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Abstract In the present investigation, an analytical

solution is proposed to predict the postbuckling

characteristics of nanobeams made of functionally

graded materials which are subjected to thermal

environment and surface stress effect. To this end, a

non-classical beam model on the basis of Gurtin–

Murdoch elasticity theory in the framework of Euler–

Bernoulli beam theory and concept of physical neutral

surface is utilized which has the capability to consider

the effect of surface stress and von Karman-type of

kinematic nonlinearity. The size-dependent nonlinear

governing equations are solved analytically for dif-

ferent end supports. The postbuckling equilibrium

paths corresponding to various boundary conditions

are given in the presence of surface stress correspond-

ing to various beam thicknesses, material gradient

indexes, temperature changes and buckling mode

numbers. It is found that by increasing the values of

temperature change, the equilibrium path is shifted to

right and the normalized applied axial load decreases

indicating that the effect of surface stress diminishes.

Keywords Nanobeam � Postbuckling � Functionally

graded material � Surface stress � Analytical solution

1 Introduction

As special composites whose composition changes

continuously through the thickness of structure, func-

tionally graded materials (FGMs) have received

significant attention due to high performance, novel

thermo-mechanical properties and resistance to ultra-

high temperature. These required function enable

FGMs to be widely used in various engineering fields

[1, 2]. The mechanical behavior of structures made of

FGMs have been of primary interest in several

researches and engineering applications. Rastgo

et al. [3] obtained the critical thermal buckling load

using the stability equations and the Galerkin method

for a curved beam made of FGM with doubly

symmetric cross section. Li et al. [4] obtained the

thermal buckling and postbuckling response of trans-

versely and non-uniformly heated FGM Timoshenko

beams with fixed–fixed edges through the use of the

shooting method. Xiang and Yang [5] studied free and

forced vibration of a laminated functionally graded

beam of variable thickness subjected to initial excited

thermal stresses. The effect of arbitrary boundary

conditions was explored and one-dimensional steady

heat conduction in the thickness direction of beam

before undergoing dynamic deformation was taken

into account.
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With the development of material technology, the

application of FGMs has been extended in devices and

structures at nanoscale [6–10]. In such applications,

small scale effects play an important role in mechan-

ical characteristics, so it is necessary to consider these

effects.

The nano-sized structures have a high surface-to-

volume ratio and the surface stress effects play an

important in their mechanical responses. Hence, the

surface stress effect is one of the most important size

effects to be considered in the analysis of the

mechanical characteristics of nanostructures [11–13].

The reduced coordination of atoms near a free surface

induces a corresponding redistribution of electronic

charge that alters the binding situation [14]. As a

result, excess surface energy as a superficial energy

term will be attained by these atoms since a surface

can be interpreted as a layer to which certain energy is

attached. Moreover, the compressive and tension

residual stresses may be induced in the bulk part of

nanoscale structures due to the positive and negative

surface stresses, respectively [15–17]. Consequently, a

self-instability may accrue in the nanoscale structures

because of the compressive residual stresses even in

the absence of external mechanical loads [18]. There-

fore, to predict the mechanical characteristics and

operation of nanostructures and nanodevices accu-

rately and subsequently to avoid the self-instability,

investigation of the surface stress effects and deter-

mining the critical size of nanoscale structures are

necessary.

Continuum mechanics has been proven to have the

capability for solving different problems as an

efficient approach corresponding to various length

scales. However, at nanoscale, the length scale is

much lower than usual scales considered in continuum

models. Therefore, many size-dependent continuum

theories have been proposed and employed to take size

effects into account [19–39]. For example, Şimşek and

Yurtcu [37] presented an analytical nonlocal

Timoshenko beam model for bending and buckling

of FG nanobeams. Recently, Barretta et al. [38]

developed a variational formulation for FG nano-

beams based on the nonlocal elasticity and Euler–

Bernoulli beam theories. Ansari et al. [39] numerically

investigated the size-dependent thermo-electro-me-

chanical free vibration of postbuckled piezoelectric

nanobeams based on a nonlocal Timoshenko beam

model. A theoretical concept based on the continuum

mechanics including surface stress effects was devel-

oped by Gurtin and Murdoch [17, 40], in which the

surface is simulated as a mathematical membrane of

zero thickness with different material properties from

the underlying bulk which is completely covered by

the membrane. Gurtin–Murdoch model has the capa-

bility to incorporate the surface stress effects into the

mechanical response of nanostructures as it has been

applied in many studies conducted for various prob-

lems about the mechanical behaviors of structures at

nanoscale.

