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Abstract The dynamic stability in parametric reso-

nance of a Timoshenko microbeam subject to a time-

dependent axial excitation load (comprised of a mean

value along with time-dependent variations) is anal-

ysed in the subcritical regime. Based on the modified

couple stress theory, continuous expressions for the

elastic potential and kinetic energies are developed

using kinematic and kinetic relations. The continuous

model of the system is obtained via use of Hamilton’s

principal. A model reduction procedure is carried out

by applying the Galerkin scheme, in conjunction with

an assumed-mode technique, yielding a high-dimen-

sional second-order reduced-order model. A liner

analysis is carried out upon the linear part of this

model in order to obtain the linear natural frequencies

and critical buckling loads. For the system in the

subcritical regime, the parametric nonlinear responses

are analysed by exciting the system at the principal

parametric resonance in the first mode of transverse

motion; this analysis is performed via use of a

continuation technique, the Floquet theory, and a

direct time integration method. Results are shown in

the form of parametric frequency–responses, paramet-

ric force–responses, time traces, phase-plane dia-

grams, and fast Fourier transforms. The validity of

the numerical simulations is tested via comparing our

results, for simpler models for buckling response, with

those given in the literature.

Keywords Parametrically excited � Timoshenko

microbeam � Modified couple stress theory � Time-

dependent axial load

1 Introduction

1.1 Fundamentals and applications

Microscale elements, such as microbeams and micro-

plates, can be found in various microdevices and

micromachine components, for example in biosensors,

microswitches, and electrical microactuators [1–3].

The experimental investigations reported that micro-

scale continuous elements display size-dependent

deformation behaviour [4, 5]; this is beyond the

capability of the classical continuum theory to predict.

In order to overcome this drawback of the classical

continuum theory, new continuum theories such as the

modified couple stress [6, 7] and strain gradient

theories have been developed, which are capable of

capturing size effects; the modified couple stress

theory is employed in this paper.

H. Farokhi

Department of Mechanical Engineering, McGill

University, Montreal, QC H3A 0C3, Canada

M. H. Ghayesh (&) � S. Hussain
School of Mechanical, Materials and Mechatronic

Engineering, University of Wollongong, Wollongong,

NSW 2522, Australia

e-mail: mergen@uow.edu.au

123

Meccanica (2016) 51:2459–2472

DOI 10.1007/s11012-016-0380-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0380-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0380-8&amp;domain=pdf


1.2 Time-dependent axial load

As is well-known, there are many applications where

microbeams are subject to axial loads; in real-life

microdevices, under dynamic operating conditions,

these axial loads are time-dependent. Here, the time-

varying axial load is modelled by superimposing time-

dependent harmonic variations over a constant (mean)

value. This class of systems are classified as paramet-

rically excited. The class features include the occur-

rence of resonances in the vicinity of twice any linear

natural frequency.

1.3 Literature review

The literature concerning the statics and dynamics of

microbeams may be classified into two general groups

in terms of the model being considered. The first class

employed the Euler–Bernoulli beam theory while the

second group employed shear deformable, such as

Timoshenko and Reddy, beam theories.

Reviewing the studies which fall into the first class,

for instance, Kong et al. [8] analysed the dynamics of

an Euler–Bernoulli microbeam in order to obtain the

size-dependent natural frequencies. Asghari et al. [9]

obtained the size-dependent dynamical response of

functionally graded microbeams via use of the mod-

ified couple stress theory. Akgöz and Civalek [10, 11]

examined the free dynamics and buckling of a

microbeam using both the strain gradient and modified

couple stress theories. Ghayesh et al. [7, 12] examined

the size-dependent nonlinear dynamics of microbeams

based the modified couple stress theory.

Reviewing the second class, for example, Ma et al.

[13] examined the size-dependent dynamical beha-

viour of a Timoshenko microbeam based on the

modified couple stress theory. Nateghi and Salamat-

talab [14] examined the effect of thermal variations on

the size-dependent dynamics of functionally graded

microbeams. Ansari et al. [15, 16] analysed the

bending and thermal post-buckling of a functionally

graded Timoshenko microbeam by means of the strain

gradient theory. Based on the modified couple stress

theory, Ke et al. [17] investigated the thermal effect on

free vibration and buckling of Timoshenko microbe-

ams. Ramezani [18] and Asghari et al. [19] solved the

equations of motion of a Timoshenko microbeam via

the method of multiple scales via a single-mode

truncation. Mohammad-Abadi and Daneshmehr [20]

contributed to the field by analysing the size-depen-

dent buckling of microbeams employing the modified

couple stress theory. Şimşek and Reddy [21] devel-

oped a higher order beam theory, in the framework of

modified couple stress theory, for buckling analysis of

functionally graded microbeams.

