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Abstract We formulate and solve the locomotion

problem for a bio-inspired crawler consisting of two

active elastic segments (i.e., capable of changing their

rest lengths), resting on three supports providing

directional frictional interactions. The problem con-

sists in finding the motion produced by a given, slow

actuation history. By focusing on the tensions in the

elastic segments, we show that the evolution laws for

the system are entirely analogous to the flow rules of

elasto-plasticity. In particular, sliding of the supports

and hence motion cannot occur when the tensions are

in the interior of certain convex regions (stasis

domains), while support sliding (and hence motion)

can only take place when the tensions are on the

boundary of such regions (slip surfaces). We solve the

locomotion problem explicitly in a few interesting

examples. In particular, we show that, for a suit-

able range of the friction parameters, specific choices

of the actuation strategy can lead to net displacements

also in the direction of higher friction.

Keywords Soft bio-mimetic robots � Crawling
motility � Directional surfaces � Rate-independent
systems

1 Introduction

Research on biological and bio-inspired locomotion,

aimed at understanding and replicating motor abilities

of animals capable of propelling effectively in envi-

ronments where standard locomotion strategies fail

(e.g., those based on wheels), is receiving increasing

attention, starting from the seminal work by Hirose [8].

A promising area where interesting applications are

envisaged is medical endoscopy, through the devel-

opment of miniaturised biomedical robotic tools [9,

11]. Here, the need for non-standard bio-inspired

solutions comes from size constraints (which make

devices based on engine-powered shafts and cog-

wheels unfeasible) and from the challenge of extract-

ing propulsive forces from the frictional interactions

with soft biological tissues in a non-invasive way.

Drawing inspiration from the locomotion strategies of

worms (e.g., Lumbricus terrestris), and from the

anchoring abilities of parasites and larvae, artificial

bio-mimetic crawlers have been conceived, manufac-

tured, and analysed. The system considered in [12], a

prototypical example, consists of several elastic

segments that can actively change their rest lengths

(thanks to shape-memory-alloy wires, actuated with
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electric currents via Joule heating), and supported by

hook-shaped elements that give a directional character

to the frictional interactions with the environment (as

in ‘‘hairy’’ surfaces, characterised by low friction

when sliding occurs ‘‘with the nap’’, and by high

friction when sliding occurs in the opposite direction,

‘‘against the nap’’). Similar systems have been inves-

tigated in the context of the more general robotics

literature [2, 3, 21, 22], or in models for the propulsion

of crawling cells [19]. In spite of the many interesting

results contained in these studies, several open issues

remain, even at the level of theoretical analysis. In

particular, a detailed understanding of the general

relation between actuation history, elastic tensions

developed in the segments, and observable motions is

still missing. In [12], for example, the simplifying

assumption is made that motion in the high friction

direction is forbidden, i.e., no back-sliding occurs. As

a consequence, motion can only take place in one

direction, the one of low resistance.

Inspired by these developments, and building upon

previous work by our group [4–7, 17, 18], we consider

in this paper a model crawler lying on a horizontal

surface, consisting of two linearly elastic segments that

can actively change their rest length, and subject to

horizontal frictional forces at their ends mimicking a

directional frictional contact. We formulate the loco-

motion problem for this system in the regime of slow

(quasi-static) actuation, in which inertial forces can be

neglected, an actuation history is prescribed by assign-

ing the time evolution of the rest length of the segments,

and we solve for the resulting motion. In this way, we

extend the results obtained in [7], where the behaviour

of a one-segment crawler was analysed. The increased

complexity of the two segment crawler requires a

methodological change. Indeed, we solve the problem

by showing that the behaviour of the system is governed

by the tensions arising in the elastic segments, and that

the resulting laws of motion are entirely analogous to

the flow rules typical of elasto-plasticity. In particular,

there are convex domains in the plane of the internal

tensions (stasis domains, the analog of elastic domains)

corresponding to which no sliding of the supports can

take place. Onlywhen the tensions reach the boundaries

of these domains (slip surfaces, the analog of yield

surfaces), sliding of the supports, and hence motion of

the segments can occur.

We solve the locomotion problem in a few inter-

esting examples. In particular, we show that, for a

suitable range of the friction parameters, specific

choices of the actuation strategy can lead to net

displacements also in the direction of higher friction.

This last remark shows that, provided that the system

is complex enough (i.e., it is made of at least two

independent segments), it is not only motile (i.e., it can

exhibit non-zero net displacements in at least one

direction), but it is in fact controllable (it can move in

both directions). It would be interesting to investigate

whether a similar controllable motility scenario can

also emerge in a different but related context, namely,

forced brownian particles in a non-symmetric poten-

tial (forced thermal ratchets, see [10, 20]) which have

been used as a model for the motion of motor proteins

along microtubules and actin filaments.

The rest of the paper is organised as follows. In

Sect. 2 we present our model of crawler and formulate

the motility problem, introducing a necessary dimen-

sional reduction that we discuss in detail in Sect. 3. In

Sect. 4 we study the associated stasis domains and

deduce the laws of motion, which are discussed in

Sect. 5. Here, to better illustrate the situation, we

construct and analyse two periodic motility strategies,

generating displacement in opposite directions.

2 The crawler: formulation of the problem

We are interested in the motion of one-dimensional

crawlers such as that represented in Fig. 1. The crawler

is composed of two adjacent rods, identified in the

reference configuration by the segments ½X1;X2� and
½X2;X3�. We assume X1 ¼ 0, X2 ¼ L1 and X2 ¼
L1 þ L2, so that L1 and L2 are the reference lengths

of the two rods. A point X of the crawler is mapped to

the point x ¼ vðX; tÞ in the deformed configuration

and thus its displacement is uðX; tÞ ¼ vðX; tÞ � X. It is

u1(t) L1 + u2(t) L1 + L2 + u3(t)

L1 + z1(t) L2 + z2(t)

L1(1 + ε1(t)) L2(1 + ε2(t))

k1 k2

Fig. 1 The model of our crawler. The dotted lines represent the

rest lengths of the two springs
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useful to set u1ðtÞ ¼ uðX1; tÞ, u2ðtÞ ¼ uðX2; tÞ and

u3ðtÞ ¼ uðX3; tÞ.
We denote the derivatives with respect to space and

time with a prime and a dot, respectively,

u0ðX; tÞ ¼ o

oX
uðX; tÞ _uðX; tÞ ¼ o

ot
uðX; tÞ ð2:1Þ

The crawler interacts with the substrate only

through three rigid legs located at X1, X2 and X3.