Mogilevskaya et al. [41] considered a two-dimen-

sional problem of multiple interacting circular nano-

inhomogeneities or nano-pores based on a continuum

theory of elastic material surface of Gurtin–Murdoch

model. Lü et al. [42] developed a general, global

theory for nano-scaled functionally graded films

considering the effect of surface stress using surface

elasticity theory and Kirchhoff plate theory. Intarit

et al. [43] presented analytical solutions for shear and

opening dislocations in an elastic half-plane with

surface stresses on the basis of Gurtin–Murdoch

continuum theory of elastic material surfaces. Kushch

et al. [44] obtained a complete solution for the problem

of multiple interacting spherical inhomogeneities with

a Gurtin–Murdoch interface model including both

surface tension and surface stiffness effects. Ansari

et al. [45] proposed non-classical plate model to

evaluate the influence of surface stress on the vibra-

tional response of circular nanoplates using surface

elasticity theory.

To mention some examples about the surface stress

effect on the mechanical responses of nanobeams,

Ansari and Sahmani [46] presented an exact solution

for bending and buckling behaviors of nanobeams

including surface stress effect. To this end, they

applied Gurtin–Murdoch elasticity theory to the

various types of beam theories. An attempt was made

by Ansari et al. [47] to numerically investigate the

postbuckling response of Euler–Bernoulli nanobeams

with the consideration of the surface stress effect using

Gurtin–Murdoch elasticity theory. Hashemi and

Nazemnezhad [48] studied analytically nonlinear free

vibration of simply-supported FG nanobeams consid-

ering surface effects. Ansari et al. [49] investigated

postbuckling characteristics of Timoshenko nano-

beams based on the surface elasticity theory. Shara-

biani and Yazdi [50] analyzed the nonlinear free

vibration of FG nanobeams based on Euler–Bernoulli
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beam model with surface effects by employing the

direct numerical integration method. Recently, Ansari

et al. [51] investigated the forced vibration response of

Euler–Bernoulli FG nanobeams subjected to thermal

loading by considering the local geometrical nonlin-

earity based on von Karman relation and surface stress

effect using Gurtin–Murdoch elasticity theory. Zhang

et al. [52] investigated the surface stress and piezo-

electric effects on the buckling of piezoelectric

nanofilms. Wang et al. [53] developed a refined

Euler–Bernoulli beam model to examine the influ-

ences of chirality and surface stresses on the bending

and buckling of chiral nanowires. Also, Zhang et al.

[54] studied the transverse vibration of axially com-

pressed embedded nanowires using the higher-order

surface stress theory and Euler–Bernoulli beam

model.

In the present investigation, by using concept of

physical neutral surface and Euler–Bernoulli beam

theory, a nonlinear size-dependent beam model based

on Gurtin–Murdoch elasticity theory is used in order

to predict the effect of surface stress on the postbuck-

ling characteristics of FG nanobeams under different

temperature changes. To this end, the surface elasticity

theory is implemented into the classical Euler–

Bernoulli beam theory. An analytical solution is

presented to obtain postbuckling equilibrium curves

of FG nanobeams with various boundary conditions in

the presence of surface stress effect.

2 Mathematical formulations

An FG nanobeam of length L and thickness h that is

made from a mixture of ceramics and metals is

considered as shown in Fig. 1. It is assumed that the

materials at bottom surface (z = -h/2) and top

surface (z = h/2) of the nanobeam are ceramics and

metals, respectively. In addition to the energies

associated with the bulk part, because of the consid-

erable cohesive force between the atoms on the surface

of the nanostructure, the surface energy effect should

be taken into account. One way to consider such effect

in a continuum manner is using the Gurtin–Murdoch

surface elasticity theory [17, 32] by which the surface

of the nanobeam is modeled as a two-dimensional

membrane with zero thickness linking to the under-

lying bulk material without slipping. In the present

study, a non-classical Euler–Bernoulli beam model

developed within the framework of the Gurtin–Mur-

doch approach [51] is utilized to investigate the

postbuckling of FG nanobeams subjected to external

compressive axial and thermal loadings with consid-

ering the surface energy effect.