1.4 Contributions of this paper to the field

To the authors’ best knowledge, the nonlinear size-

dependent parametric resonant dynamics of Ti-

moshenko microbeams subject to time-dependent

axial loads has not been investigated in the literature

yet. The main contribution of the current paper is to

include a time-dependent term in the axial load, which

substantially changes the dynamic class of

Timoshenko microbeams. More specifically, continu-

ous models for the kinetic and potential energies are

developed using the modified couple stress theory and

constitutive relations, taking into account small-size

effects. The continuous model of the system is

developed by means of Hamilton’s principle. A model

reduction procedure is carried out via use of the

Galerkin scheme, in conjunction with an assumed-

mode technique. A high-dimensional reduced-order

model is considered in the nonlinear analysis, capable

of capturing almost all modal interactions and internal

energy transfer [22] between different modes. The

second-order reduced-order model is recast into a

double-dimensional first-order model, which is treated

using four different numerical techniques. The first

technique is on the basis of a continuation technique in

order to analyse the parametric dynamics of the system

near the principal parametric resonance; in other

words, for the system in the subcritical regime, the

nonlinear parametric response, due to the time-

dependent axial load, is obtained by means of the

pseudo-arclength continuation technique. The second

method is an eigenvalue analysis, which is employed

to determine the linear natural frequencies as well as

critical buckling loads, due to the mean value of the

axial force. Third method is direct time integration via

use of the variable step-size modified Rosenbrock

scheme. The fourth technique uses the Floquet theory

to determine the stability of solution branches. The

linear and nonlinear numerical results show that this

parametrically excited system displays various inter-

esting and rich dynamics even in the subcritical

regime.
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2 Continuous and reduced-order models

and solution methods

Figure 1 shows a Timoshenko microbeam of length L,

cross sectional area A, and second moment of area I;

E and l represent the Young’s modulus and the shear

modulus, respectively. The mass density of the

microbeam is denoted by q. The displacements in

the x and z directions (which define the longitudinal

and transverse displacements) are represented by

u(x, t) and w(x, t), respectively; /(x, t) denotes the

rotation of the transverse normal, where t is time. The

microbeam is subject to a time-dependent longitudinal

excitation force in the form of P0 ? P1 cos (xt).
The equations for the longitudinal, transverse, and

rotational motions are obtained via the following

assumptions: (1) the source of the geometric

nonlinearity is mid-plane stretching; (2) the

Timoshenko beam theory is employed; (3) cross-

sectional area is uniform along the entire length of the

beam; (4) there is no warping in the system.

Under the above assumptions, the components of

the displacement field, in x, y and z directions, for a

Timoshenko beam is given by the following compo-

nents [23]

ux ¼uðx; tÞ þ z/ðx; tÞ;
uy ¼0;

uz ¼wðx; tÞ:
ð1Þ

The relation between the displacement vector u and

the rotation vector h can be expressed as [24]

h ¼ 1

2
r� u: ð2Þ

(a) 

(b) 

Fig. 1 a Schematic representation of a Timoshenko microbeam subject to a time-dependent axial load. bAn element of the microbeam

before and after deformation
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The symmetric curvature tensor v can be expressed

as a function of the rotation vector h such that [24]

v ¼ 1

2
rhþ ðrhÞT

� �
: ð3Þ

Simplification of Eqs. (1–3) gives the following

non-zero components of the symmetric curvature

tensor as functions of the displacement field

vxy ¼ vyx ¼
1

4

o/
ox

� o2w

ox2

� �
: ð4Þ

The components of the strain tensor e are related to
the displacement field components through the fol-

lowing relations [25]

exx ¼
ou

ox
þ 1

2

ow

ox

� �2

þ z
o/
ox

; ð5Þ

exz ¼ ezx ¼
1

2

ow

ox
þ /

� �
: ð6Þ

For an isotropic linear elastic material, the stress

tensor r and the deviatoric part of the symmetric

couple stress tensor m can be expressed as [24]

r ¼ ktrðeÞIþ 2le; ð7Þ

m ¼ 2l2lv; ð8Þ

where k and l denote the Lamé constants, l is the

material length-scale parameter, I is the second-order

identity tensor, tr is the trace of a matrix.

Based on the modified couple stress theory [24], the

elastic strain energy of a system occupying volume V

is given by

U ¼ 1

2

Z
V

r : eþm : vð ÞdV: ð9Þ

The size-dependent strain energy of the system can

be obtained by inserting Eqs. (4–8) into Eq. (9) as

follows [25]

U ¼ 1

2
EI

Z L

0

o/
ox

� �2

dx

þ 1

2
EA

Z L

0

ou

ox
þ 1

2

ow

ox

� �2
" #2

dx

þ 1

2
lA

Z L

0

ow

ox
þ /

� �2

þ l2

4

o/
ox

� o2w

ox2

� �2
" #

dx:

ð10Þ

The kinetic energy of the system is given as a

function of the displacement field by [25]