These interactions are described by the (directional)

friction law

FiðtÞ ¼ FðXi; tÞ 2
fF�g if _uiðtÞ\0

½ � Fþ;F�� if _uiðtÞ ¼ 0

f�Fþg if _uiðtÞ[ 0

8
><

>:

ð2:2Þ

where i ¼ 1; 2; 3. We assume that

F� [Fþ [ 0 ð2:3Þ

This means that the absolute value of the friction force

is not constant and depends on the direction of motion;

moreover the coordinates are chosen so that negative

velocities generate greater friction.

The two rods are assumed to be elastic, with

stiffnesses k1, k2, and subject to an active distortion

e0ðX; tÞ. We assume that the distortion is uniform

along each rod so that

e0ðX; tÞ ¼
e1ðtÞ if X 2 ð0;L1Þ
e2ðtÞ if X 2 ðL1;L1 þ L2Þ

�

ð2:4Þ

The rest length of the two rods is thus ð1þ e1ðtÞÞL1
and ð1þ e2ðtÞÞL2, respectively.

2.1 Internal energy and dissipation

For our analysis it is useful to describe the state of the

crawler with two parameters z ¼ ðz1; z2Þt associated
with its shape, and a parameter y that identifies its

position. More precisely, we set

z1ðtÞ ¼ u2ðtÞ � u1ðtÞ z2ðtÞ ¼ u3ðtÞ � u2ðtÞ
yðtÞ ¼ u2ðtÞ ð2:5Þ

As we will show, the internal energy of the crawler

depends only on its shape and the dissipation, in

almost all circumstances, can be expressed as a

function of just the shape change _z through some

minimality considerations. This will allow us to model

the crawler as a rate independent dissipative system

with quadratic (positive definite) energy, a situation

well studied in elastoplasticity [13, 14].

The stored energy of the crawler is given by

E ¼ k1

2

Z L1

0

ðu0ðX; tÞ � e1ðtÞÞ2dX

þ k2

2

Z L1þL2

L1

ðu0ðX; tÞ � e2ðtÞÞ2dX

¼ k1L1

2

u2ðtÞ � u1ðtÞ
L1

� e1ðtÞ
� �2

þ k2L2

2

u3ðtÞ � u2ðtÞ
L2

� e2ðtÞ
� �2

¼ 1

2
AzðtÞ; zðtÞh i � ‘ðtÞ; zðtÞh i þ cðtÞ

ð2:6Þ

where we have used the fact that minimal energy leads

to X 7!u0ðx; tÞ constant along each of the two rods, and
we have set

A ¼

k1

L1
0

0
k2

L2

0

B
B
@

1

C
C
A ‘ðtÞ ¼

k1e1ðtÞ
k2e2ðtÞ

� �

cðtÞ ¼ k1L1e1ðtÞ2

2
þ k2L2e2ðtÞ2

2

We thus see that, for a prescribed active distortion eðtÞ,
the internal energy of the crawler depends only on time

and on the shape z(t), allowing us to write from now on

E ¼ Eðt; zðtÞÞ.
The dissipation produced by the displacement

ui 7!ui þ vi of a single contact point is

dðviÞ ¼ vþi Fþ � v�i F� ð2:7Þ

where

vþi ¼ vi if vi � 0

0 if vi\0

�

and v�i ¼ vi if vi � 0

0 if vi [ 0

�

ð2:8Þ

and therefore the dissipation produced by a shape

change z 7!zþ w and a position change y 7!yþ v is

Dðw; vÞ ¼ dðv� w1Þ þ dðvÞ þ dðvþ w2Þ ð2:9Þ

We observe that D is convex and positively homoge-

neous of degree 1.

For any fixed shape change w ¼ �w, the function

v 7!Dð �w; vÞ is convex and coercive, as it is the sum of
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convex and coercive functions of v. We now show

that, under the additional hypothesis

F� 6¼ 2Fþ ð2:10Þ

it has an unique minimum value, attained at

v ¼ vminð �wÞ.
First of all we observe that Dð �w; �Þ is differentiable

everywhere except on the finite set f �w1; 0;� �w2g. The
asymmetry of the friction (2.3) and the additional

assumption (2.10) ensure that

oDð �w; vÞ
ov

6¼ 0 for everyw 2 R2 and every

v 2 R n f �w1; 0;� �w2g ð2:11Þ

Hence Dð �w; �Þ has an unique minimum attained at

v ¼ vminð �wÞ 2 f �w1; 0;� �w2g. With simple considera-

tions on the sign of the derivative we can determine the

exact value of vmin. Precisely

vminð �wÞ ¼
maxf �w1; 0;� �w2g if F� [ 2Fþ

middleð �w1; 0;� �w2Þ if 2Fþ [ F� [ Fþ

�

ð2:12Þ

where we have introduced a ‘‘ middle’’ function that

returns

• if its three arguments have all different values, the

one with the middle value;

• if at least two arguments have the same value, that

value.

More pragmatically, we order the triplet ð �w1; 0;� �w2Þ
and pick the middle element.

We observe that the function vmin is positively

homogeneous of degree 1; its behaviour according

to the values of the friction force is illustrated in

Fig. 2.

2.2 The variational inequality

We assume that the actuation history is slow enough

(quasi-static) that inertial forces can be neglected. The

evolution of the system is thus governed by the

balance of forces, namely, by the fact that the sum of

frictional resistance forces Fi and elastic restoring

forces is zero. This is expressed in abstract form by

(SF) below and, more concretely, by the following

three equations

F1þ
k1

L1
ðz1�L1e1Þ ¼ 0

F2�
k1

L1
ðz1�L1e1Þþ

k2

L2
ðz2�L2e2Þ ¼ 0

F3�
k2

L2
ðz2�L2e2Þ ¼ 0

8
>>>>>><

>>>>>>:

ð2:13Þ

An alternative way to write system (2.13) is to cast it in

the form of a variational inequality (see [13, 15]).

Doing this will enable us to exploit some known

results on the evolution of rate independent systems.

Therefore, we will write the laws governing the

(a) (b)

Fig. 2 Contour plot

(dashed) of the function

vminðwÞ for different choices
of the friction parameters
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evolution of our system as a variational inequality

first, and show later that this formulation leads to (SF)

and (2.13).

For a given external load ‘ðtÞ, the evolution

z(t), y(t) of our system is obtained as a solution of

the variational inequality

AzðtÞ � ‘ðtÞ;w� _zðtÞh i þDðw; vÞ �Dð _zðtÞ; _yðtÞÞ�0

ðVIÞ

for every ðw; vÞ 2 R2 �R. In particular this must hold

for w ¼ _zðtÞ, for which we get

Dð _zðtÞ; vÞ � Dð _zðtÞ; _yðtÞÞ� 0 for every v 2 R

ð2:14Þ

This is equivalent to set

_yðtÞ ¼ vminð _zðtÞÞ ð2:15Þ

We can use this fact to reduce the dimension of the

problem associated to the variational inequality (VI),

leading to

AzðtÞ � ‘ðtÞ;w� _zðtÞh i þ DshðwÞ � Dshð _zðtÞÞ� 0

for everyw 2 R2

ðRVIÞ

where Dsh is the ‘‘shape-restricted’’ dissipation,

i.e. the dissipation after minimization with respect to

translations of the crawler,

DshðwÞ ¼ Dðw; vminðwÞÞ ð2:16Þ

This allows us to study the system for the shape

changes alone and then recover the displacement

y(t) of the crawler through the relationship (2.15).

Before discussing existence and uniqueness of the

solutions for our problem, let us notice that Dsh is

convex (and therefore continuous) and positively

homogeneous of degree 1. To show this, we recall

that w 7!vminðwÞ is positively homogeneous of degree

1. Hence, for k[ 0

DshðkwÞ ¼ Dðkw; vminðkwÞÞ ¼ Dðkw; kvminðwÞÞ
¼ kDðw; vminðwÞÞ ¼ kDshðwÞ

Regarding the convexity of Dsh, we observe that for

every 0� k� 1, writing wk ¼ kwþ ð1� k �wÞ, we

have

kDshðwÞþ ð1�kÞDshð �wÞ
�kDðw;vminðwÞÞþ ð1�kÞDð �w;vminð �wÞÞ
�Dðwk;kvminðwÞþ ð1� kÞvminð �wÞÞ
�Dðwk;vminðwkÞÞ ¼DshðwkÞ

ð2:17Þ

Let us recall that the subdifferential of Dsh in �w is

defined as

oDshð �wÞ ¼ fn 2 R2 : DshðwÞ�Dshð �wÞ
þ n;w� �wh i for everyw 2 R2g

We remark that, strictly speaking, the subdifferential

consists of elements of the dual space ðR2Þ�, but since
we are working with finite dimensional spaces we

implicitly adopt the usual identification of the ele-

ments of the dual with vectors of the space. Setting

C� ¼ oDshð0Þ, we observe that C� is convex and

satisfies

DshðwÞ ¼ max
n2C�

n;wh i ð2:18Þ

We have the following result (cf. [14, Theorem

2.1]).

Theorem 1 Given ‘ 2 C1ð½0; T �;R2Þ and

z0 2 A�1ð‘ð0Þ � C�Þ, there exists a unique function

z 2 CLipð½0; T �;R2Þ, with zð0Þ ¼ z0 and such that the

shape-restricted variational inequality (RVI) is satis-

fied for almost all t 2 ½0; T �.

We remark that the dimensional reduction that

allowed us to pass from D to Dsh is necessary to

attain uniqueness, since the energy Eðt; �Þ is not

uniformly convex on R3, but becomes so if restricted

to the shape coordinates z. When assumption

(2.10) does not hold, it is possible to find multiple

solutions for problem (VI), as shown by the following

example.

Let us set F� ¼ 2Fþ and assume that, at the initial

time t ¼ 0, the state of the crawler is such that both the

springs are in the state of maximum compression,

namely

k1

L1
ðz1 � L1e1Þ ¼ �F�

k2

L2
ðz2 � L2e2Þ ¼ �Fþ
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We consider an external load such that, for t 2 ½0; T �,
we have _e1ðtÞ[ 0 and _e2ðtÞ ¼ 0. Under this condi-

tions, the system has infinite solutions, identified by

the parameter l 2 ½0; 1� and defined by

_u1ðtÞ ¼ �lL1 _e1ðtÞ _u2ðtÞ ¼ _u3ðtÞ ¼ ð1� lÞL1 _e1ðtÞ

We also observe that, using the definition of

subdifferential, the variational inequality (RVI) can

be restated as

0 2 oDshð _zðtÞÞ þ DzEðt; zðtÞÞ ðSFÞ

that is called the subdifferential formulation of the

problem.

As remarked above, since inertial forces can be

neglected in the regime of quasi-static actuation, (SF)

is a force balance stating that the sum of dissipative

frictional forces oDshð _zðtÞÞ and elastic restoring forces
DzEðt; zðtÞÞ must vanish at all times.

3 The shape-dependent dissipation

Our next step is therefore to study the restricted

dissipation Dsh and express more explicitly its differ-

ential. We consider separately the two cases

F� [ 2Fþ and 2Fþ [F� [Fþ, since a different

behaviour is observed.

3.1 Case F� [ 2Fþ

We divide the plane into three regions A1, A2 and A3,

as shown in Fig. 3.

(A1) This is the region defined by w1 � 0�w2, that

implies vminðwÞ ¼ 0 and

DshðwÞ ¼ ð�w1 þ w2ÞFþ ¼ a1;wh i

where a1 ¼
�Fþ

Fþ

� �

(A2) Here we have w1 � 0 and �w2 �w1,

so vminðwÞ ¼ w1 and

DshðwÞ ¼ ð2w1 þ w2ÞFþ ¼ a2;wh i

where a2 ¼
2Fþ

Fþ

� �

(A3) Here we have w2 � 0 and �w2 �w1,

so vminðwÞ ¼ �w2 and

DshðwÞ ¼ ð�w1 � 2w2ÞFþ ¼ a3;wh i

where a3 ¼
�Fþ

�2Fþ

� �

The subdifferential ofDsh in the origin is the convex

hull generated by a1; a2; a3 (cf. Fig. 5), namely

A1

A2

A3

C∗
A

w1

w2

Fig. 3 Case F� [ 2Fþ. The three regions A1, A2 and A3, the

contour lines ofDsh (dashed) and its subdifferential at the origin

C�
A (red). (Color figure online)

B3

B2

B1

B6

B5

B4

w1

w2

C∗
B

Fig. 4 Case 2Fþ [F� [Fþ. The six regions B1,...B6, the

contour lines ofDsh (dashed) and its subdifferential at the origin

C�
B (red). (Color figure online)
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C�
A ¼ oDshð0Þ ¼ convfa1; a2; a3g ð3:1Þ

If w 2 intAi, then oDshðwÞ ¼ ai, whereas if

w 2 Ai \ Aj n f0g, then oDshðwÞ ¼ aiaj, where the

latter denotes the edge of C�
A having endpoints ai and

aj, namely aiaj ¼ convfai; ajg.

3.2 Case 2Fþ [F� [Fþ

In this case we have to divide the plane into six

different regions, as shown in Fig. 4.

(B1) Here w1 � � w2 � 0 and so vminðwÞ ¼ �w2.

In this region we have

DshðwÞ ¼ ð�w1 � w2ÞFþ þ ðw2ÞF� ¼ b1;wh i

where b1 ¼
�Fþ

�Fþ þ F�

� �

(B2) Here �w2 �w1 � 0 holds, so vminðwÞ ¼ w1.

In this region we have

DshðwÞ ¼ ðw1 þ w2ÞFþ þ ð�w1ÞF� ¼ b2;wh i

where b2 ¼
Fþ � F�

Fþ

� �

(B3) Here �w2 � 0�w1 holds, so vminðwÞ ¼ 0.

In this region we have

DshðwÞ ¼ ðw2ÞFþ þ ðw1ÞF� ¼ b3;wh i

where b3 ¼
F�

Fþ

� �

(B4) Here 0� � w2 �w1 holds, so vminðwÞ ¼ �w2.

In this region we have

DshðwÞ ¼ ð�w2ÞFþ þ ðw1 þ w2ÞF� ¼ b4;wh i

where b4 ¼
F�

�Fþ þ F�

� �

(B5) Here 0�w1 � � w2 holds, so vminðwÞ ¼ w1.

In this region we have

DshðwÞ ¼ ðw1ÞFþ þ ð�w1 � w2ÞF� ¼ b5;wh i

where b5 ¼
Fþ � F�

�F�

� �

(B6) Here w1 � 0� � w2 holds, so vminðwÞ ¼ 0.

In this region we have

DshðwÞ ¼ ð�w1ÞFþ þ ð�w2ÞF� ¼ b6;wh i

where b6 ¼
�Fþ

�F�

� �

The subdifferential of Dsh in the origin is

C�
B ¼ oDshð0Þ ¼ convfb1; b2; b3; b4; b5; b6g ð3:2Þ

If w 2 intBi, then oDshðwÞ ¼ bi, whereas if w 2
Bi \ Bj n f0g, then oDshðwÞ ¼ bibj, using the notation
we introduced in the previous case.

4 Stasis domains and the laws of motion

We observe that the gradient of E with respect to the z-

coordinates corresponds to the vector composed by the

tensions of the two springs, i.e.

DzEðt; zðtÞÞ ¼ AzðtÞ � ‘ðtÞ ¼

k1

L1
z1ðtÞ � e1ðtÞL1ð Þ

k2

L2
z2ðtÞ � e2ðtÞL2ð Þ

0

B
B
@

1

C
C
A

¼
T1ðtÞ
T2ðtÞ

� �

¼ TðtÞ ð4:1Þ

Thus, from (SF), we have

�TðtÞ 2 oDshð _zðtÞÞ ð4:2Þ

We can distinguish between three different situations.

• If _zðtÞ ¼ 0, then �TðtÞ 2 C�.
• If _zðtÞ 2 intAi for some i, then �TðtÞ ¼ ai. Sim-

ilarly, if _zðtÞ 2 intBi for some i, then �TðtÞ ¼ bi.
• If _zðtÞ 2 Ai \ Aj n f0g for some i 6¼ j, then

�TðtÞ 2 aiaj. Similarly, if _zðtÞ 2 Bi \ Bj n f0g
for some i 6¼ j, then �TðtÞ 2 bibj.

This gives us a first description of the behaviour of

our system. The tensions of the springs are allowed to

change only within the set �C�, that we call stasis

domain, in analogy with the elastic domains used in

elasto-plasticity. Shape changes, and therefore

motion, can occur only if the tensions have values
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on the boundary of �C�, to which we refer as slip

surface.

The next step is to use the information contained in

(4.2), combined with the definition of T(t), to recover

how variations in the active distortion produce shape

changes. The best way to do that is to work in terms of

the tension state of the crawler T(t) instead of the shape

state z(t).

First of all we notice that, by differentiating (4.1),

we get

_T1ðtÞ ¼ �k1 _e1ðtÞ þ
k1

L1
_z1ðtÞ ð4:3aÞ

_T2ðtÞ ¼ �k2 _e2ðtÞ þ
k2

L2
_z2ðtÞ ð4:3bÞ

If�TðtÞ 2 intC�, from (4.2) we have _zðtÞ ¼ 0 and the

previous equations reduce to

_T1ðtÞ ¼ �k1 _e1ðtÞ _T2ðtÞ ¼ �k2 _e2ðtÞ ð4:4Þ

that describe the evolution of the system. On the other

end, when T(t) lies on the boundary of �C�, the

behaviour of the system is less trivial. We will discuss

first the simpler case F� [ 2Fþ and then consider the

second case 2Fþ [F� [Fþ.

4.1 Case F� [ 2Fþ

First of all let us introduce the unit vectors

m1 ¼
1
ffiffiffi
2

p
1

�1

� �

m2 ¼
�1

0

� �

m3 ¼
0

1

� �

that are the outer unit normals toC�
A respectively along

the edges a2a3, a3a1 and a1a2, as illustrated in Fig. 5.

The constraint �TðtÞ 2 C�
A implies that, if T is differ-

entiable at time t, then

_TðtÞ; m1
� 	

¼ 0 if � TðtÞ 2 a2a3
_TðtÞ; m2

� 	
¼ 0 if � TðtÞ 2 a3a1

_TðtÞ; m3
� 	

¼ 0 if � TðtÞ 2 a1a2

ð4:5Þ

If one of the scalar products were positive, then the

tension should have been outside the stasis domain C�
A

for the times immediately before, and similarly, if one

of them were negative, the tension would be outside

C�
A for the times immediately after.

Let us note that condition 4.5 can be expressed in a

more concise way as

�TðtÞ 2 NC�
A
ðTðtÞÞ ð4:6Þ

where NCðTÞ denotes the normal cone to the convex

set C at the point T. This is also a classical way to

approach the problem (RVI), usually known as

differential inclusion formulation [13, 14].

Following this same line of thought, each of the

constraints could be decoupled into two inequalities

on the increments of T, one for the past and one for the

future, without requiring the differentiability of

T. However, for our purposes, we will work under

the assumptions of Theorem 1, that guarantees the

Lipschitz continuity of the tension T(t), so that the

times when T(t) is not differentiable can be neglected

for the study of the motion.

A consequence of (4.5) is that, when we reach an

edge, either the tension is differentiable, that implies
_‘ðtÞ; mi

� 	
¼ 0 and thus means that eðtÞ is in a certain

sense ‘‘well calibrated’’ , or we have a time t of non-

differentiability for T(t) and z(t), corresponding to an

abrupt transition between rest and motion.

If �TðtÞ lies on one on the vertices of C�
A, then two

of the constraints of (4.5) are satisfied simultaneously,

leading to

_z1ðtÞ ¼ L1 _e1ðtÞ _z2ðtÞ ¼ L2 _e2ðtÞ ð4:7Þ

We also recall that, by (4.2), we know that _zðtÞ 2 Ai;

combining this with (4.7) we see that, to keep that

tension configuration, the derivative of the active

distortion must lie in a specific cone. In more detail,

we have the following situation.

ż1

ż2

T1

T2

α1 α2

α3

C∗
A

ν3

ν2

ν1

Fig. 5 Case F� [ 2Fþ. The stasis domain �C�
A ¼ �oDshð0Þ
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• If �TðtÞ ¼ a1, then by (4.5) we have

_z1ðtÞ� 0� _z2ðtÞ (i.e. _zðtÞ 2 A1), that implies

_vðtÞ ¼ 0 and

_e1ðtÞ� 0� _e2ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ� 0 _u2ðtÞ ¼ 0

_u3ðtÞ ¼ L2 _e2ðtÞ� 0

• If �TðtÞ ¼ a2, then _z1ðtÞ� 0 and _z1ðtÞ� � _z2ðtÞ,
so that _vðtÞ ¼ _z1ðtÞ and

_e1ðtÞ� 0 and _e2ðtÞ� � L1

L2
_e1ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ 0

_u3ðtÞ ¼ L1 _e1ðtÞ þ L2 _e2ðtÞ� 0

• If �TðtÞ ¼ a3, then _z2ðtÞ� 0 and _z1ðtÞ� � _z2ðtÞ,
so that _vðtÞ ¼ � _z2ðtÞ and

_e2ðtÞ� 0 and _e1ðtÞ� � L2

L1
_e2ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ � L2 _e2ðtÞ� 0

_u2ðtÞ ¼ �L2 _e2ðtÞ� 0 _u3ðtÞ ¼ 0

If �TðtÞ lies in the interior of one on the edges of

C�
A, then condition (4.5) gives us only one constraint.

However a second constraint is obtained by (4.2),

since we know that, if �TðtÞ 2 int aiaj, then _zðtÞ 2 Ai

\Aj. In more detail, we have the following situation.

• If �TðtÞ 2 a1a2 then we have _vðtÞ ¼ 0 and

_z1ðtÞ ¼ 0 _z2ðtÞ ¼ L2 _e2ðtÞ� 0

_T1ðtÞ ¼ �k1 _e1ðtÞ _T2ðtÞ ¼ 0

The resulting motion of the crawler is

_u1ðtÞ ¼ _u2ðtÞ ¼ 0 _u3ðtÞ ¼ L2 _e2ðtÞ� 0

• If �TðtÞ 2 a3a1 then we have _vðtÞ ¼ 0 and

_z1ðtÞ ¼ �L1 _e1ðtÞ� 0 _z2ðtÞ ¼ 0

_T1ðtÞ ¼ 0 _T2ðtÞ ¼ �k2 _e2ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ� 0 _u2ðtÞ ¼ _u3ðtÞ ¼ 0

• If�TðtÞ 2 a2a3, differently from the two previous

cases, we observe changes on the tension and

length of both segments; however this happens in a

coordinated fashion, namely,

_z1ðtÞ ¼ � _z2ðtÞ ¼ _vðtÞ ¼ k1 _e1ðtÞ � k2 _e2ðtÞ
k1
L1
þ k2

L2

� 0

that gives the condition _e1ðtÞ� k2
k1
_e2ðtÞ for the

admissible active distortion. The tension evolves

according to

_T1ðtÞ ¼ _T2ðtÞ ¼ � L1 _e1ðtÞ þ L2 _e2ðtÞ
L1
k1
þ L2

k2

The resulting motion of the crawler is

_u1ðtÞ ¼ _u3ðtÞ ¼ 0 _u2ðtÞ ¼
k1 _e1ðtÞ � k2 _e2ðtÞ

k1
L1
þ k2

L2

� 0

4.2 Case 2Fþ [F� [Fþ

As in the previous case, we want to exploit the

constraint �TðtÞ 2 C�
B to deduce a condition on _TðtÞ.