2.1 Effective material properties of FG nanobeam

The effective material properties of the FG nanobeam

such as Young’s modulus (E), surface Lamé’s con-

stants (ks and ls), Poisson’s ratio (v), residual surface

stress (ss), thermal coefficient (a), and thermal

conductivity (K) can be determined as follows

E zð Þ ¼ Em � Ecð ÞVf zð Þ þ Ec ð1aÞ

ks zð Þ ¼ ksm � ksc
� �

Vf zð Þ þ ksc ð1bÞ

ls zð Þ ¼ lsm � lsc
� �

Vf zð Þ þ lsc ð1cÞ

ss zð Þ ¼ ssm � ssc
� �

Vf zð Þ þ ssc ð1dÞ

m zð Þ ¼ mm � mcð ÞVf zð Þ þ mc ð1eÞ

a zð Þ ¼ am � acð ÞVf zð Þ þ ac ð1fÞ

K zð Þ ¼ Km � Kcð ÞVf zð Þ þ Kc ð1gÞ

It should be noted that the subscripts m and c stand

for metal and ceramic phases, respectively. In order to

, , , , c c s s sE

L

t

h y

b

z
z

ν λ μ τ− − −

, , , , m m s s sE ν λ μ τ+ + +

Fig. 1 A schematic view of

FG nanobeam including

surface layers
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describe the variation of the volume fraction of

constituents, various types of functions can be utilized.

In the present study, a simple power law function is

employed as following to describe the volume fraction

Vf zð Þ ¼ 1

2
þ z

h

� �k

ð2Þ

where k is the volume fraction exponent.

2.2 Temperature distribution

The thin FG nanobeam is considered in which the

temperature values at ceramic-rich and metal-rich

surfaces are equal to Tc and Tm, respectively. The

temperature distribution can be obtained by solving

the following heat conduction equation corresponding

to the given boundary conditions

K
d2T

dz2
¼ 0; T

h

2

� �
¼ Tm; T � h

2

� �
¼ Tc ð3Þ

Applying Eq. (3) along the FG nanobeam thickness

results in a linear temperature distribution as follows

T ¼ Tm þ Tc

2

� �
þ Tm � Tcð Þ z

h
ð4Þ

2.3 Size-dependent governing equations

The developed size-dependent beam model by Ansari

et al. [51] in the context of Euler–Bernoulli beam

theory and Gurtin–Murdoch elasticity theory is con-

sidered. By adding the term corresponding to com-

pressive axial load N0 and dropping the inertia terms,

the stability equations can be expressed as

Nxx þ Ns
xx

� �0¼ 0 ð5aÞ

Mxx þMs
xx

� �00þ Nxx þ Ns
xx

� �
W 0� �0¼ 0 ð5bÞ

where the prime symbol denotes derivative with

respect to x.

Additionally, the related boundary conditions of the

nanobeam at x = 0 and x = L are expressed as [51]

Nxx þ Ns
xx

� �
¼ 0 or dU0 ¼ 0 ð6aÞ

NxxþNs
xx

� �
W 0þ MxxþMs

xx

� �0¼0 or dW¼0 ð6bÞ

Mxx þMs
xx ¼ 0 or dW 0 ¼ 0 ð6cÞ

in whichU0 andWdenote the displacement of neutral axis

in the longitudinal and lateral directions, respectively.

The force resultants and bending moments corre-

sponding to bulk and surface parts are defined in

‘‘Appendix’’.

