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Abstract This paper studies the time differential
dual-phase-lag model of a thermoelastic material,
where the elastic deformation is accompanied by
thermal effects governed by a time differential equa-
tion for the heat flux with dual phase lags. This
coupling gives rise to a complex differential system
requiring a special treatment. Uniqueness and contin-
uous dependence results are established for the
solutions of the mixed initial boundary value problems
associated with the model of the linear theory of
thermoelasticity with dual-phase-lag for an anisotro-
pic and inhomogeneous material. Two methods are
developed in this paper, both being based on an
identity of Lagrange type and of a conservation law
applied to appropriate initial boundary value problems
associated with the model in concern. The uniqueness
results are established under mild constitutive
hypotheses (right like those in the classical linear
thermoelasticity), without any restrictions upon the
delay times (excepting the class of thermoelastic
materials for which the delay time of phase lag of the
conductive temperature gradient is vanishing and the
delay time in the phase lag of heat flux vector is strictly
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positive, when an ill-posed model should be
expected). The continuous dependence results are
established by using a conservation law and a Gron-
wall inequality, under certain constitutive restrictions
upon the thermoelastic coefficients and the delay
times.
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1 Introduction

The dual-phase-lag model incorporates the microstruc-
tural interaction effect in the fast-transient process of
heat transport. It describes the finite time required for
the various microstructural interactions to take place,
including the phonon-electron interaction in metals,
the phonon scattering in dielectric crystals, insulators,
and semiconductors, and the activation of molecules at
extremely low temperature, by the resulting phase-lag
(time-delay) in the process of heat transport (see for
example, Tzou [1]).

In 1995, Tzou [2-4] (see also [1, 5] and the
references therein) proposed, instead of Fourier’s law,
the following time differential constitutive law for the
heat flux vector g;
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where 7, >0 and 77 > 0 are positive delay times and
T is the temperature variation. When this constitutive
equation is coupled with the energy equation

2
‘1

(1)

= —kij(X)TJ(X7 l) TTktj(

oT
py —a— 2
gii+or=az- (2)
then we obtain the following governing equation of
hyperbolic type for temperature field 7

- 9+1262 or _
iy Tt )\ Yo T Y

0
= |:k,]<1 +1r &) TJ‘:| ’i.

Such an equation was studied intensively in literature in
many papers (see for example, [6-18]). In particular, it
was established by Fabrizio and Lazzari [15] that the
restrictions imposed by thermodynamics on the consti-
tutive Eq. (1), within the framework of a linear rigid
conductor, implies that the delay times have to satisfy
the inequality 0 < 7, < 277. Quintanilla and Racke
[11] have shown that the Eq. (3), together with
suitable initial and boundary conditions, leads to an
exponentially stable system when 0 < 7, < 277 and to
an unstable system when 0 < 277 < 7, While in [6—
8] is studied the well-posedness problem, provided
some appropriate restrictions upon the parameters T,
and t7 are assumed.

Recently, the ability of the dual-phase-lag model as
a new modified constitutive equation replacing the
Fourier law to simulate the heat transport in some
special cases such as micro/nanoscales [19, 20], ultra
fast laser-pulsed processes [21, 22], living tissues [23],
and Carbon nanotube [24] have been tested.

On the other side, when the mechanical deforma-
tion is accompanied by the thermal effects described
by the constitutive Eq. (1) we are lead to a more
complex mathematical problem who requires a special
treatment. It is the main aim of the present paper to
solve this requirement. In fact, in the present paper we
formulate the initial boundary value problem of
thermoelastic model based on the constitutive
Eq. (1) and then we study the uniqueness and
continuous data dependence results. In this connection

(3)
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we define two adequate initial boundary value prob-
lems associated with the problem in concern. Further,
we use these auxiliary problems and the Lagrange
identity method (see, e. g. [25, 26]) in order to
establish uniqueness results under mild assumptions
upon the thermoelastic coefficients and upon the delay
times. Consequently, the uniqueness results are estab-
lished under the same constitutive hypotheses like in
the classical linear thermoelasticity, without any
restrictions upon the delay times. However, there is
an open problem for the class of materials character-
ized by zero delay time of phase lag of the conductive
temperature gradient and for which the delay time in
the phase lag of heat flux vector is strictly positive. In
such a case it should be expected to have an ill-posed
model.

Furthermore, we establish appropriate conservation
laws and then we use the Gronwall’s inequality in
order to establish some estimates describing the
continuous dependence of solutions with respect to
the prescribed initial data and with respect to the given
supply terms. Such results are established under the
assumption that 0 < t, <277, which is in accord with
the thermodynamic restriction established by Fabrizio
and Lazzari [15].

2 Mathematical model

We assume that a regular region B is filled by an
inhomogeneous and anisotropic thermoelastic mate-
rial with dual phase lag. The basic equations of the
model in concern are:

e the equations of motion
lij + ofi = i, (4)
e the equation of energy
oTon = —qi; +or, (5)
in B x (0, 00),
e the constitutive equations

tij = Cyuen — BT, (6)

on = Bye; + aT, (7)

1 .
qi + TgG; + 5 Todi; = —kiTj — trky T, (8)

2
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in B x [0,00), and ui(x,1) = wi(x,t) on X x [0,00),
e the geometrical equations ti(x, )nj = Y,(x,1) on Xy x [0,00)
i 9 - ) 9 15)
1 _ (
e =7 (ij + ;) (9) T(x,t) = d(x,t) on 23 x[0,00),
qi(x,)n; = &(x,1) on X4 x [0,00)

in B x [0,00). Here we have used the following
notations: f; are the components of the stress
tensor, # is the entropy per unit mass, g; are the
components of the heat flux vector, e; are the
components of the strain tensor, ¢ is the mass
density of the medium, u, are the components of
the displacement vector, T is the change in
temperature from the constant ambient tempera-
ture Tp > 0, f; are the components of the body
force per unit mass, r is the heat supply per unit
mass, a superposed dot denotes time differentia-
tion and a coma denotes the partial differentiation
with respect to the corresponding Cartesian coor-
dinate. The constitutive coefficients Cy, [fij, a and
k;; are continuous differentiable functions on the
spatial variable x and have the following
symmetries

Cimi = Cuij = Cjirr, By = Bji- (10)

Furthermore, we will assume the symmetry of the
conductivity tensor, that is

kij = ki, (11)

and, moreover, we assume that it is a positive
definite tensor. Then we can define Kj; so that

kinvjk = Kijkjk = 5ik~ (12)

Then, the constitutive Eq. (8) can be written as
. A
Ti+wuT;=—Kj (%‘ T4 +5 T;%) - (13)

Throughout this paper we consider the initial
boundary value problem P defined by the field
Egs. (4) to (9), the initial conditions

q,-(x,O):q?(XL qi(X70)=C}?(X)7 on B
(14

~—

and the boundary conditions

Here u9(x), i?(x), T°(x), ¢°(x), ¢°(x) and ;(x,1),
Vi(x,1), ¥(x,1), &(x,t) are prescribed smooth func-
tions. Moreover, 2, (r = 1,2, 3,4) are subsets of the
boundary 0B such that X, U X, = X3 U X, = 0B and
2N, =23Nn24 =0.
By a solution of the initial boundary value problem
P correspondmg to the given data D = {f;,r;u; 0
i,TO, q; ,qi ; 0, W, 9, £} we mean the ordered array
S ={u;, T, ey, t;j,n,q;} defined on B x [0,00) with
the properties that u;(x,) € C'2(B x (0,00)), T(x, )
€ CY (Bx (0,00)), ej(x,t)=eji(x,1) € C*0Bx
(0,00)). 15(x%,1) = 13(x,) € C19(B x (0,00)). n(x.1)
€ C% (B x (0,00)), gi(x,t) € C"*(B x (0,00)) and
which satisfy the field Eqgs. (4) to (9), the initial
conditions (14) and the boundary conditions (15). For
further convenience we denote by Py the initial
boundary value problem P corresponding to the zero
given data D= {fi,r;ud, i, T° ¢°,¢"; i, Y;, 9, &}
=0.
Itis worth to note thatif S = {u;, T, e;, 1,1, ¢;} isa
solution of the initial boundary value problem P
corresponding to the given data D =

7°4%, 4% wi, ;, 9, £}, then we have

//q, dzds—i—rq/q,( )dz+ qq,()
= —k,,/ / z)dzds — frk,,/o T;(z)dz

1 ,. 1
+ (rrkl:,-TS + 7407 +3 Tdy ) 3 T

0 0
i Fsup, Uy,

2
(16)

and
/’ T (z)dz + 7T (1)
0
= —Kl'j [A qj(z)dz + Tq‘]j(t) +; Tq C]/( ):| (17)

1
+‘ETT —l—K,](quj +2 qu)
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3 Some auxiliary operators

For further convenience, throughout this paper, we
will use the following notations: for any continuous
function f of time variable z, we denote by f'(z) the
integral over [0, 7] of that function, that is

/f Ydz, f"( //f )dzds, .
(18)

for any continuous function g(f) we will denote by
g*(¢) the following function

£ = &"(0) + 78 (1) + 3 (1), (19)

for any continuous function A(¢) we will denote by ﬁ(t)
the following function

h(t) = I (t) + trh(r). (20)
Further, we note that
§0) =5 26(0), “E(0) = 1,800) +5 2400),
(21)
and
7(0) = t74(0), ‘;—}; (0) = h(0) + trh(0).  (22)

Then, the relation (16) can be written in the
following way

g;(1) = — ks (T}(0) + =T} (1))
1 ,. 1
+ (TTkUT3 +74q) +5 rf]q?>t+ 3 Tl
(23)
while the relation (17) implies
/ 1 2 .
Ti(t) = = Ky 4)(0) + zai(6) + 5 34,00
(24)
e 0,1 2.0
Tl K Teqy T35 74 )
The following results can be readily verified.

Lemma 1 Suppose that g is twice continuously
differentiable. Then, we have

@ Springer

(%) =% 00,

(%) =50~ (s, + D00,

(f,Tf) (1) = ddf; (1) — [8(0) + (x4 +1)£(0)],

dg Zﬁg d’g )
W(l) = W(I) — £(0).

(27)

Moreover, when g(0) = 0 and g(0) = 0 then, we have

(%)%, o9)
* * 2 5\* 2 %

(%) =5 O <%> 0=Gr0, @)

dg,. dg . dg, . d%

E(t) = (1), W(I) =— (). (30)

Lemma 2 [f g is a continuous function satisfying
g () =0, forall >0, (31)
then we have

g(t)=0, forall t>0. (32)

Proof By setting

g"(1) = h(1), (33)
then the relation (31) can be written as

3 () + () + (1) =0, (34)
and moreover, we have

h(0) =0, h(0)=0. (35)

Now it is easy to see that the Cauchy problem defined
by the differential Eq. (34) and the initial conditions
(35) has only the zero solution, that is

o)

2)dzds =0, forall >0, (36)
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and hence we get the conclusion expressed by relation
(32) and the proof is complete.

In a similar way we can prove the following result:
Lemma 3 Suppose that g is a continuous function
satisfying
g(t)y=0, forall t>0. (37)

Then, we have

g(t)=0, forall t>0. (38)

On the basis of the above results we can prove the
following two theorems.

Lemmad4 Let S = {u;,T,e;, t;,1,q:} be a solution
of the initial boundary value problem P correspond-
ing to the given data D = {f;,r; ul 7”1 10, q?, q?,
i, Y, 0, Then S8* = {uf, T, ey, th, 0", q7 } satis-
fies the initial boundary value problem P* defined by
the basic equations

ou;

5,0+ Filt) = ¢ 55 (1), (39)

0

0 B (0) =~ di0) + RO, (40)
in B x (0,00),
(1) = Ciuey (1) = BT (1), (41)
on’ (1) = Bye;(1) + aT™ (1), (42)
4; (1) = ks (T)(1) + = T)(0)) + Q2(0), (43)
and
(1) = 5 (1,0 +3,00), (44)
in B x [0, 00), the initial conditions
i (%,0) = 5 2l(x),
agf (x,0) = t,u(x) —&—% ff]uﬁ)(x),
T*(x,0) = rf]TO(x), q;(x,0) = = 72q; (x),

353
and the boundary conditions
u:‘k(xv t) = 607 (X7 t) on fl X [Oa 00)7
g(x, )n =y (x,1) on Xp x[0,00),
G Om =Y o Bx 00
T (x,1) = 9" (x,1) on 23 x[0,00),
q; (x,0)n; = & (x,1) on X4 x[0,00),
where
Fi(x,1) = of (x,1) + o[ (1 + 74)t} (x) + 1] ()]