T ¼ 1

2
qA

Z L

0

ou

ot

� �2

þ ow

ot

� �2
" #

dx

þ 1

2
qI

Z L

0

o/
ot

� �2

dx: ð11Þ

Application of Hamilton’s principle to Eqs. (10)

and (11) results in the following equations for the

longitudinal, transverse, and rotational motions

[25]

qA
o2u

ot2
� EA

o2u

ox2
þ ow

ox

o2w

ox2

� �
¼ 0; ð12Þ

qA
o2w

ot2
� EA

ou

ox

o2w

ox2
þ o2u

ox2
ow

ox
þ 3

2

o2w

ox2
ow

ox

� �2
" #

� lA
o2w

ox2
þ o/

ox

� �
þ lAl2

4

o4w

ox4
� o3/

ox3

� �
¼ 0;

ð13Þ

qI
o2/
ot2

� EI
o2/
ox2

þ lA
ow

ox
þ /

� �

þ lAl2

4

o3w

ox3
� o2/

ox2

� �
¼ 0:

ð14Þ

The microbeam is constrained axially at the left

end; an axial load, in the form of P(t) = P0 ? P1-

cos(xt), is applied to the right end of the microbeam

(see Fig. 1). The boundary conditions for the

longitudinal motion of such a system are given by

[26]

ujx¼0 ¼ 0; ujx¼L ¼ �PðtÞL
EA

: ð15Þ

The boundary conditions for the transverse and

rotational motions are given by [27]

wjx¼0 ¼ wjx¼L ¼ 0; ð16Þ

o/
ox

����
x¼0

¼ o/
ox

����
x¼L

¼ 0: ð17Þ

Neglecting fast dynamics in Eq. (12) while

employing Eq. (15), one can obtain the following

equations for the transverse and rotational motions,

respectively
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qA
o2w

ot2
�EA

L

o2w

ox2

Z L

0

1

2

ow

ox

� �2
" #

dx�lA
o2w

ox2
þ o/

ox

� �

þ lAl2

4

o4w

ox4
� o3/

ox3

� �
þ P0þP1 cosðxtÞð Þo

2w

ox2

þ c
ow

ot
¼ 0; ð18Þ

qI
o2/
ot2

� EI
o2/
ox2

þ lA
ow

ox
þ /

� �

þ lAl2

4

o3w

ox3
� o2/

ox2

� �
þ cr

o/
ot

¼ 0; ð19Þ

where a term for viscous damping, which is a common

and effective damping model used widely in the

literature, has been added. c denotes the damping

coefficient for the transverse motion and cr represents

that for rotation; moreover, cr = c(I/A).

Time-dependent coefficients in Eqs. (18) and (19),

due to the time-variant axial load (P0 ? P1 cos (xt)),
make the system parametrically excited. An interest-

ing feature of this class of systems is the occurrence of

principal parametric resonance in the vicinity of the

twice the first natural frequency of the linear system.

There is also a zero response throughout the solution

space, both stable and unstable [28–31].

The continuous models for the transverse and

rotational motions, given in Eqs. (18) and (19), are

reduced using the Galerkin method, resulting in a

second-order nonlinear reduced-order model, to be

solved numerically.

Introducing the following series expression

wðx; tÞ ¼
XM
k¼1

qkðtÞukðxÞ; ð20Þ

/ðx; tÞ ¼
XN
k¼1

pkðtÞwkðxÞ; ð21Þ

in which qk(t) and pk(t) are the kth generalized

coordinates of the transverse and rotational motions,

respectively; uk(x) = sin(kpx/L) is the kth eigenfunc-

tion for the transverse motion of a hinged–hinged

linear beam and wk(x) = cos(kpx/L).
Application of the Galerkin scheme by inserting the

series expansions [i.e. Eqs. (20, 21)] into the contin-

uous models for the transverse and rotational motions

[i.e. Eqs. (18, 19)], multiplying the resultant

expressions by the corresponding eigenfunctions,

and integrating over x from 0 to L results in the

second-order nonlinear reduced-order model of the

system. This model is first transformed to a double-

dimensional first-order reduced-order model via use of

a change of variables. The following techniques are

used to solve the new model and analyse the results:

(1) a continuation technique for determining the

principal parametric dynamics of the system; (2) an

eigenvalue analysis so as to determine the linear

natural frequencies; (3) direct time integration by

means of the variable step-size modified Rosenbrock

scheme; (4) the Floquet theory to determine the

stability of solution branches. The numerical simula-

tions have been performed for an epoxy microbeam of

l = 17.6 lm, h = 6.0 l, b = 2 h, L = 50 h, E =

1.44 GPa, l = 521.7 MPa, and q = 1220 kg/m3

[13, 32].

Moreover, the following dimensionless parameters

are used throughout the numerical simulations

w� ¼w

h
; X ