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Abstract This paper studies the time differential

dual-phase-lag model of a thermoelastic material,

where the elastic deformation is accompanied by

thermal effects governed by a time differential equa-

tion for the heat flux with dual phase lags. This

coupling gives rise to a complex differential system

requiring a special treatment. Uniqueness and contin-

uous dependence results are established for the

solutions of the mixed initial boundary value problems

associated with the model of the linear theory of

thermoelasticity with dual-phase-lag for an anisotro-

pic and inhomogeneous material. Two methods are

developed in this paper, both being based on an

identity of Lagrange type and of a conservation law

applied to appropriate initial boundary value problems

associated with the model in concern. The uniqueness

results are established under mild constitutive

hypotheses (right like those in the classical linear

thermoelasticity), without any restrictions upon the

delay times (excepting the class of thermoelastic

materials for which the delay time of phase lag of the

conductive temperature gradient is vanishing and the

delay time in the phase lag of heat flux vector is strictly

positive, when an ill-posed model should be

expected). The continuous dependence results are

established by using a conservation law and a Gron-

wall inequality, under certain constitutive restrictions

upon the thermoelastic coefficients and the delay

times.

Keywords Time differential dual-phase-lag

thermoelastic model � Uniqueness � Continuous
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1 Introduction

The dual-phase-lagmodel incorporates themicrostruc-

tural interaction effect in the fast-transient process of

heat transport. It describes the finite time required for

the various microstructural interactions to take place,

including the phonon-electron interaction in metals,

the phonon scattering in dielectric crystals, insulators,

and semiconductors, and the activation of molecules at

extremely low temperature, by the resulting phase-lag

(time-delay) in the process of heat transport (see for

example, Tzou [1]).

In 1995, Tzou [2–4] (see also [1, 5] and the

references therein) proposed, instead of Fourier’s law,

the following time differential constitutive law for the

heat flux vector qi
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qi x; tð Þ þ sq
oqi

ot
x; tð Þ þ 1

2
s2q

o2qi

ot2
x; tð Þ

¼ �kijðxÞT;j x; tð Þ � sTkijðxÞ
oT;j

ot
x; tð Þ;

ð1Þ

where sq � 0 and sT � 0 are positive delay times and

T is the temperature variation. When this constitutive

equation is coupled with the energy equation

�qi;i þ .r ¼ a
oT

ot
; ð2Þ

then we obtain the following governing equation of

hyperbolic type for temperature field T

1þ sq
o

ot
þ 1

2
s2q

o2

ot2

� �
a
oT

ot
� .r

� �

¼ kij 1þ sT
o

ot

� �
T;j

� �
;i

:

ð3Þ

Such an equation was studied intensively in literature in

many papers (see for example, [6–18]). In particular, it

was established by Fabrizio and Lazzari [15] that the

restrictions imposed by thermodynamics on the consti-

tutive Eq. (1), within the framework of a linear rigid

conductor, implies that the delay times have to satisfy

the inequality 0 � sq � 2sT . Quintanilla and Racke

[11] have shown that the Eq. (3), together with

suitable initial and boundary conditions, leads to an

exponentially stable system when 0\ sq \ 2sT and to
an unstable system when 0\ 2sT \ sq. While in [6–

8] is studied the well-posedness problem, provided

some appropriate restrictions upon the parameters sq
and sT are assumed.

Recently, the ability of the dual-phase-lag model as

a new modified constitutive equation replacing the

Fourier law to simulate the heat transport in some

special cases such as micro/nanoscales [19, 20], ultra

fast laser-pulsed processes [21, 22], living tissues [23],

and Carbon nanotube [24] have been tested.

On the other side, when the mechanical deforma-

tion is accompanied by the thermal effects described

by the constitutive Eq. (1) we are lead to a more

complex mathematical problem who requires a special

treatment. It is the main aim of the present paper to

solve this requirement. In fact, in the present paper we

formulate the initial boundary value problem of

thermoelastic model based on the constitutive

Eq. (1) and then we study the uniqueness and

continuous data dependence results. In this connection

we define two adequate initial boundary value prob-

lems associated with the problem in concern. Further,

we use these auxiliary problems and the Lagrange

identity method (see, e. g. [25, 26]) in order to

establish uniqueness results under mild assumptions

upon the thermoelastic coefficients and upon the delay

times. Consequently, the uniqueness results are estab-

lished under the same constitutive hypotheses like in

the classical linear thermoelasticity, without any

restrictions upon the delay times. However, there is

an open problem for the class of materials character-

ized by zero delay time of phase lag of the conductive

temperature gradient and for which the delay time in

the phase lag of heat flux vector is strictly positive. In

such a case it should be expected to have an ill-posed

model.

Furthermore, we establish appropriate conservation

laws and then we use the Gronwall’s inequality in

order to establish some estimates describing the

continuous dependence of solutions with respect to

the prescribed initial data and with respect to the given

supply terms. Such results are established under the

assumption that 0� sq � 2sT , which is in accord with

the thermodynamic restriction established by Fabrizio

and Lazzari [15].

2 Mathematical model

We assume that a regular region B is filled by an

inhomogeneous and anisotropic thermoelastic mate-

rial with dual phase lag. The basic equations of the

model in concern are:

• the equations of motion

tji;j þ .fi ¼ .€ui; ð4Þ

• the equation of energy

.T0 _g ¼ �qi;i þ .r; ð5Þ

in B� ð0;1Þ,

• the constitutive equations

tij ¼ Cijklekl � bijT ; ð6Þ

.g ¼ bijeij þ aT; ð7Þ

qi þ sq _qi þ
1

2
s2q€qi ¼ �kijT;j � sTkij _T ;j; ð8Þ
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in B� ½0;1Þ, and
• the geometrical equations

eij ¼
1

2
ui;j þ uj;i
� �

; ð9Þ

in B� ½0;1Þ. Here we have used the following

notations: tij are the components of the stress

tensor, g is the entropy per unit mass, qi are the

components of the heat flux vector, eij are the

components of the strain tensor, . is the mass

density of the medium, ur are the components of

the displacement vector, T is the change in

temperature from the constant ambient tempera-

ture T0 [ 0, fi are the components of the body

force per unit mass, r is the heat supply per unit

mass, a superposed dot denotes time differentia-

tion and a coma denotes the partial differentiation

with respect to the corresponding Cartesian coor-

dinate. The constitutive coefficients Cijkl, bij, a and
kij are continuous differentiable functions on the

spatial variable x and have the following

symmetries

Cijkl ¼ Cklij ¼ Cjikl; bij ¼ bji: ð10Þ

Furthermore, we will assume the symmetry of the

conductivity tensor, that is

kij ¼ kji; ð11Þ

and, moreover, we assume that it is a positive

definite tensor. Then we can define Kij so that

kijKjk ¼ Kijkjk ¼ dik: ð12Þ

Then, the constitutive Eq. (8) can be written as

T;i þ sT _T ;i ¼ �Kij qj þ sq _qj þ
1

2
s2q€qj

� �
: ð13Þ

Throughout this paper we consider the initial

boundary value problem P defined by the field

Eqs. (4) to (9), the initial conditions

uiðx;0Þ ¼ u0i ðxÞ; _uiðx;0Þ ¼ _u0i ðxÞ; Tðx;0Þ ¼ T0ðxÞ;
qiðx;0Þ ¼ q0i ðxÞ; _qiðx;0Þ ¼ _q0i ðxÞ; on B;

ð14Þ

and the boundary conditions

uiðx; tÞ ¼ xiðx; tÞ on R1 � ½0;1Þ;
tjiðx; tÞnj ¼ wiðx; tÞ on R2 � ½0;1Þ;

Tðx; tÞ ¼ #ðx; tÞ on R3 � ½0;1Þ;
qiðx; tÞni ¼ nðx; tÞ on R4 � ½0;1Þ:

ð15Þ

Here u0i xð Þ, _u0i xð Þ, T0 xð Þ, q0i xð Þ, _q0i xð Þ and xi x; tð Þ,
wi x; tð Þ, # x; tð Þ, n x; tð Þ are prescribed smooth func-

tions. Moreover, Rr (r ¼ 1; 2; 3; 4) are subsets of the

boundary oB such that R1 [ R2 ¼ R3 [ R4 ¼ oB and

R1 \ R2 ¼ R3 \ R4 ¼ ;.
By a solution of the initial boundary value problem

P corresponding to the given data D ¼ ffi; r; u0i ;
_u0i ; T

0; q0i ; _q
0
i ;xi;wi; #; ng we mean the ordered array

S ¼ fui; T ; eij; tij; g; qig defined on B� ½0;1Þ with

the properties that uiðx; tÞ 2 C1;2 B� ð0;1Þð Þ, Tðx; tÞ
2 C1;1 B� ð0;1Þð Þ, eijðx; tÞ ¼ ejiðx; tÞ 2 C0;0 B�ð
ð0;1ÞÞ, tijðx; tÞ ¼ tjiðx; tÞ 2 C1;0 B� ð0;1Þð Þ, gðx;tÞ
2 C0;1 B� ð0;1Þð Þ, qiðx; tÞ 2 C1;2 B� ð0;1Þð Þ and

which satisfy the field Eqs. (4) to (9), the initial

conditions (14) and the boundary conditions (15). For

further convenience we denote by P0 the initial

boundary value problem P corresponding to the zero

given data D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ;xi;wi; #; ng

¼ 0.

It is worth to note that if S ¼ fui; T ; eij; tij; g; qig is a
solution of the initial boundary value problem P
corresponding to the given data D ¼ ffi; r; u0i ; _u0i ;
T0; q0i ; _q

0
i ;xi;wi; #; ng, then we have

Z t

0

Z s

0

qiðzÞdzdsþ sq

Z t

0

qiðzÞdzþ
1

2
s2qqiðtÞ

¼ �kij

Z t

0

Z s

0

T;jðzÞdzds� sTkij

Z t

0

T;jðzÞdz

þ sTkijT
0
;j þ sqq

0
i þ

1

2
s2q _q

0
i

� �
t þ 1

2
s2qq

0
i

ð16Þ

and

Z t

0

T;iðzÞdzþ sTT;iðtÞ

¼ �Kij

Z t

0

qjðzÞdzþ sqqjðtÞ þ
1

2
s2q _qjðtÞ

� �

þ sTT
0
;i þ Kij sqq

0
j þ

1

2
s2q _q

0
j

� �
:

ð17Þ
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3 Some auxiliary operators

For further convenience, throughout this paper, we

will use the following notations: for any continuous

function f of time variable t, we denote by f 0ðtÞ the

integral over [0, t] of that function, that is

f 0ðtÞ ¼
Z t

0

f ðzÞdz; f 00ðtÞ ¼
Z t

0

Z s

0

f ðzÞdzds; . . .;

ð18Þ

for any continuous function g(t) we will denote by

g�ðtÞ the following function

g�ðtÞ ¼ g00ðtÞ þ sqg
0ðtÞ þ 1

2
s2qgðtÞ; ð19Þ

for any continuous function h(t) we will denote by ~hðtÞ
the following function

~hðtÞ ¼ h0ðtÞ þ sThðtÞ: ð20Þ

Further, we note that

g�ð0Þ ¼ 1

2
s2qgð0Þ;

dg�

dt
ð0Þ ¼ sqgð0Þ þ

1

2
s2q _gð0Þ;

ð21Þ

and

~hð0Þ ¼ sThð0Þ;
d~h

dt
ð0Þ ¼ hð0Þ þ sT _hð0Þ: ð22Þ

Then, the relation (16) can be written in the

following way

q�i ðtÞ ¼ � kij T 00
;j ðtÞ þ sTT

0
;jðtÞ

� 	

þ sTkijT
0
;j þ sqq

0
i þ

1

2
s2q _q

0
i

� �
t þ 1

2
s2qq

0
i ;

ð23Þ

while the relation (17) implies

~T;iðtÞ ¼ � Kij q0jðtÞ þ sqqjðtÞ þ
1

2
s2q _qjðtÞ

� �

þ sTT
0
;i þ Kij sqq

0
j þ

1

2
s2q _q

0
j

� �
:

ð24Þ

The following results can be readily verified.

Lemma 1 Suppose that g is twice continuously

differentiable. Then, we have

dg

dt

� �0
tð Þ ¼ dg0

dt
tð Þ � gð0Þ;

dg

dt

� ��
ðtÞ ¼ dg�

dt
ðtÞ � sq þ t

� �
gð0Þ;

ð25Þ

d2g

dt2

� ��
ðtÞ ¼ d2g�

dt2
ðtÞ � gð0Þ þ sq þ t

� �
_gð0Þ


 �
;

ð26Þ

fdg
dt
ðtÞ ¼ d~g

dt
ðtÞ � gð0Þ;

gd2g
dt2

ðtÞ ¼ d2~g

dt2
ðtÞ � _gð0Þ:

ð27Þ

Moreover, when gð0Þ ¼ 0 and _gð0Þ ¼ 0 then, we have

dg

dt

� �0
tð Þ ¼ dg0

dt
tð Þ; ð28Þ

dg

dt

� ��
ðtÞ ¼ dg�

dt
ðtÞ; d2g

dt2

� ��
ðtÞ ¼ d2g�

dt2
ðtÞ; ð29Þ

fdg
dt
ðtÞ ¼ d~g

dt
ðtÞ;

gd2g
dt2

ðtÞ ¼ d2~g

dt2
ðtÞ: ð30Þ

Lemma 2 If g is a continuous function satisfying

g�ðtÞ ¼ 0; for all t[ 0; ð31Þ

then we have

gðtÞ ¼ 0; for all t� 0: ð32Þ

Proof By setting

g00ðtÞ ¼ hðtÞ; ð33Þ

then the relation (31) can be written as

1

2
s2q€hðtÞ þ sq _hðtÞ þ hðtÞ ¼ 0; ð34Þ

and moreover, we have

hð0Þ ¼ 0; _hð0Þ ¼ 0: ð35Þ

Now it is easy to see that the Cauchy problem defined

by the differential Eq. (34) and the initial conditions

(35) has only the zero solution, that is

Z t

0

Z s

0

gðzÞdzds ¼ 0; for all t� 0; ð36Þ

352 Meccanica (2017) 52:349–361

123



and hence we get the conclusion expressed by relation

(32) and the proof is complete.

In a similar way we can prove the following result:

Lemma 3 Suppose that g is a continuous function

satisfying

~gðtÞ ¼ 0; for all t[ 0: ð37Þ

Then, we have

gðtÞ ¼ 0; forall t� 0: ð38Þ

On the basis of the above results we can prove the

following two theorems.

Lemma 4 Let S ¼ fui; T ; eij; tij; g; qig be a solution

of the initial boundary value problem P correspond-

ing to the given data D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ;

xi;wi; #; ng. Then S� ¼ fu�i ; T�; e�ij; t
�
ij; g

�; q�i g satis-

fies the initial boundary value problem P� defined by

the basic equations

t�ji;jðtÞ þ FiðtÞ ¼ .
o2u�i
ot2

ðtÞ; ð39Þ

.
og�

ot
ðtÞ ¼ � 1

T0
q�i;iðtÞ þ RðtÞ; ð40Þ

in B� ð0;1Þ,

t�ijðtÞ ¼ Cijkle
�
klðtÞ � bijT

�ðtÞ; ð41Þ

.g�ðtÞ ¼ bije
�
ijðtÞ þ aT�ðtÞ; ð42Þ

q�i ðtÞ ¼ �kij T 00
;j ðtÞ þ sTT

0
;jðtÞ

� 	
þ Q0

i ðtÞ; ð43Þ

and

e�ijðtÞ ¼
1

2
u�i;jðtÞ þ u�j;iðtÞ
� 	

; ð44Þ

in B� ½0;1Þ, the initial conditions

u�i ðx; 0Þ ¼
1

2
s2qu

0
i ðxÞ;

ou�i
ot

ðx; 0Þ ¼ squ
0
i ðxÞ þ

1

2
s2q _u

0
i ðxÞ;

T�ðx; 0Þ ¼ 1

2
s2qT

0ðxÞ; q�i ðx; 0Þ ¼
1

2
s2qq

0
i ðxÞ;

oq�i
ot

ðx; 0Þ ¼ sqq
0
i ðxÞ þ

1

2
s2q _q

0
i ðxÞ; on B; ð45Þ

and the boundary conditions

u�i ðx; tÞ ¼ x�
i ðx; tÞ on R1 � ½0;1Þ;

t�jiðx; tÞnj ¼ w�
i ðx; tÞ on R2 � ½0;1Þ;

T�ðx; tÞ ¼ #�ðx; tÞ on R3 � ½0;1Þ;
q�i ðx; tÞni ¼ n�ðx; tÞ on R4 � ½0;1Þ;

ð46Þ

where

Fiðx; tÞ ¼ .f �i ðx; tÞ þ . tþ sq
� �

_u0i ðxÞ þ u0i ðxÞ

 �

;

Rðx; tÞ ¼ 1

T0
.r�ðx; tÞ þ tþ sq

� �
biju

0
i;jðxÞ þ aT0ðxÞ

h i
;

Q0
i ðx; tÞ ¼ sTkijT

0
;jðxÞ þ sqq

0
i ðxÞ þ

1

2
s2q _q

0
i ðxÞ

� �
t

þ 1

2
s2qq

0
i ðxÞ: ð47Þ

Lemma 5 Let S ¼ fui; T ; eij; tij; g; qig be a solution

of the initial boundary value problem P correspond-

ing to the given data D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ;

xi;wi; #; ng. Then ~S ¼ f~ui; ~T; ~eij; ~tij; ~g; ~qig satisfies

the initial boundary value problem ~P defined by the

basic equations

~tji;jðtÞ þ GiðtÞ ¼ .
o2~ui
ot2

ðtÞ; ð48Þ

.
o~g
ot

ðtÞ ¼ � 1

T0
~qi;iðtÞ þ PðtÞ; ð49Þ

in B� ð0;1Þ,
~tijðtÞ ¼ Cijkl~eklðtÞ � bij ~TðtÞ; ð50Þ

.~gðtÞ ¼ bij~eijðtÞ þ a~TðtÞ; ð51Þ

~T;iðtÞ ¼ �Kij q0jðtÞ þ sqqjðtÞ þ
1

2
s2q _qjðtÞ

� �
þH0

i ;

ð52Þ

and

~eijðtÞ ¼
1

2
~ui;jðtÞ þ ~uj;iðtÞ
� �

; ð53Þ

in B� ½0;1Þ, the initial conditions

~uiðx; 0Þ ¼ sTu
0
i ðxÞ;

o~ui
ot

ðx; 0Þ ¼ u0i ðxÞ þ sT _u
0
i ðxÞ;

~Tðx; 0Þ ¼ sTT
0ðxÞ; ~qiðx; 0Þ ¼ sTq

0
i ðxÞ;

o~qi
ot

ðx; 0Þ ¼ q0i ðxÞ þ sT _q
0
i ðxÞ; on B;

ð54Þ
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and the boundary conditions

~uiðx; tÞ ¼ ~xiðx; tÞ on R1 � ½0;1Þ;
~tjiðx; tÞnj ¼ ~wiðx; tÞ on R2 � ½0;1Þ;
~Tðx; tÞ ¼ ~#ðx; tÞ on R3 � ½0;1Þ;
~qiðx; tÞni ¼ ~nðx; tÞ on R4 � ½0;1Þ;

ð55Þ

where

Giðx; tÞ ¼ .~fiðx; tÞ þ . _u0i ðxÞ;

Pðx; tÞ ¼ 1

T0
.~rðx; tÞ þ biju

0
i;jðxÞ þ aT0ðxÞ;

H0
i ðxÞ ¼ sTT

0
;iðxÞ þ Kij sqq

0
j ðxÞ þ

1

2
s2q _q

0
j ðxÞ

� �
:

ð56Þ

4 Analysis of the initial boundary value problem P

4.1 First method

We address first the uniqueness problem of solutions

of the initial boundary value problem P. Thus, we
have

Theorem 1 Suppose that measR3 6¼ 0 and

.[ 0; kijninj � k0nini; k0 [ 0; for all ni;

f0� 1

2
sq � sTg [ f0\sT\

1

2
sqg:

ð57Þ

Then the initial boundary value problem P has at most

one solution.

Proof In order to prove the uniqueness result it is

sufficient to prove that the zero external given data,

that is D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ;xi;wi; #; ng ¼ 0,

implies that the corresponding solution S ¼
fui;T ; eij; tij; g; qig is vanishing on B� ½0;1Þ. That
means we have to prove that the initial boundary value

problem P0 has only the banal solution.

Thus, we consider here that S ¼ fui; T ; eij; tij; g; qig
is a solution of the initial boundary value problem P0.

In view of the Lemma 4, it follows that S� ¼
fu�i ; T�; e�ij; t�ij; g

�; q�i g is a solution of the initial

boundary value problem P� with zero given data,

denoted in what follows by P�
0.

We proceed first to establish an identity of

Lagrange type for the solutions of the initial boundary

value problem P�
0 associated with P0. To this end we

start with the following identity for all t[ 0; s 2 ð0; tÞ

o

os
.u�i ðtþ sÞou

�
i

ot
ðt� sÞ þ .

ou�i
ot

ðtþ sÞu�i ðt� sÞ
� �

¼ .
o2u�i
ot2

ðtþ sÞu�i ðt� sÞ � u�i ðtþ sÞo
2u�i
ot2

ðt� sÞ
� �

;

ð58Þ

which integrated with respect to x; sð Þ over B� ð0; tÞ
and by using the zero initial conditions (45), gives

2

Z
B

.u�i ðtÞ _u�i ðtÞdv ¼
Z t

0

Z
B

.
o2u�i
os2

ðt � sÞu�i ðt þ sÞ
�

� u�i ðt � sÞ o
2u�i
os2

ðt þ sÞ
�
dvds:

ð59Þ

We now use the relations (39) and (44), the divergence

theorem and the zero boundary conditions (46), in

order to transform (59) into

2

Z
B

.u�i ðtÞ _u�i ðtÞdv ¼
Z t

0

Z
B

e�ijðt � sÞt�ijðt þ sÞ
h

� e�ijðt þ sÞt�ijðt � sÞ
i
dvds:

ð60Þ

In view of the constitutive Eq. (41), we obtain

2

Z
B

.u�i ðtÞ _u�i ðtÞdv ¼
Z t

0

Z
B

T�ðt � sÞbije�ijðt þ sÞ
h

� T�ðt þ sÞbije�ijðt � sÞ
i
dvds;

ð61Þ

so that, by means of the relation (42), we get

2

Z
B

.u�i ðtÞ _u�i ðtÞdv ¼
Z t

0

Z
B

T�ðt � sÞ.g�ðt þ sÞ½

� T�ðt þ sÞ.g�ðt � sÞ�dvds:
ð62Þ

At this time we integrate the Eq. (40) with respect to

time variable and use the zero initial conditions (45) to

obtain

.g�ðtÞ ¼ � 1

T0

Z t

0

q�i;iðzÞdz; ð63Þ
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so that, with the aid of the divergence theorem and the

zero boundary conditions (46), from (62) we deduce

2

Z
B

.u�i ðtÞ _u�i ðtÞdv¼
Z t

0

Z
B

1

T0
T�
;iðt� sÞ

Z tþs

0

q�i ðzÞdz
�

�T�
;iðtþ sÞ

Z t�s

0

q�i ðzÞdz
�
dvds:

ð64Þ

We use the Eqs. (43) into (64), to obtain

2

Z
B

.u�i ðtÞ _u�i ðtÞdv¼
sT
T0

Z t

0

Z
B

kijT
�
;iðtþ sÞ

h

�
Z t�s

0

T 0
;jðzÞdz� kijT

�
;iðt� sÞ

Z tþs

0

T 0
;jðzÞdz

�
dvds

þ 1

T0

Z t

0

Z
B

kijT
�
;iðtþ sÞ

Z t�s

0

T 00
;j ðzÞdz

�

�kijT
�
;iðt� sÞ

Z tþs

0

T 00
;j ðzÞdz

�
dvds:

ð65Þ

Further, we use the notations (18) and (19) in order

to write

kijT
�
;iðtþ sÞ

Z t�s

0

T 0
;jðzÞdz� kijT

�
;iðt� sÞ

�
Z tþs

0

T 0
;jðzÞdz ¼ kijT

00
;j ðt� sÞ T 00

;i ðtþ sÞ þ sqT
0
;iðtþ sÞ

h

þ 1

2
s2qT;iðtþ sÞ

�
� kijT

00
;j ðtþ sÞ T 00

;i ðt� sÞ
h

þsqT
0
;iðt� sÞ þ 1

2
s2qT;iðt� sÞ

�

¼ o

os
sqkijT

00
;j ðt� sÞT 00

;i ðtþ sÞ
h i

þ o

os

1

2
s2qkijT

0
;iðtþ sÞT 00

;j ðt� sÞ
�

þ1

2
s2qkijT

0
;iðt� sÞT 00

;j ðtþ sÞ
�
; ð66Þ

and

kijT
�
;iðt þ sÞ

Z t�s

0

T 00
;j ðzÞdz� kijT

�
;iðt � sÞ

�
Z tþs

0

T 00
;j ðzÞdz ¼ kijT

000
;j ðt � sÞ T 00

;i ðt þ sÞ
h

þ sqT
0
;iðt þ sÞ þ 1

2
s2qT;iðt þ sÞ� � kijT

000
;j ðt þ sÞ

� T 00
;i ðt � sÞ þ sqT

0
;iðt � sÞ þ 1

2
s2qT;iðt � sÞ

� �

¼ o

os
kijT

000
;j ðt � sÞT 000

;i ðt þ sÞ
h i

þ sq
o

os
kijT

00
;j ðt þ sÞ

h

�T 000
;i ðt � sÞ þ kijT

00
;j ðt � sÞT 000

;i ðt þ sÞ
i

þ 1

2
s2q

o

os
kijT

0
;iðt þ sÞT 000

;j ðt � sÞ þ kijT
0
;iðt � sÞ

h

�T 000
;j ðt þ sÞ

i
þ 1

2
s2q

o

os
kijT

00
;i ðt þ sÞT 00

;j ðt � sÞ
h i

:

ð67Þ

Finally, by replacing the relations (66) and (67) into

identity (65), we obtain the following Lagrange identity

d

dt

Z
B

.u�i ðtÞu�i ðtÞdvþ
sTs2q
2T0

Z
B

kijT
00
;j ðtÞT 00

;i ðtÞdv
(

þ sq
T0

Z
B

kijT
000
;j ðtÞT 000

;i ðtÞdvþ
s2q
T0

Z
B

kijT
00
;j ðtÞT 000

;i ðtÞdv
)

þ 1

T0

Z
B

kijT
000
;j ðtÞT 000

;i ðtÞdv

þ sq
2T0

2sT � sq
� � Z

B

kijT
00
;i ðtÞT 00

;j ðtÞdv ¼ 0:

ð68Þ

Further, we integrate (68) twice with respect to time

variable and use the zero initial conditions in order to

obtainZ t

0

Z
B

.u�i ðsÞu�i ðsÞdvdsþ
sq
T0

Z t

0

Z
B

kijT
000
;i ðsÞ

� T 000
;j ðsÞdvdsþ

s2q
2T0

Z
B

kijT
000
;i ðtÞT 000

;j ðtÞdv

þ 1

T0

Z t

0

Z s

0

Z
B

kijT
000
;i ðzÞT 000

;j ðzÞdvdzds

þ
sTs2q
2T0

Z t

0

Z
B

kijT
00
;i ðsÞT 00

;j ðsÞdvdsþ
sq
2T0

2sT � sq
� �

�
Z t

0

Z s

0

Z
B

kijT
00
;i ðzÞT 00

;j ðzÞdvdzds ¼ 0:

ð69Þ

Let us suppose first that

0� 1

2
sq � sT : ð70Þ
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Then it follows that all integral terms in (69) are

positive and hence (69) implies that

u�i ðx; tÞ ¼ 0 in B� ½0;1Þ; ð71Þ

and

T 000
;i ðx; tÞ ¼ 0 in B� ½0;1Þ: ð72Þ

The last relation implies

T;iðx; tÞ ¼ 0 in B� ½0;1Þ; ð73Þ

and since measR3 6¼ 0, we can deduce that

Tðx; tÞ ¼ 0 in B� ½0;1Þ: ð74Þ

While the relation (71) and the Lemma 2 give

uiðx; tÞ ¼ 0 in B� ½0;1Þ: ð75Þ

If we substitute (73) into relation (43) then we get

q�i ðx; tÞ ¼ 0 in B� ½0;1Þ; ð76Þ

and therefore, by means of the Lemma 2, we have

qiðx; tÞ ¼ 0 in B� ½0;1Þ: ð77Þ

Consequently, we have S ¼ fui; T; eij; tij; g; qig ¼
0 and so we have the uniqueness result.

Let us now consider the case when

0\sT\
1

2
sq: ð78Þ

Then the identity (69) implies that

sTs2q
2T0

Z t

0

Z
B

kijT
00
;i ðsÞT 00

;j ðsÞdvds

� sq
2T0

sq � 2sT
� � Z t

0

Z s

0

Z
B

kijT
00
;i ðzÞT 00

;j ðzÞdvdzds;

ð79Þ

and hence we have

UðtÞ� 1

sT
� 2

sq

� �Z t

0

UðsÞds; t 2 ð0;1Þ; ð80Þ

with

UðtÞ ¼
Z t

0

Z
B

kijT
00
;i ðsÞT 00

;j ðsÞdvds: ð81Þ

By the Gronwall’s lemma, from the inequality (80) we

deduce that

UðtÞ ¼ 0; t 2 ð0;1Þ; ð82Þ

and hence

T;iðx; tÞ ¼ 0 in B� ½0;1Þ; ð83Þ

and since measR3 6¼ 0, we can obtain that

Tðx; tÞ ¼ 0 in B� ½0;1Þ: ð84Þ

Further, the identity (69) implies that

u�i ðx; tÞ ¼ 0 in B� ½0;1Þ; ð85Þ

and by using an argument like in the above case we

obtain the uniqueness result again. Thus, the proof is

complete.

Let us now address the question of continuous

dependence of solutions of the initial boundary value

problem P with respect to the given data. To this aim

we consider the solution S ¼ fui; T ; eij; tij; g; qig sat-

isfying the initial boundary value problem P corre-

sponding to the data D ¼ ffi; r; u0i ; _u0i ; T0;

q0i ; _q
0
i ; 0; 0; 0; 0g and we introduce the following

functional

EðtÞ ¼ 1

2

Z t

0

Z
B

.
ou�i
os

ðsÞ ou
�
i

os
ðsÞ þ Cijkle

�
ijðsÞe�klðsÞ

�

þ a T�ðsÞð Þ2
i
dvdsþ sT þ sq

2T0

Z t

0

Z
B

kijT
00
;j ðsÞT 00

;i ðsÞdvds

þ 1

T0

Z t

0

Z s

0

Z
B

kijT
00
;j ðzÞT 00

;i ðzÞdvdzds

þ
s2q
4T0

Z
B

kijT
00
;j ðtÞT 00

;i ðtÞdv

þ
sTs2q
4T0

Z t

0

Z
B

kijT
0
;jðsÞT 0

;iðsÞdvds

þ sq
T0

sT � sq
2

� 	 Z t

0

Z s

0

Z
B

kijT
0
;jðzÞT 0

;iðzÞdvdzds;

ð86Þ

for all t� 0. It is a straightforward task to verify the

following result.