R, 1) = - o (x,0) + (1 7,) [Bay () + a7,
0h0x) = (kg0 + ) + 3 200 )
+ % réq?(x). (47)

Lemma 5 Let S = {u;,T,e;,t;,1,q:} be a solution
of the initial boundary value problem P correspond-
ing to the given data D = {f,r;u} ,ul , TO,q?,q?;
i, Wy, 9, &L Then S= {u;, T,é €, 1,1, q;} satisfies
the initial boundary value problem P defined by the
basic equations

1) + Gilt) = 0 550, (4$)
0 ST =~ o) + PO, (49)
in B x (0, 00),

i(t) = Cyueu(r) — BT (1), (50)
0i(1) = Byéy() +aT (o), (51)

TJ([) = —K,‘j (qj/(f) + TQQj(t) +% T?[éj(t)) + @?,
(52)

and
24(1) = 5 (i,(0) + (1), (53)

in B x [0, 00), the initial conditions

N Ou;
ui(xa O) = TT”? (X)’ a_l‘ (

~(X O) = ‘L'TTO(X)7

0g . -
Z(x,0) = g)(x) + 7rgl(x), on B,

(54)

X, 0) = M?(X) + TT”.L?(X)v

Qi(xa O) = TTq?(X)a

@ Springer
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and the boundary conditions

(%, 1) = @i(x.1) on Iy % [0,00),
%0y = Dx.0) on %3 x[0,00) 55
T(x,0) = d(x,1) on Ty x [0,00),
Gi(x,0n; = E(x,1) on Ty x [0,00),
where
Gi(x,1) = f(x,1) + 0il(x),
P, 1) = - 07 1) + fady () + aT”(x),
60(x) = r12x) + Ky (el ) + 5 20 )
(56)

4 Analysis of the initial boundary value problem P
4.1 First method

We address first the uniqueness problem of solutions
of the initial boundary value problem P. Thus, we
have

Theorem 1 Suppose that meas X3 # 0 and
kij&i&; > koli&;,

1 1
{0< 3 rqg‘cr}u{0<rr<§ T4}

0 >0, ko >0, forall &,

(57)

Then the initial boundary value problem ‘P has at most
one solution.

Proof In order to prove the uniqueness result it is
sufficient to prove that the zero external given data,
that is D = {f;, r;u) ,ul , To,q?,c}?;wi,lpi,ﬂ, &=0,
implies that the corresponding solution S =
{u;, T, e, t;j, n,q;} is vanishing on B x [0, cc). That
means we have to prove that the initial boundary value
problem Py has only the banal solution.

Thus, we consider here that S = {u;, T e;;, 1;j, 11, q; }
is a solution of the initial boundary value problem P,.
In view of the Lemma 4, it follows that S* =
{u:, T*, e
boundary value problem P* with zero given data,
denoted in what follows by Py

€y ;‘j,n*,q;‘} is a solution of the initial

@ Springer

We proceed first to establish an identity of
Lagrange type for the solutions of the initial boundary
value problem P associated with Py. To this end we
start with the following identity for allz > 0, s € (0, ¢)

aa[ 4 9) (1) 4 0 14 ) (1 s)}

uj . N
0| G+ shi (=) =0+ Gt (=),

(58)

which integrated with respect to (x,s) over B x (0,7)
and by using the zero initial conditions (45), gives

62*
Z/Qu dv—A/ [as2 (t—s)u; (t+s)

*

u(r—s) aa Y (t+ s)] dvds.

(59)

We now use the relations (39) and (44), the divergence
theorem and the zero boundary conditions (46), in
order to transform (59) into

2 [z = [ [ [ese=orste+9)

— e+ )il — )} dvds.
(60)

In view of the constitutive Eq. (41), we obtain

2 /B ou? (£)ii! (1)dv = /0 t /B [T*(t

—T*(t+s) ije;;(t

s)Byey(t +s)

—s)|dvds,
(61)

so that, by means of the relation (42), we get

2 [ it dv_//T*t—s “(t+5)

— T*(t+ s)on"(t — s)]dvds.
(62)
At this time we integrate the Eq. (40) with respect to

time variable and use the zero initial conditions (45) to
obtain

1 t

7 | o (63)

on(t) =
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so that, with the aid of the divergence theorem and the
zero boundary conditions (46), from (62) we deduce

2 [aiwiwa= [ [ Llro-9 [T

t—s
~T;(t+s) / q; (z)dz} dvds.
0
(64)
We use the Egs. (43) into (64), to obtain

2 [0 =32 [ [ [ig7s0+9
- /O T Qe kT s)
/ e )dz] dvds (65)
—/ /[kl,T* H—s)/ T(z

—kyi T (1 — ) / T"(z)dz] dvds.
’ 0

Further, we use the notations (18) and (19) in order
to write

t—s
ki T's(t +5) /O T)(z)dz — kyT(t — s)
t+s
/ T'(2)dz = kyT'/ (1 —s) {T”(H—s) + 1Tt +5)
0
1
F 39| 9 [T
1,
+1, T (1 —5) + 3 7, Ti(t—s)
a 7 7
= = [rki Ty (=) 1+ 9)]
a 1 2 /!
5 |5 Tk Ti(t+ )T (1= s)
YR 5). (60
and

t—s
GT+s) [ 1)@~ kTl )
0

t+s
: /0 T ()de = Ky} ¢ = 5) [Th(2 + )

1
+ 1Tt +5) 5 G Tilt +5)]

4 — kijT;-N(l‘ +)

1
) {T'I’(t —s)+ r,,Tji(t —s)+ 5 réT}i(t — 9)}

_ a /1 1" a 7

— = [Ty = 9T )] + g [T+ 9)

T (1= ) + kT = )T (1 + 5)|

.

2 %40y

1,0

T 27 " " _

T (14+5)| +5 T [ TH 0+ 9T (1 5]
(67)

i [k,jrj,.(t + )T (1 —5) + kg T (1 — 5)

Finally, by replacing the relations (66) and (67) into
identity (65), we obtain the following Lagrange identity

TT‘L'z
;{/@uo (v 22 |

2
T T
+g4mW0”md+T/@Wo“ow}
1
r /E kT ()T (1)dv

+ ;— (217 — 14) / ky T/ (1) T’} (t)dv = 0.
B

ky T/ ()T (1)dv

(68)

Further, we integrate (68) twice with respect to time
variable and use the zero initial conditions in order to

obtain
/ /Qu dvds+—/ /k,]T”’

T (v + / KT (0T (1)dv

/ / / kT ()" (2)dvdzds

0

TT

2T(:I/ /k,jT” T'( dvderzfo(ZrTfrq)

/ / /kijT'lf(z)T;((z)dvdzds:O.
o Jo Jp =’ ’

Let us suppose first that

(69)

1
0< ET,]S‘L'T. (70)
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Then it follows that all integral terms in (69) are
positive and hence (69) implies that

u; (x,1) =0 in Bx[0,00), (71)
and
T7(x,1) =0 in B x[0,00). (72)

The last relation implies
Ti(x,t)=0 in B x|[0,00), (73)
and since meas 23 # 0, we can deduce that
T(x,t)=0 in B x[0,00). (74)
While the relation (71) and the Lemma 2 give

ui(x, l) =0

If we substitute (73) into relation (43) then we get

in Bx|0,00). (75)

G(x1)=0 in Bx[0,00), (76)
and therefore, by means of the Lemma 2, we have
qi(X, t) =0

Consequently, we have S = {u;, T, e, t;,11,9:} =
0 and so we have the uniqueness result.
Let us now consider the case when

in B x[0,00). (77)

1
O<tr< 5T (78)

Then the identity (69) implies that

‘L'T‘E
TN T//
27, / / i )dvds
<0 (7,-2 k;T" (2)T" (z)dvdzds,
— 2T0 (T‘I TT)/O /0 /B gt (Z) ,](Z) vazas

(79)

and hence we have

o)< (2 - 5) | e

with
t
:/ /k,-ij[(s)T&'(s)dvds. (81)
o JB

By the Gronwall’s lemma, from the inequality (80) we
deduce that

€ (0,00), (80)

@ Springer

&) =0, te(0,00), (82)
and hence
Ti(x,t)=0 in Bx][0,00), (83)

and since meas X3 # 0, we can obtain that
T(x,t)=0 in Bx[0,00). (84)
Further, the identity (69) implies that

w/(x,6) =0 in B x[0,00), (85)

and by using an argument like in the above case we
obtain the uniqueness result again. Thus, the proof is
complete.

Let us now address the question of continuous
dependence of solutions of the initial boundary value
problem P with respect to the given data. To this aim
we consider the solution S = {u;, T, e, 1,1, ¢;} sat-
isfying the initial boundary value problem P corre-
sponding to the data D= {f;,r;u, i, T°,
q?7 C}?; 0,0,0,0} and we introduce the following
functional

=3, Lo

+ a(T*(s))2] dVdS+TT+ Q/ /kijT/./(S)T/./(S)dVdS
2T0 J *

///kUT" )T (z)dvdzds
0

kT, ()T (1)dv

(s) + Ciuey;(s)ey(s)

+T,Ib

4T0 / /k,jT’ )T’ (s)dvds
+ r -4 ///kUT’ T’ )dvdzds,

(86)

for all > 0. It is a straightforward task to verify the
following result.

Lemma6 Assume that the conductivity tensor ki is a
positive definite tensor, the elasticity tensor is a
positive semi-definite tensor and moreover, the fol-
lowing constitutive hypotheses hold

0>0, a>0, 0<rt,<21r. (87)



Meccanica (2017) 52:349-361

357

Then E(t) can be considered as a measure of S =
{u;,T,ej,t;,1,q;} in the sense that E(t) >0 for all
t>0 and E(t) =0 for all t>0 implies that S =
{ui, T7 eij,l‘,‘j, I’],q,‘} =0.

The continuous dependence of solutions of the
initial boundary value problem P, with respect to the
initial data and the given body supplies, is described
by the following result.

Theorem 2  Suppose that the constitutive hypotheses
of Lemma 6 hold true and moreover, meas 24 = 0. Let
S =A{u;, T, ey, t;,n,q9:} be a solution of the initial
boundary value problem P corresponding to the given
data D = {f;, r;u?, 1%, 7° ¢°,4%;0,0,0,0}. Then, for
any finite time S > 0 and for every t € [0, S], we have
the following estimate describing the continuous
dependence of solution with respect to the initial

given data and with respect to the given supply terms

=13 /e aa”t (0) S (0) + e 0)e (0

+ a(T*(0) % /

(88)
where
=(f [ovor- rfos)
(89)
and
R*(x,1) :Tio [R(x, 1) — Q0 (x, ;)}. (90)

Proof In view of Lemma 4 it follows that S* =
{u}‘,T*,eZJ}},nﬂqj} is a solution of the initial
boundary value P* with o =0, Y] =0, ¥* = 0 and
& =0. Then the relations (39)—(47) lead to the

following identity

j;/l { @a”t (t)aau (1) + Cye};(1)ely (1)
+a(T*(t))2}dv:/B[F,»(r)%(;)JFTLOR(t)T*U)}dV

Ao et

Ty

o1

By using the divergence theorem and the zero
boundary condition on 0B we get

Ti(1) B T*(1)
A Ty Q?(l)dv__/B To Li(1)dv. (92)

Moreover, we replace T7; (¢) by means of (19) in order

to obtain

_"L/@ﬁmPWﬂ+wﬁ@Pv

Ty /s

d TTT‘ZI
dt{%/g O 0
T+ 174

o [ wTorioa
d [

i o)

- g (emr =) [ KT 0T 0
1

- /B kT ()T (1.

Thus, by replacing the relations (92) and (93) into
(91) and by integrating twice with respect to time
variable, we are led to the following conservation law

£ =5 [ o5 G0+ Cuey016i0)

2 dv+/OI/OS/B[F,»(z)aM

T*(z)]dvdzds,

+ R7(2)
(94)

for all # € [0,S]. By means of the Cauchy-Schwarz
inequality, from (94) we obtain

£ <= /{ ag[ (0) éaut (0) + Cime;;(0)ey (0)

+ar @ ]av+ [ b0) [ [(Fete

+a(T* (z))z)dvdz} %ds,

(95)

so that we have the following Gronwall inequality
Our , . Ou!
e0<3 [ |5 %50+ ey 01 0)

$)V/2E(s)ds, t€]0,S].

(96)

+a(T*(O))2] dv+/
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By integrating the differential inequality (96) we
obtain the estimate (88) and the proof is complete. []

4.2 Second method

In this section we use the Lemma 5 in order to prove
the uniqueness and the continuous dependence of
solutions of the initial boundary value problem P. We
first give a proof of the Theorem 1 based on the
Lemma 5. In this aim we consider S = {u;, T, ey,
tj,M,q;} be a solution of the initial boundary value
problem Py. In view of the Lemma 5, it follows that
S ={u,T, €;, 15,1, q;} is a solution of the initial
boundary value problem P with zero given data,
denoted in what follows by Po. Starting with a
Lagrange identity of type (58) for the problem Py, we
obtain the following identity

[sosion | [4 -

./Ot+x Gi(2)dz — ”(HS)/Q iz )dz]dvds,

which, when we replace Ty,' from relation (52) and we
substitute g; by means of (20), gives

/ZQu,( // Kiiq} (t — s)q;(t + )

—Kiiq] (t 4 5)q;(t — s)} dvds

To// Kiq; (1 — 5)q;(t +5)

*Kijq, (t 4 5)g;(t — s)]dvds

2To / / Kiai (1

Kijq! (1 + $)q;(t — 5)] dvds

‘E‘CT
s [ [

K,qu (t+5)g;(t — 5)]dvds

‘L' ‘L'T
2T0 / / Kiai(s

—K;iqi(t + 5)g;(1 — s)]dvds.

©7)

—5)g;(t +s)

qj(t+s)

—5)q;(t +5)

Further, we observe that
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Kiyd; (1 = )qj(t + ) — Kijq; (1 + 5)g;(t = )

= Ko — 94+ )], )
Kijq; (t — 5)q;(t + s) — Ky (t + 5)g;(t — 5)
:% [KUCIY(I —8)q;(t +5) (100)
+ Ky 1+ $)q)(r =),
Kijq (t — $)q;(t + 5) — Kyq; (t + )4, (t — 5)
= 2 K~ g +9)
+ Kiq; (1 + 5)g;(t — 5) + Kyqi(t — s)gj(t +5) |,
(101)
Kijqi(t — 5)q;(t + 5) — Kijqi(t + 5)g(t — 5)
:% [K,-,»q;(t 9+ s)}’ (102)
Kyjqi(t — 5)q;(t + 5) — Kyqi(t + 5)g;(t — s)
= 2 Ky - 9o+ 9 (103)

+ Kijgi(t + )q;(t — 5)].

Finally, by substituting the relations (99)—(103) into
(98) and then by integrating twice with respect to time
variable the result, we get

/t/@fli(S)ﬁi(S)dVdS
e
/ / Kyg! (s)q! (s)dvds

+ﬁ Kiq] (1)q] (t)av

2T0 / / ,Jql q] dvds—i——(Z‘cT — rq)

/ / /Kiqu(z)qj/»(z)dvdzds:O.
o Jo JB

Under the assumption (70) all terms of the identity
(104) are positive so that we conclude that

G(x,1)=0 in Bx[0,00), (105)

z)dvdzds

(104)
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and
q/(x,t) =0 in Bx[0,00). (106)

By means of Lemma 3, from (105) we readily obtain
the conclusion (75), while (106) implies that

gi(x,t) =0 in B x][0,00), (107)

and hence, by means of the constitutive Eq. (52), we
obtain

Ti(x,t) =0 in B x [0,00). (108)

This last relation when coupled with the Lemma 3
implies the relation (74) and then we can obtain the
uniqueness result described in Theorem 1.

When the relation (78) holds true, the identity (104)
implies the inequality (80) where now @ is defined
by

o) = [ [ K afavas (109)

and therefore, we can follow the same way as in the
proof of Theorem 1 to prove the uniqueness result.

Let us now address the continuous dependence
question. Let S = {u;, T, e, t;;,1, ¢;} be a solution of
the initial boundary value problem ‘P corresponding to
the data D= {f;,r;ul,u? 7T° ¢? 4°;0,0,0,0}.
follows that &=
{i;, T,é;,1;,1,G;} satisfies the initial boundary value
problem P with w; =0, 1/3,- =0, J =0 and fz 0.
Under these conditions we have the following con-
servation law

0= e

4i(2) + 1r4:(z )]@ }dvdzds
[ % (0) aa"tl (0) + Cyié;(0)é1(0)

TTTq
2 Kii(0)q <0>]dv

view of Lemma5 it

2+ PER)T()
- ?

t
3
a(T(0)) "+

(110)

for all ¢+ > 0, where

//[ aul aul (s) + Cijueij(s)ew(s)

+ a(f(s)) }dvderTT——i_q/ /quﬁ(s)q}(s)dvds

-q§(t)dv+— / / / Kqu(z)q;(z)dvdzds
T 5 /// i19i(2)q;(z)dvdzds.