We observe that m1, m2 and m3 are the outer unit normals

respectively to the edges b4b5, b6b1 and b2b3, but also

the inner unit normals to the edges b1b2, b3b4 and

b5b6 (Fig. 6). Thus we have, analogously to (4.5),

_TðtÞ; m1
� 	

¼ 0 if � TðtÞ 2 b4b5 [ b1b2
_TðtÞ; m2

� 	
¼ 0 if � TðtÞ 2 b6b1 [ b3b4

_TðtÞ; m3
� 	

¼ 0 if � TðtÞ 2 b2b3 [ b5b6

ð4:8Þ

β5

β4

β3β2

β1

β6

ż1

ż2

T1

T2

C∗
B

ν3

ν2

ν1

−ν3

−ν2

−ν1

Fig. 6 Case 2Fþ [F� [Fþ. The stasis domain

�C�
B ¼ �oDshð0Þ
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As before, when�TðtÞ lies in one on the vertices of
C�
B, two of the constraints of (4.8) are satisfied

simultaneously and therefore

_z1ðtÞ ¼ L1 _e1ðtÞ _z2ðtÞ ¼ L2 _e2ðtÞ ð4:9Þ

Similarly to the previous case, if �TðtÞ 2 bi, then by

(4.2) we have _zðtÞ 2 Bi, leading to the following

situation.

• If �TðtÞ ¼ b1, then by (4.5) we have

_z1ðtÞ� � _z2ðtÞ� 0, that implies _vðtÞ ¼ � _z2ðtÞ
and requires, when T(t) is differentiable, that

_e2ðtÞ� 0 _e1ðtÞ� � L2

L1
_e2ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ � L2 _e2ðtÞ� 0

_u2ðtÞ ¼ �L2 _e2ðtÞ� 0 _u3ðtÞ ¼ 0

• If�TðtÞ ¼ b2, then we have� _z2ðtÞ� _z1ðtÞ� 0, so

that _vðtÞ ¼ _z1ðtÞ and

_e1ðtÞ� 0 _e2ðtÞ� � L1

L2
_e1ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ 0 _u2ðtÞ ¼ L1 _e1ðtÞ� 0

_u3ðtÞ ¼ L1 _e1ðtÞ þ L2 _e2ðtÞ� 0

• If �TðtÞ ¼ b3, then we have _z1ðtÞ� 0 and

_z2ðtÞ� 0, so that _vðtÞ ¼ 0 and

_e1ðtÞ� 0 _e2ðtÞ� 0

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ� 0 _u2ðtÞ ¼ 0

_u3ðtÞ ¼ L2 _e2ðtÞ� 0

• If �TðtÞ ¼ b4, then by (4.5) we have

_z1ðtÞ� � _z2ðtÞ� 0, so that _vðtÞ ¼ � _z2ðtÞ and

_e2ðtÞ� 0 _e1ðtÞ� � L2

L1
_e2ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ � L2 _e2ðtÞ� 0

_u2ðtÞ ¼ �L2 _e2ðtÞ� 0 _u3ðtÞ ¼ 0

• If�TðtÞ ¼ b5, then we have� _z2ðtÞ� _z1ðtÞ� 0, so

that _vðtÞ ¼ _z1ðtÞ and

_e1ðtÞ� 0 _e2ðtÞ� � L1

L2
_e1ðtÞ

The resulting motion of the crawler is

_u1ðtÞ ¼ 0 _u2ðtÞ ¼ L1 _e1ðtÞ� 0

_u3ðtÞ ¼ L1 _e1ðtÞ þ L2 _e2ðtÞ� 0

• If �TðtÞ ¼ b6, then we have _z1ðtÞ� 0 and

_z2ðtÞ� 0, so that _vðtÞ ¼ 0 and

_e1ðtÞ� 0 _e2ðtÞ� 0

The resulting motion of the crawler is

_u1ðtÞ ¼ �L1 _e1ðtÞ� 0 _u2ðtÞ ¼ 0

_u3ðtÞ ¼ L2 _e2ðtÞ� 0

As in the previous case, when �TðtÞ lies in the

interior of one on the edges of C�
B, only one constraint

is given by condition (4.8), but a second one is

recovered by (4.2), using the fact that if

�TðtÞ 2 intbibj, then _zðtÞ 2 Bi \ Bj. The pairs of

opposite edges are characterized by the same beha-

viour of the crawler, but associated with shape

variations of opposite sign. In more detail, we have

the following situation.

• If �TðtÞ 2 b2b3 [ b5b6 then we have _vðtÞ ¼ 0

and

_z1ðtÞ ¼ 0 _z2ðtÞ ¼ L2 _e2ðtÞ
_T1ðtÞ ¼ �k1 _e1ðtÞ _T2ðtÞ ¼ 0

so that it is required that e2ðtÞ� 0 if�TðtÞ 2 b2b3,

whereas e2ðtÞ� 0 if �TðtÞ 2 b5b6. The resulting

motion of the crawler is

_u1ðtÞ ¼ _u2ðtÞ ¼ 0

_u3ðtÞ ¼ L2 _e2ðtÞ
� 0 if � TðtÞ 2 b2b3
� 0 if � TðtÞ 2 b5b6

(

• If�TðtÞ 2 b3b4 [ b6b1 then we have _vðtÞ ¼ 0 and

_z1ðtÞ ¼ �L1 _e1ðtÞ _z2ðtÞ ¼ 0

_T1ðtÞ ¼ 0 _T2ðtÞ ¼ �k2 _e2ðtÞ

so that it is required that e2ðtÞ� 0 if�TðtÞ 2 b6b1,

whereas e2ðtÞ� 0 if �TðtÞ 2 b3b4. The resulting

motion of the crawler is
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_u2ðtÞ ¼ _u3ðtÞ ¼ 0