Integrating Eq. (6a) with respect to x, one will have

Nxx þ Ns
xx ¼ b1 ð7Þ

Or

k1 U0
0 þ

1

2
W 0ð Þ2

� �
þ k2W

00 � NT

þ k4 1 � 1

2
W 0ð Þ2

� �
¼ b1: ð8Þ

Besides, integrating Eq. (8) once more yields

U0 ¼ � 1

2

Z
W 0ð Þ2

dxþ k2

k1

W 0 � 1

k1

Z
NTdx

8
<

:

þ k4

k1

Z
1 � 1

2
W 0ð Þ2

� �
dx

9
=

;
þ b1

k1

xþ b2

k1

ð9Þ

Assuming that the FG nanobeam is constrained from

movement at x = 0 and that an external compressive

axial loadN0 is applied at x = L, it can be expressed that

U0 0ð Þ ¼ W 0ð Þ ¼ W Lð Þ ¼ 0, and U0 Lð Þ ¼ �N0L=k1.

By using the above boundary condition, one can obtain

b1 ¼ �N0 þ
k1 � k4ð Þ

2L

ZL

0

W 0ð Þ2
dxþ k2

L
W 0 Lð Þð

0

@

�W 0 0ð ÞÞ � NT þ k4

1

A ð10aÞ

b2 ¼ k2W
0 0ð Þ ð10bÞ

As a result, one will have

Mxx þMs
xx

� �00þ k1 � k4ð Þ
2L

ZL

0

W 0ð Þ2
dxþ k2

L
W 0 Lð Þð

8
<

:

2

4

�W 0 0ð ÞÞ � NT þ k4

9
>=

>;
� N0

3

75W 00 ¼ 0 ð11Þ

By inserting the bending moments defined in ‘‘Ap-

pendix’’ into the above equation, the governing

equation can be expressed as
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k1 � k3ð Þ
2L

ZL

0

W 0ð Þ2
dxþ k2

L
W 0 L; tð Þ �W 0 0; tð Þð Þ

0

@

0

@

� NT þ k3Þ � N0

!

W 00

þ k4 � k1 � k3ð Þ
k1

W 002 þW 0W 000� �
� k2

k1

W 0000
� �

� k5 þ k7ð ÞW 0000 k4 � k6ð Þ W 002 þW 0W 000� �
¼ 0

ð12Þ

where

k1 ¼ A11 þ 2As
11 þ b �As

;

k2 ¼ �B11 � 2Bs
11 �

bh

2
DAs þ A44

2
Dss þ B44

h
�ss;

k3 ¼ b�ss þ 2hs11; k4 ¼ B11 þ 2Bs
11 þ

bh

2
DAs;

k5 ¼ D11 �
B44

2
Dss � D44

h
�ss;

k6 ¼ bh

2
Dss þ 2hs22; k7 ¼ bh2

4
�As þ 2Ds

11

ð13Þ

Now, introducing the following non-dimensional

parameters

x̂ ¼ x

L
; w ¼ W

h
; b ¼ h

L
ð14Þ

the non-dimensional governing equation can be

obtained as

�a2

Z1

0

w0ð Þ2
dx̂� a3 w0 1ð Þ � w0 0ð Þ½ � � �H þ P

0

@

1

Aw00

þ a1w
iv ¼ 0 ð15Þ

where

a1 ¼ b2
k5 þ k7 þ k4k2

k1

A11mh2

 !

; a2 ¼ b2 k1 � k3

2A11m

� �
;

a3 ¼ b2 k2

hA11m

; �H ¼ k3

A11m

; P ¼ N0 þ NT

A11m

ð16Þ

in which A11m is the value A11 of a homogeneous metal

nanobeam.

Moreover, the non-dimensional boundary condi-

tions can be obtained in the following form for

clamped–clamped boundary conditions

w 0ð Þ ¼ w 1ð Þ ¼ 0;w0 0ð Þ ¼ w0 1ð Þ ¼ 0 ð17Þ

and it can be written for clamped-simply supported

condition as

w 0ð Þ ¼ w 1ð Þ ¼ 0; w0 0ð Þ ¼ w00 1ð Þ ¼ 0 ð18Þ

As well for simply supported-simply supported end

condition as

w 0ð Þ ¼ w 1ð Þ ¼ 0; w00 0ð Þ ¼ w00 1ð Þ ¼ 0 ð19Þ

3 Postbuckling configuration of FG nanobeams

The non-dimensional governing Eq. (15) can be

expressed as the following ordinary differential equa-

tion for the buckling problem

wiv
s þ c2w00

s ¼ 0 ð20Þ

where c2 represents the critical buckling load which

can be introduced as

c2 ¼ P� �H

a1

� a2

a1

Z1

0

w0
s

� �2
dx̂

0

@

1

A� a3

a1

w0
s

1

0

����

� �

ð21Þ

Table 1 Material properties of the FG nanobeam constituents

[56–58]

Property Si(100) Al(111)

E (GPa) 210 68.5

m 0.24 0.35

a (K-1) 5e-6 23.6e-6

ls (N m) -2.774 -0.376

ks (N m) -4.488 6.842

ss (N m) 0.6048 0.9108

Table 2 Critical buckling loads (roots of characteristic equa-

tions) for different boundary conditions

Boundary conditions c2/p2

Clamped–clamped 4, 8.18, 16

Clamped–simply supported 2.05, 6.05, 12.05

Simply supported–simply supported 1, 4, 9
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Fig. 2 a Postbuckling paths of the first buckling mode for FG

nanobeam with different material property gradient indexes

corresponding to the classical theory, b variation of the

normalized applied axial load versus maximum deflection of

FG nanobeam with different material property gradient indexes

L=h ¼ 40; h ¼ 1 nm; b=h ¼ 1;DT ¼ 300ð Þ
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Fig. 3 a Postbuckling paths of the second buckling mode for

FG nanobeam with different material property gradient indexes

corresponding to the classical theory, b variation of the

normalized applied axial load versus maximum deflection of

FG nanobeam with different material property gradient indexes

L=h ¼ 40; h ¼ 1 nm; b=h ¼ 1;DT ¼ 300ð Þ
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Fig. 4 a Postbuckling paths of the third buckling mode for FG

nanobeam with different material property gradient indexes

corresponding to the classical theory, b variation of the

normalized applied axial load versus maximum deflection of

FG nanobeam with different material property gradient indexes

L=h ¼ 40; h ¼ 1 nm; b=h ¼ 1; DT ¼ 300ð Þ
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The closed-form solution for Eq. (20) gets the follow-

ing form

ws ¼ C1 þ C2x̂þ C3 cos cx̂ð Þ þ C4 sin cx̂ð Þ ð22Þ

in which Ci; i ¼ 1; 2; . . .; 4 are the unknown

coefficients.

By inserting the boundary conditions in Eq. (22),

an eigenvalue problem is obtained, whose character-

istic equation can be derived easily by setting the

coefficient matrix to zero. After that, solving the

characteristic equation results in the critical buckling

loads and the buckling mode shapes. Therefore, the

following equations define the characteristic equation

and the relevant buckling mode shapes of a clamped–

clamped nanobeam as

2 � 2 cos cð Þ � c sin cð Þ ¼ 0 ð23aÞ

ws ¼ c 1 � 1 � cos cð Þ
c� sin cð Þ cx̂� cos cx̂ð Þ

�

þ 1 � cos cð Þ
c� sin cð Þ sin cx̂ð Þ

�

Accordingly, through inserting the clamped-simply

supported end conditions, one will have

sin cð Þ � c cos cð Þ ¼ 0 ð24aÞ

ws ¼ c 1 � c cos cð Þ
sin cð Þ x̂� cos cx̂ð Þ þ cos cð Þ

sin cð Þ sin cx̂ð Þ
� �

ð24bÞ

In addition, the characteristic equation and relevant

mode shapes of a simply supported-simply supported

nanobeam take the following form as

sin cð Þ ¼ 0 ð25aÞ

ws ¼ c sin npx̂ð Þ ð25bÞ

in which c is a constant.

It should be noted that by solving the linear

counterpart of Eq. (15), the non-dimensional critical

buckling load corresponding to the various boundary

conditions can be calculated. Considering Eqs. (21),

(23b), (24b) and (25b), the amplitude of the buckled
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Fig. 5 Postbuckling path of the first buckling mode for FG nanobeam with different thicknesses L=h ¼ 40; k ¼ 1;ð
b=h ¼ 1;DT ¼ 300Þ
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FG nanobeams associated with the applied compres-

sive axial load can be obtained.