Theorem 3  Suppose that the constitutive hypotheses
of Lemma 6 hold true. Let S = {u;, T, e, t;j, 11, q; } be a
solution of the initial boundary value problem P

(111)

corresponding to the given data D = {f;,r;u?, u?,
7°,4%,4%:0,0,0,0}. Then F(t) can be constdered asa
measure for S and moreover, for any finite time
S > 0 and for every t € [0,S], we have the following

estimate

<3 [ |5 % 0+ cuesao)

1

TTT2 ?
+a(T(0)) + =2 o7 9 K;iq:(0)q;(0) dv]
1 t
+ﬁ/o B(s)ds
(112)
where
([ [T o166+ L ipis)y?
([ [ o6+ e
1 1 4y :
e <TT+Tq+ E )9090 dvds) ,
(113)

and Ky is related to the lower eigenvalue of the tensor
K;;.

)

Proof By using the Cauchy-Schwarz inequality,
from the identity (110) we obtain the following
inequality
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F0)<3 [ |5 0% ©) + 0@
2

q
2TO l]ql( ) ( ) v

+ /0 ' B(s)\/2E ) ds,
(114)

which, when integrated, leads to the estimate (112)
and the proof is complete. O

5 Concluding remarks

Our analysis establishes the uniqueness and continu-
ous data dependence of solutions of the initial
boundary value problems within the context of the
time differential model of dual-phase-lag thermoelas-
tic theory. The key point of our proof consists to
introduce the two initial boundary value problems P*
and P inspired by the two operators involved into
basic constitutive Eq. (1). The uniqueness results are
established either when the conducting media is such
that 77 > 7, that is when the heat flux vector precedes
the temperature gradient in the time-history, implying
that the heat flux vector is the cause while the
temperature gradient is the effect of the heat flow as
well as for media with 7, > 77, when the temperature
gradient becomes the cause while the heat flux vector
becomes the effect. It can be seen that our uniqueness

theorems cannot cover the case when
77 =0, 71,>0. (115)

In fact, in this case the identity (69) becomes

/ / ou; ( s)dvds
/ /kle”/ /// dVdS
To

kU T//l( )T/// (t)dv

+7 J

2T, /s

T///kUT’” T"’ Ydvdzds

0

~ 57 / // kiT'(2) T” Ydvdzds = 0,
0

(116)
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and it is no clear how we can handle it to get the
uniqueness of solution. Namely, the last integral term
in the identity (116) is negative one and it cannot be
convenably related to the any other integral terms in
order to get the uniqueness. Such a case remains an
open problem and it is expected that it can lead to an
ill-posed model. In fact, the case was studied by
Fabrizio and Franchi [16] and it was concluded that
such a model is not compatible with the Second Law of
Thermodynamics. However, when 1 = 0, 7, > 0 and
rf] can be neglected (that is for the Cattaneo—Maxwell
model or the Lord-Shulman model), the identity (116)
yet furnishes the uniqueness result.

The uniqueness of solutions of the mixed initial
boundary value problem in the linear theory of
thermoelasticity with dual phase-lags was established
by Kothari and Mukhopadhyay [27] under more
restrictive assumptions upon the thermoelastic coeffi-
cients (the elasticity tensor Cj; is positive definite and
the specific heat is strictly positive) and upon the delay
times (0 <7, <2t17).

The continuous dependence of solutions with
respect to the initial given data and given supply
terms is described by the estimates of Theorems 2
and 3. They are established under the assumption
0 <1, <2t7 which agrees with the thermodynamic
restrictions found by Fabrizio and Lazzari in [15]. We
have to remark that the continuous dependence results
can by obtained by means of the Lagrange identity
method, as described in Sect. 4, under relaxed
conditions upon the delay times, provided some
suitable classes of solutions are considered. Finally,
we have to mention that the conditions under which
the continuous dependence results are established into
Theorems 2 and 3 can be relaxed by replacing, for
example, the condition that @ > 0 by meas X3 # 0.

Concluding, we can see that the thermodynamic
restrictions found by Fabrizio and Lazzari [15] allow
to prove the well position of the related initial
boundary value problems.
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