_u1ðtÞ ¼ �L1 _e1ðtÞ
� 0 if � TðtÞ 2 b6b1
� 0 if � TðtÞ 2 b3b4

(

• The third case �TðtÞ 2 b1b2 [ b4b5, is character-
ized by a coordinated change in the tension and

length of both segments, more precisely

_z1ðtÞ ¼ � _z2ðtÞ ¼ _vðtÞ ¼ k1 _e1ðtÞ � k2 _e2ðtÞ
k1
L1
þ k2

L2

that gives, for the admissible active distortion, the

condition _e1ðtÞ� k2
k1
_e2ðtÞ if �TðtÞ 2 b4b5 and

_e1ðtÞ� k2
k1
_e2ðtÞ if �TðtÞ 2 b1b2. The tension con-

figuration evolves according to

_T1ðtÞ ¼ _T2ðtÞ ¼ � L1 _e1ðtÞ þ L2 _e2ðtÞ
L1
k1
þ L2

k2

The resulting motion of the crawler is

_u1ðtÞ ¼ _u3ðtÞ ¼ 0

_u2ðtÞ ¼
k1 _e1ðtÞ � k2 _e2ðtÞ

k1
L1
þ k2

L2

�0 if � TðtÞ 2 b4b5
�0 if � TðtÞ 2 b1b2

(

5 Motility analysis and crawling strategies

A qualitative description of the results of the previous

section is illustrated in Fig. 7. The two possibilities

considered for the relative magnitude of the friction

forces determine very different motile behaviours of

the crawler.

If F� [ 2Fþ, the legs of the crawler can move only

forward. The set �C�
A of the admissible tension

configurations scales with Fþ, but it is independent

of the value of F�.
If 2Fþ [F� [Fþ, each leg of the crawler can

move both forward and backward. The precise

shape of the stasis domain �C�
B depends on the ratio

Fþ=F�, although it is always a hexagon with parallel

opposite edges oriented as in Fig. 6. If the ratio Fþ=F�
is fixed, then �C�

B scales homothetically with the

magnitude of the friction coefficients; if instead we

fix the value of Fþ, then �C�
B shrinks as F� tends

to Fþ.
To truly understand the motility of our crawler, we

have to consider the effects of a periodic active

distortion eðtÞ. As a corollary of Theorem 1, we are

granted the existence of a unique Lipschitz continuous

displacement u(X, t) for any given continuous and

piecewise continuously differentiable active distortion

e : ½0; T � ! R2.

We now discuss the main qualitative behaviour of

such motility strategies and then present some illus-

trative examples. To simplify the computation, we

assume k1 ¼ k2 ¼ k and L1 ¼ L2 ¼ L.

To produce a non-null translation of the crawler

that repeats itself in each period, sufficiently large

excursions in the stasis domain are necessary. More

precisely, during every period the tension T(t) has to

reach all the three edges of �C�
A (if F� [ 2Fþ) or a

(a) (b)

Fig. 7 Qualitative summary of the motility results of Sect. 4.

Each triple is placed in the interior, on an edge or on a vertex of

the stasis domain�C� and describes the admissible directions of

displacement for the three legs while the crawler keeps that

tension configuration. A plus denotes a positive displacement, a

minus a negative one and a zero that that leg must remain steady.

For instance the triple ðþ; 0;�Þ near a vertex indicates that, for

that value of the tension T(t), we have _u1ðtÞ� 0, _u2ðtÞ ¼ 0 and

_u3ðtÞ� 0
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suitable triple of non adjacent edges of �C�
B (if

2Fþ [F� [Fþ). Since a certain amount of excur-

sion in the active distortion is spent in crossing �C�,
allowing larger fluctuations in eðtÞ permits more

performant motility strategies, because in this way a

larger amount of the active distortion is spent moving

the legs.

In the case F� [ 2Fþ, an effective motility strat-

egy can be achieved even by activating only one of the

segments, for instance by setting e2 	 0 and assuming

a sufficiently large sawtooth oscillation for e1. This
strategy can be compared to a one-segment crawler

experiencing the same sawtooth fluctuations, as that

studied in [6, Sec. 4]. Indeed, the one-segment crawler

results more efficient: it requires a lower minimal

amplitude De of the sawtooth (De[ 2Fþ=k instead of

De[ 3Fþ=k), it produces a greater displacement after

one cycle (Du ¼ ðDe� 2Fþ=kÞL instead of Du ¼
ðDe� 3Fþ=kÞL ) and it is effective also in the case

2Fþ [F� [Fþ. For such friction ratios a two-

segment crawler, performing the sawtooth strategy

above, has a zero net displacement after one cycle.

We remark that in all the situations above, net

displacements are possible only in the direction of

lower friction. To achieve a complete motility, i.e. to

be able to move also backwards (against the higher

friction) using periodic shape changes, we need to

consider the case 2Fþ [F� [Fþ and strategies that

fully exploit two shape parameters. This minimality of

two shape parameters for a complete motility belongs

to folklore knowledge for unidimensional locomotors

(cf. for instance [1, 4, 7, 16]). The ability of our two-

segment crawler to effectively move in both direc-

tions, assuming a small friction asymmetry, is illus-

trated by the following strategies.

We consider the periodic change in the active

distortion illustrated in Fig. 8, recalling that

2Fþ [F� [Fþ. We set the times so that the period

is T ¼ 3s and divide the evolution of eðtÞ into three

phases, described as follows.

_e1ðtÞ ¼
0 if 0\t\s

g if s\t\2s

�g if 2s\t\3s

8
><

>:

_e2ðtÞ ¼
�g if 0\t\s

0 if s\t\2s

g if 2s\t\3s

8
><

>:

ð5:1Þ

where g[ 0 is a given parameter. We require that

gsk[Fþ þ F�, to ensure sufficiently large distor-

tions. Note that, since our system is rate independent,

what really affects the resulting displacement is not g
but the increment gs of the active distortion; actually,
any other smooth time reparametrization of the curve

in Fig. 8a would produce exactly the same displace-

ment after each period.

