are

physically more realistic. To make a comparison

among the present and Tonekaboni [6] solutions for

Sakiadis flow when K ¼ 0:6 Fig. 12 is displayed. The

results show that no undershoot in the velocity profile

is present for the solutions using Legendre wavelet

spectral collocation method for strongly viscoelastic

fluids.

Table 3 Numerical values of s ¼ f 00 0ð Þ for the present and

previously obtained results in case of Sakiadis flow

K f 00 0ð Þ [present] f 00 0ð Þ [9]

0 -0.443492 -0.443492

0.2 -0.457017 -0.456582

0.4 -0.478111 -0.475299

0.6 -0.489787 -0.505254

0.8 -0.518292 -0.530166

Fig. 9 Residual error for different g when K ¼ 0:6 in Sakiadis

flow

Fig. 10 Residual error for different gwhenK ¼ 0:8 in Sakiadis
flow

Fig. 11 Velocity profiles for different Weissenberg number K

in Sakiadis flow
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5 Conclusions

The two dimensional stagnation point flow, Blasius

flow and Sakiadis flow of viscoelastic fluid are

computed in this paper. The numerical solutions are

obtained using Legendre wavelets spectral collocation

method. The stable results for the velocity profiles are

presented in all three cases for strong viscoelastic

effects. The present algorithm provides a way to

resolve the anomalies in the velocity profiles for large

values of the viscoelastic parameter forWalter-B fluid.

The overshoot in the velocity profiles of stagnation

point and Blasius flows and undershoot in Sakiadis

flow has been controlled through the present numer-

ical scheme. Unlike the previous results, the graphical

results here show that there are no oscillations of

velocity about the free stream. The presented method

is also an alternative to finite difference and shooting

techniques. For singular nonlinear boundary value

problems the shooting technique fails. The present

method combines the features of shooting method

Legendre wavelets to overcome this difficulty. The

numerical procedure presented here is not limited to

the present flow situation and can be applied to the

other flow problems in non-Newtonian fluids.
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