4 Results and discussion

In this section, the postbuckling equilibrium curves of

FG nanobeams subjected to thermal environment with

the consideration of surface stress effect are demon-

strated to indicate the influences of surface stress and

thermal conditions on the nonlinear postbuckling

behavior of nanobeams corresponding to different

system parameters. The material properties of the FG

nanobeam are tabulated in Table 1. Also, the param-

eter of normalized applied axial load which is used in

the numerical results is defined as

Normalized applied axial load

¼ Applied axial load with surface stress effect

Applied axial load without surface stress effect

ð26Þ

The critical buckling loads of FG nanobeams under

different types of boundary conditions corresponding

to the first three buckling modes are given in Table 2.

Among various boundary conditions, the nanobeams

with simply supported-simply supported and

clamped–clamped end supports have the minimum

and maximum critical buckling loads, respectively.

Figure 2 contains of two parts. In the first one, the

postbuckling equilibrium paths of FG nanobeams with

various material property gradient indexes are plotted

corresponding to the first buckling mode. It can be

seen that by increasing the value of k, the equilibrium

path of FG nanobeam shifts to right which means that

the stiffness of nanobeam increases. In the second part

of the figure, the variation of normalized applied axial

load with deflection of FG nanobeam with different

values of k is depicted. It can be found that the

influence of material property gradient index on the

normalized applied axial load is more significant for

lower values of deflection. Moreover, it is observed
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Fig. 6 Postbuckling path of the second buckling mode for FG nanobeam with different thicknesses L=h ¼ 40; k ¼ 1; b=ð
h ¼ 1;DT ¼ 300Þ
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that by increasing the deflection of FG nanobeam, the

value of normalized applied axial load decreases and it

tends to the value of 1. In other words, the effect of

surface stress on the postbuckling behavior diminishes

by increasing the deflection of nanobeam.

The need for considering higher buckling modes is

due to the mode transitions. In the interactive buck-

ling, a transition can happen from a stable equilibrium

path to an unstable one which leads to the destruction

of structure under loads lower than the critical

buckling load. The interaction of different buckling

modes occurs when the critical loads corresponding to

the different buckling modes are close to each other

[55]. This makes it necessary to determine higher

buckling modes. The results shown in Figs. 3 and 4 are

similar to those of Fig. 2, but they are for the second

and third buckling modes, respectively. Similar antic-

ipations observed in Fig. 2 can be seen in these

figures too. Hence, it is indicated that for different

buckling modes, surface stress effect on the postbuck-

ling response of nanobeams is more prominent for

lower deflections. Furthermore, this point should be

said that these predictions are similar for all types of

boundary conditions.

Illustrated in Figs. 5, 6 and 7 are the postbuckling

equilibrium paths of FG nanobeam with different

thicknesses corresponding to the first, second and third

buckling modes, respectively. In all figures, it can be

observed that by increasing the thickness of nano-

beam, the postbuckling equilibrium paths obtained by

the classical and non-classical beam models tends to

each other. In other words, surface stress effect plays

more important role in the postbuckling characteristics

of FG nanobeams with lower thicknesses. This pattern

is the same for all types of end supports.

Figure 8 presents the postbuckling equilibrium

paths and the variation of normalized applied axial

load with deflection of FG nanobeam subjected to

different thermal environments. The plots are given

corresponding to the first buckling mode. It is revealed

that increasing the values of temperature change leads

to shift the equilibrium path to right. Additionally, it
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Fig. 7 Postbuckling path of the third buckling mode for FG nanobeam with different thicknesses L=h ¼ 40; k ¼ 1; b=ð $>h = 1,\Delta
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causes to decrease the normalized applied axial load

which means that the effect of surface stress dimin-

ishes and temperature change effect is more consid-

erable at lower deflections. Also, similar to the

observations of Figs. 2, 3 and 4, by increasing the

deflection of FG nanobeams, the effect of surface

stress on the postbuckling response decreases.

5 Conclusion

The aim of present investigation was to predict the

nonlinear postbuckling characteristics of FG nano-

beams incorporating the effect of surface stress. A

non-classical beam model on the basis of Gurtin–

Murdoch elasticity theory in the framework of Euler–

Bernoulli beam theory and concept of physical neutral

surface was employed which has the capability to

consider the effect of surface stress and von Karman-

type of kinematic nonlinearity. The size-dependent

nonlinear governing equations were solved analyti-

cally for different boundary conditions.