The behaviour of the system in the first period

depends on the initial state; however after the first

period we always reach the same tension configuration

Tð3sÞ ¼ �b2. Since we are interested in the long term
behaviour, we assume Tð0Þ ¼ �b2 and so avoid the

initial adjustment period.

We now describe the behaviour in the three phases

(see Fig. 8).

(a) (b)

Fig. 8 Active distortion

strategy (5.1) and associated

evolution of the tension
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(c1) For 0\t\ FþþF�
gk the three legs are steady and

T2 increases from �Fþ to F�. Then, for
FþþF�

gk \t\s the tension are constant but the

third leg moves backwards with _u3ðtÞ ¼ �gL.
(c2) For s\t\ 4F��2Fþ

gk the tension evolves from

�b5 to �b4 along the corresponding edge of

�C�
B. At the same time, the middle leg moves

forward with _u2ðtÞ ¼ � gL
2
. Once the tension

edge �b4 is reached, for
4F��2Fþ

gk \t\2s the

tension is constant, the middle leg is again

steady while the first leg moves backwards with

_u1ðtÞ ¼ �gL.
(c3) For 2s\t\ 2Fþ�F�

k
, T1 increases and T2

decreases at the same rate, until they reach the

edge of�C�
B. Then, for

2Fþ�F�
k

\t\ 3F��3Fþ
k

the

tension evolves along the edge until it reaches

the vertex�b2. In this time interval the third leg

advances with _u3ðtÞ ¼ Lg. Finally, in the last

interval 3F��3Fþ
k

\t\3s, the tension is

constant, the third leg is again steady and the

middle leg moves backwards with

_u2ðtÞ ¼ �Lg.

The sum of these actions produces in a period the

displacement

D�u ¼ L gT � 4F� � 2Fþ
k

� �

ð5:2Þ

We notice that the strategy we just presented could be

slightly improved by suitably modifying eðtÞ, for

instance in a way to avoid the temporary forward

movement of two of the legs. However these changes

require an a priori knowledge of all the parameters of

the systems, so that the strategy is, in a certain sense,

calibrated to the situation, for instance requiring

changes in _eðtÞ exactly at the moment when the

tension reaches the slip surface, i.e. the boundary of

�C�
B. The strategy we presented instead shows the

same behaviour for every choice of the parameters,

provided that the assumption of large distortions is

satisfied. Moreover we remark that such improve-

ments of the strategy decrease only the numerator of

the negative term inside the brackets in (5.2), so the

main term is untouched and any improvement

becomes negligible for large distortions gT or large

stiffness k.

The history of active distortion (5.1) was also

chosen to show a backward movement of the crawler,

that corresponds to proceeding in the direction of

higher friction. A simple strategy to move forwards is

given by the time reverse of strategy (5.1), namely

_e1ðtÞ ¼
g if 0\t\s

�g if s\t\2s

0 if 2s\t\3s

8
><

>:

_e2ðtÞ ¼
�g if 0\t\s

0 if s\t\2s

g if 2s\t\3s

8
><

>:

ð5:3Þ

Also in this case, after a preliminary stage, the tension

configuration at the beginning of each period stabilizes

to T ¼ �b2, that will be the starting condition in our

analysis. The evolution of the tension is shown in

Fig. 9. After a period the displacement produced is

(a) (b)

Fig. 9 Active distortion

strategy (5.3) and associated

evolution of the tension
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Dþu ¼ L gT � 5Fþ � F�
2k

� �

ð5:4Þ

We have that

Dþu� D�u ¼ 9

2
LðF� � FþÞ[ 0 ð5:5Þ

and so there is an advantage when moving in the

direction of lower friction. This advantage becomes

null as the ratio Fþ=F� tends to one, while it increases

to a constant when we approximate the threshold case

Fþ=F� ¼ 2.

We notice that the difference Dþu� D�u between

the displacement produced by our twin strategies does

not depend on the amplitude gT of the distortion. This

means that, if the crawler can produce only small

distortions, but slightly greater than the lower thresh-

old ðFþ þ F�Þ=k, then a very large number of

iterations of the first strategy is necessary to obtain a

negative displacement equal to the positive one

produced by a cycle of the second strategy. On the

other hand, if the crawler can produce very large

distortions (i.e. gT ! 1) the outcomes of the two

strategies become comparable, in the sense that the

ratio Dþu=D�u tends to one.

We remark that reversing the strategy does not

always reverse also the direction of motion, as it

happens in the example above. A counterexample is

given by the simple strategy

_e1ðtÞ ¼
g if 0\t\s

0 if s\t\2s

�g if 2s\t\3s

8
><

>:

_e2ðtÞ ¼
0 if 0\t\s

g if s\t\2s

�g if 2s\t\3s

8
><

>:

ð5:6Þ

and its time-reverse, for sufficiently large distortions,

namely gT [ 3F�k. Both stategy (5.6) and its reverse
produce the same, positive displacement after a

period, equal to

Du ¼ L
2F� � Fþ

k
ð5:7Þ

We notice that in this case the displacement is

independent of the distortion gT , while with the

previous strategies we had an asympotically linear

growth in terms of gT . The inefficiency of this

strategies with respect to (5.3) can be seen intuitively

also by looking at the behaviour of the crawler during a

cycle. The first and the third legs perform both a

forward and a backward movement, of amplitude

growing with gT , that almost cancel each other out,

leaving only the final displacement Du.
We conclude by remarking that the approach

adopted in this paper can be extended also to

analogous crawlers composed by a larger number of

segments. Increasing the number of legs enlarges the

range of friction ratios under which motility in both

directions is possible from Fþ\F�\2Fþ to

Fþ\F�\NFþ. Intuitively, a N-segment crawler can

move each leg backwards one by one, by leaning

against the otherN � 1 legs, resulting in a strategy that

generalizes (5.1). However the number of different

scenarios that appear by varying the friction ratio also

increases with the number of segments, and a

complete and detailed description of a generic evolu-

tion problem becomes soon burdensome.
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