Lemma 6 Assume that the conductivity tensor kij is a

positive definite tensor, the elasticity tensor is a

positive semi-definite tensor and moreover, the fol-

lowing constitutive hypotheses hold

.[ 0; a[ 0; 0� sq � 2sT : ð87Þ
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Then EðtÞ can be considered as a measure of S ¼
fui;T ; eij; tij; g; qig in the sense that EðtÞ� 0 for all

t� 0 and EðtÞ ¼ 0 for all t� 0 implies that S ¼
fui;T ; eij; tij; g; qig ¼ 0.

The continuous dependence of solutions of the

initial boundary value problem P, with respect to the

initial data and the given body supplies, is described

by the following result.

Theorem 2 Suppose that the constitutive hypotheses

of Lemma 6 hold true and moreover,measR4 ¼ 0. Let

S ¼ fui; T ; eij; tij; g; qig be a solution of the initial

boundary value problem P corresponding to the given

data D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ; 0; 0; 0; 0g. Then, for

any finite time S[ 0 and for every t 2 ½0; S�, we have
the following estimate describing the continuous

dependence of solution with respect to the initial

given data and with respect to the given supply terms

ffiffiffiffiffiffiffiffi
EðtÞ

p
� S

2

Z
B

.
ou�i
ot

ð0Þ ou
�
i

ot
ð0Þ þ Cijkle

�
ijð0Þe�klð0Þ

�

þ a T�ð0Þð Þ2
i
dv
o1

2þ 1ffiffiffi
2

p
Z t

0

bðsÞds;

ð88Þ

where

bðtÞ ¼
Z t

0

Z
B

1

.
FiðsÞFiðsÞ þ

1

a
RþðsÞ2

� �
dvds

� �1
2

;

ð89Þ

and

Rþðx; tÞ ¼ 1

T0
Rðx; tÞ � Q0

i;iðx; tÞ
h i

: ð90Þ

Proof In view of Lemma 4 it follows that S� ¼
fu�i ; T�; e�ij; t

�
ij; g

�; q�i g is a solution of the initial

boundary value P� with x�
i ¼ 0, w�

i ¼ 0, #� ¼ 0 and

n� ¼ 0. Then the relations (39)–(47) lead to the

following identity

d

dt

Z
B

1

2
.
ou�i
ot

ðtÞou
�
i

ot
ðtÞþCijkle

�
ijðtÞe�klðtÞ

�

þa T�ðtÞð Þ2
i
dv¼

Z
B

FiðtÞ
ou�i
ot

ðtÞþ 1

T0
RðtÞT�ðtÞ

� �
dv

þ
Z
B

T�
;iðtÞ
T0

�kij T 00
;j ðtÞþ sTT

0
;jðtÞ

� 	
þQ0

i ðtÞ
h i

dv:

ð91Þ

By using the divergence theorem and the zero

boundary condition on oB we getZ
B

T�
;iðtÞ
T0

Q0
i ðtÞdv ¼ �

Z
B

T�ðtÞ
T0

Q0
i;iðtÞdv: ð92Þ

Moreover, we replace T�
;iðtÞ by means of (19) in order

to obtain

� 1

T0

Z
B

kijT
�
;iðtÞ T 00

;j ðtÞ þ sTT
0
;jðtÞ

h i
dv

¼ � d

dt

sTs2q
4T0

Z
B

kijT
0
;jðtÞT 0

;iðtÞdv
(

þ sT þ sq
2T0

Z
B

kijT
00
;j ðtÞT 00

;i ðtÞdv

þ d

dt

s2q
4T0

Z
B

kijT
00
;j ðtÞT 00

;i ðtÞdv
 !)

� sq
2T0

2sT � sq
� � Z

B

kijT
0
;jðtÞT 0

;iðtÞdv

� 1

T0

Z
B

kijT
00
;j ðtÞT 00

;i ðtÞdv:

ð93Þ

Thus, by replacing the relations (92) and (93) into

(91) and by integrating twice with respect to time

variable, we are led to the following conservation law

EðtÞ ¼ t

2

Z
B

.
ou�i
ot

ð0Þ ou
�
i

ot
ð0Þ þ Cijkle

�
ijð0Þe�klð0Þ

�

þ a T�ð0Þð Þ2
i
dvþ

Z t

0

Z s

0

Z
B

FiðzÞ
ou�i
oz

ðzÞ
�

þ RþðzÞT�ðzÞ�dvdzds;
ð94Þ

for all t 2 ½0; S�. By means of the Cauchy–Schwarz

inequality, from (94) we obtain

EðtÞ � S

2

Z
B

.
ou�i
ot

ð0Þ ou
�
i

ot
ð0Þ þ Cijkle

�
ijð0Þe�klð0Þ

�

þ a T�ð0Þð Þ2
i
dvþ

Z t

0

bðsÞ
Z s

0

Z
B

.
ou�i
oz

ðzÞ ou
�
i

oz
ðzÞ

��

þ a T�ðzÞð Þ2
	
dvdz

i1
2

ds;

ð95Þ

so that we have the following Gronwall inequality

EðtÞ� S

2

Z
B

.
ou�i
ot

ð0Þou
�
i

ot
ð0ÞþCijkle

�
ijð0Þe�klð0Þ

�

þa T�ð0Þð Þ2
i
dvþ

Z t

0

bðsÞ
ffiffiffiffiffiffiffiffiffiffiffi
2EðsÞ

p
ds; t2 ½0;S�:

ð96Þ
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By integrating the differential inequality (96) we

obtain the estimate (88) and the proof is complete. h

4.2 Second method

In this section we use the Lemma 5 in order to prove

the uniqueness and the continuous dependence of

solutions of the initial boundary value problem P. We

first give a proof of the Theorem 1 based on the

Lemma 5. In this aim we consider S ¼ fui; T; eij;
tij; g; qig be a solution of the initial boundary value

problem P0. In view of the Lemma 5, it follows that
~S ¼ f~ui; ~T ; ~eij;~tij; ~g; ~qig is a solution of the initial

boundary value problem ~P with zero given data,

denoted in what follows by ~P0. Starting with a

Lagrange identity of type (58) for the problem ~P0, we

obtain the following identityZ
B

2.~uiðtÞ _~uiðtÞdv ¼
Z t

0

Z
B

1

T0

�
~T;iðt � sÞ:

�
Z tþs

0

~qiðzÞdz� ~T;iðt þ sÞ
Z t�s

0

~qiðzÞdz
�
dvds;

ð97Þ

which, when we replace ~T;i from relation (52) and we

substitute ~qi by means of (20), gives

Z
B

2.~uiðtÞ _~uiðtÞdv ¼
1

T0

Z t

0

Z
B

Kijq
00
i ðt � sÞq0jðt þ sÞ

h

�Kijq
00
i ðt þ sÞq0jðt � sÞ

i
dvds

þ sq
T0

Z t

0

Z
B

Kijq
00
i ðt � sÞqjðt þ sÞ



�Kijq

00
i ðt þ sÞqjðt � sÞ

�
dvds

þ
s2q
2T0

Z t

0

Z
B

Kijq
00
i ðt � sÞ _qjðt þ sÞ



�Kijq

00
i ðt þ sÞ _qjðt � sÞ

�
dvds

þ sqsT
T0

Z t

0

Z
B

Kijq
0
iðt � sÞqjðt þ sÞ



�Kijq

0
iðt þ sÞqjðt � sÞ

�
dvds

þ
s2qsT
2T0

Z t

0

Z
B

Kijq
0
iðt � sÞ _qjðt þ sÞ



�Kijq

0
iðt þ sÞ _qjðt � sÞ

�
dvds:

ð98Þ

Further, we observe that

Kijq
00
i ðt � sÞq0jðt þ sÞ � Kijq

00
i ðt þ sÞq0jðt � sÞ

¼ o

os
Kijq

00
i ðt � sÞq00j ðt þ sÞ

h i
;

ð99Þ

Kijq
00
i ðt � sÞqjðt þ sÞ � Kijq

00
i ðt þ sÞqjðt � sÞ

¼ o

os
Kijq

00
i ðt � sÞq0jðt þ sÞ

h

þ Kijq
00
i ðt þ sÞq0jðt � sÞ

i
;

ð100Þ

Kijq
00
i ðt � sÞ _qjðt þ sÞ � Kijq

00
i ðt þ sÞ _qjðt � sÞ

¼ o

os
Kijq

00
i ðt � sÞqjðt þ sÞ




þ Kijq
00
i ðt þ sÞqjðt � sÞ þ Kijq

0
iðt � sÞq0jðt þ sÞ

i
;

ð101Þ

Kijq
0
iðt � sÞqjðt þ sÞ � Kijq

0
iðt þ sÞqjðt � sÞ

¼ o

os
Kijq

0
iðt � sÞq0jðt þ sÞ

h i
;

ð102Þ

Kijq
0
iðt � sÞ _qjðt þ sÞ � Kijq

0
iðt þ sÞ _qjðt � sÞ

¼ o

os
Kijq

0
iðt � sÞqjðt þ sÞ



þ Kijq

0
iðt þ sÞqjðt � sÞ

�
:

ð103Þ

Finally, by substituting the relations (99)–(103) into

(98) and then by integrating twice with respect to time

variable the result, we getZ t

0

Z
B

.~uiðsÞ~uiðsÞdvds

þ 1

T0

Z t

0

Z s

0

Z
B

Kijq
00
i ðzÞq00j ðzÞdvdzds

þ sq
T0

Z t

0

Z
B

Kijq
00
i ðsÞq00j ðsÞdvds

þ
s2q
2T0

Z
B

Kijq
00
i ðtÞq00j ðtÞdv

þ
sTs2q
2T0

Z t

0

Z
B

Kijq
0
iðsÞq0jðsÞdvdsþ

sq
2T0

2sT � sq
� �

�
Z t

0

Z s

0

Z
B

Kijq
0
iðzÞq0jðzÞdvdzds ¼ 0:

ð104Þ

Under the assumption (70) all terms of the identity

(104) are positive so that we conclude that

~uiðx; tÞ ¼ 0 in B� ½0;1Þ; ð105Þ
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and

q00i ðx; tÞ ¼ 0 in B� ½0;1Þ: ð106Þ

By means of Lemma 3, from (105) we readily obtain

the conclusion (75), while (106) implies that

qiðx; tÞ ¼ 0 in B� ½0;1Þ; ð107Þ

and hence, by means of the constitutive Eq. (52), we

obtain

~T;iðx; tÞ ¼ 0 in B� ½0;1Þ: ð108Þ

This last relation when coupled with the Lemma 3

implies the relation (74) and then we can obtain the

uniqueness result described in Theorem 1.

When the relation (78) holds true, the identity (104)

implies the inequality (80) where now U is defined

by

UðtÞ ¼
Z t

0

Z
B

Kijq
0
iðsÞq0jðsÞdvds; ð109Þ

and therefore, we can follow the same way as in the

proof of Theorem 1 to prove the uniqueness result.

Let us now address the continuous dependence

question. Let S ¼ fui; T; eij; tij; g; qig be a solution of

the initial boundary value problem P corresponding to

the data D ¼ ffi; r; u0i ; _u0i ; T0; q0i ; _q
0
i ; 0; 0; 0; 0g. In

view of Lemma 5 it follows that ~S ¼
f~ui; ~T ; ~eij; ~tij; ~g; ~qig satisfies the initial boundary value

problem ~P with ~xi ¼ 0, ~wi ¼ 0, ~# ¼ 0 and ~n ¼ 0.

Under these conditions we have the following con-

servation law

FðtÞ ¼
Z t

0

Z s

0

Z
B

GiðzÞ
o~ui
oz

ðzÞ þ PðzÞ~TðzÞ


þ 1

T0
q0iðzÞ þ sTqiðzÞ

 �

H0
i

�
dvdzds

þ t

2

Z
B

.
o~ui
ot

ð0Þ o~ui
ot

ð0Þ þ Cijkl~eijð0Þ~eklð0Þ
�

þ a ~Tð0Þ
� �2þ sTs2q

2T0
Kijqið0Þqjð0Þ

#
dv;

ð110Þ

for all t� 0, where

FðtÞ ¼ 1

2

Z t

0

Z
B

.
o~ui
os

ðsÞ o~ui
os

ðsÞ þ Cijkl~eijðsÞ~eklðsÞ
�

þ a ~TðsÞ
� �2i

dvdsþ sT þ sq
2T0

Z t

0

Z
B

Kijq
0
iðsÞq0jðsÞdvds

þ
sTs2q
4T0

Z t

0

Z
B

KijqiðsÞqjðsÞdvdsþ
s2q
4T0

Z
B

Kijq
0
iðtÞ

� q0jðtÞdvþ
1

T0

Z t

0

Z s

0

Z
B

Kijq
0
iðzÞq0jðzÞdvdzds

þ sq
T0

sT � sq
2

� 	Z t

0

Z s

0

Z
B

KijqiðzÞqjðzÞdvdzds:

ð111Þ

Theorem 3 Suppose that the constitutive hypotheses

of Lemma 6 hold true. LetS ¼ fui; T ; eij; tij; g; qig be a
solution of the initial boundary value problem P
corresponding to the given data D ¼ ffi; r; u0i ; _u0i ;
T0; q0i ; _q

0
i ; 0; 0; 0; 0g. ThenFðtÞ can be considered as a

measure for S and moreover, for any finite time

S[ 0 and for every t 2 ½0; S�, we have the following

estimate

ffiffiffiffiffiffiffiffiffiffi
FðtÞ

p
� S

2

Z
B

.
o~ui
ot

ð0Þ o~ui
ot

ð0Þ þ Cijkl~eijð0Þ~eklð0Þ
��

þ a ~Tð0Þ
� �2þ sTs2q

2T0
Kijqið0Þqjð0Þ

#
dv

#1
2

þ 1ffiffiffi
2

p
Z t

0

bðsÞds;

ð112Þ

where

bðtÞ ¼
Z t

0

Z
B

1

.
GiðsÞGiðsÞ þ

1

a
PðsÞð Þ2

��

þ 1

T0K0

1

sT þ sq
þ 4sT

s2q

 !
H0

iH
0
i

#
dvds

!1
2

;

ð113Þ

and K0 is related to the lower eigenvalue of the tensor

Kij.

Proof By using the Cauchy–Schwarz inequality,

from the identity (110) we obtain the following

inequality
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FðtÞ� S

2

Z
B

.
o~ui
ot

ð0Þ o~ui
ot

ð0Þ þ Cijkl~eijð0Þ~eklð0Þ
�

þ a ~Tð0Þ
� �2þ sTs2q

2T0
Kijqið0Þqjð0Þ

#
dv

þ
Z t

0

bðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2FðsÞ

p
ds;

ð114Þ

which, when integrated, leads to the estimate (112)

and the proof is complete. h

5 Concluding remarks

Our analysis establishes the uniqueness and continu-

ous data dependence of solutions of the initial

boundary value problems within the context of the

time differential model of dual-phase-lag thermoelas-

tic theory. The key point of our proof consists to

introduce the two initial boundary value problems P�

and ~P inspired by the two operators involved into

basic constitutive Eq. (1). The uniqueness results are

established either when the conducting media is such

that sT [ sq that is when the heat flux vector precedes
the temperature gradient in the time-history, implying

that the heat flux vector is the cause while the

temperature gradient is the effect of the heat flow as

well as for media with sq [ sT , when the temperature

gradient becomes the cause while the heat flux vector

becomes the effect. It can be seen that our uniqueness

theorems cannot cover the case when

sT ¼ 0; sq [ 0: ð115Þ

In fact, in this case the identity (69) becomes

Z t

0

Z
B

.u�i ðsÞu�i ðsÞdvds

þ sq
T0

Z t

0

Z
B

kijT
000
;i ðsÞT 000

;j ðsÞdvds

þ
s2q
2T0

Z
B

kijT
000
;i ðtÞT 000

;j ðtÞdv

þ 1

T0

Z t

0

Z s

0

Z
B

kijT
000
;i ðzÞT 000

;j ðzÞdvdzds

�
s2q
2T0

Z t

0

Z s

0

Z
B

kijT
00
;i ðzÞT 00

;j ðzÞdvdzds ¼ 0;

ð116Þ

and it is no clear how we can handle it to get the

uniqueness of solution. Namely, the last integral term

in the identity (116) is negative one and it cannot be

convenably related to the any other integral terms in

order to get the uniqueness. Such a case remains an

open problem and it is expected that it can lead to an

ill-posed model. In fact, the case was studied by

Fabrizio and Franchi [16] and it was concluded that

such amodel is not compatible with the Second Law of

Thermodynamics. However, when sT ¼ 0, sq [ 0 and

s2q can be neglected (that is for the Cattaneo–Maxwell

model or the Lord-Shulman model), the identity (116)

yet furnishes the uniqueness result.

The uniqueness of solutions of the mixed initial

boundary value problem in the linear theory of

thermoelasticity with dual phase-lags was established

by Kothari and Mukhopadhyay [27] under more

restrictive assumptions upon the thermoelastic coeffi-

cients (the elasticity tensor Cijkl is positive definite and

the specific heat is strictly positive) and upon the delay

times (0\sq\2sT ).
The continuous dependence of solutions with

respect to the initial given data and given supply

terms is described by the estimates of Theorems 2

and 3. They are established under the assumption

0� sq � 2sT which agrees with the thermodynamic

restrictions found by Fabrizio and Lazzari in [15]. We

have to remark that the continuous dependence results

can by obtained by means of the Lagrange identity

method, as described in Sect. 4, under relaxed

conditions upon the delay times, provided some

suitable classes of solutions are considered. Finally,

we have to mention that the conditions under which

the continuous dependence results are established into

Theorems 2 and 3 can be relaxed by replacing, for

example, the condition that a[ 0 by measR3 6¼ 0.

Concluding, we can see that the thermodynamic

restrictions found by Fabrizio and Lazzari [15] allow

to prove the well position of the related initial

boundary value problems.
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