It was found that by increasing the value of material

property gradient index, the equilibrium path of FG

nanobeam shifts to right which means that the stiffness

of nanobeam increases. In addition, it was found that

the influence of material property gradient index on the

normalized applied axial load is more significant for

lower values of deflection. Furthermore, it was indi-

cated that surface stress effect plays more important

role in the postbuckling characteristics of FG nano-

beams with lower thicknesses. Also, it was revealed that

the effect of surface stress on the postbuckling behavior

diminishes by increasing the deflection of nanobeam.

Appendix

The resultant forces and bending moments corre-

sponding to the bulk and surface parts can be

introduced as

Nxx ¼ A11 U0
0 þ

1

2
W 0ð Þ2

� �
� B11W

00 � NT

þ A44Dss

2
þ B44�ss

h

� �
W 00 ð27Þ

Mxx ¼ B11 U0
0 þ

1

2
W 0ð Þ2

� �
� D11W

00 �MT

þ B44Dss

2
þ D44�ss

h

� �
W 00 ð28Þ

Ns
xx ¼ b �As þ 2As

11

� �
U0

0 þ
1

2
W 0ð Þ2

� �

� bh

2
DAs þ 2Bs

11

� �
W 00

þ b�ss þ 2hs11

� �
1 � 1

2
W 0ð Þ2

� �
ð29Þ

Ms
xx ¼

bh

2
DAs þ 2Bs

11

� �
U0

0 þ
1

2
W 0ð Þ2

� �

� bh2

4
�As þ 2Ds

11

� �
W 00

þ bh

2
Dss þ 2hs22

� �
1 � 1

2
W 0ð Þ2

� �
ð30Þ

in which

�ss ¼ ssþ þ ss�; Dss ¼ ssþ � ss�;
�As ¼ ksþ þ 2lsþ þ ks� þ 2ls�;
DAs ¼ ksþ þ 2lsþ � ks� � 2ls�

and

A11

B11

D11

8
<

:

9
=

;
¼
Z

A

kþ 2lð Þ
1

�z
�z2

8
<

:

9
=

;
dA;

A44

B44

D44

8
<

:

9
=

;
¼
Z

A

m
1 � mð Þ

1

�z
�z2

8
<

:

9
=

;
dA

ð31Þ

As
11

Bs
11

Ds
11

8
><

>:

9
>=

>;
¼
Z

A

ks þ 2lsð Þ
1

�z

�z2

8
><

>:

9
>=

>;
dz;

hs11

hs22

	 

¼
Z

A

ss
1

�z

	 

dz;

ð32Þ

Furthermore, the resultant thermal force can be

defined as

bFig. 8 a Postbuckling paths of first buckling mode for FG

nanobeam with different values of temperature change, b
variation of normalized applied axial load versus maximum

deflection of FG nanobeam with different values of temperature

change L=h ¼ 40; h ¼ 1 nm; b=h ¼ 1; k ¼ 1ð Þ
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NT ¼
Z

A

b T zð Þ � T0ð ÞdA;

MT ¼
Z

A

b T zð Þ � T0ð Þ�zdA
ð33Þ

whereU0 andW are the displacement of neutral axis in the

x and lateral directions, respectively. Also, �z ¼ z� z0 and

z0 denote the z coordinate associated with the physical

neutral surface. Moreover, k ¼ Em= 1 � m2ð Þ and l ¼
E= 2 1 þ mð Þð Þ are Lame constants, b ¼ aE= 1 � mð Þ is

the stress–temperature modulus and a is the thermal

expansion coefficient, DT ¼ T � T0, where Trepre-

sents the temperature distribution through the FG

beam and T0 is reference temperature. Moreover, it is

noted that the position of neutral line z0 can be

obtained by the following equation

z0 ¼
R
A
z k zð Þ þ 2l zð Þð ÞdA

R
A
k zð Þ þ 2l zð Þð ÞdA ð34Þ

In this work, the initial uniform temperature

(T0 = 300� K) is assumed to be a stress free state.
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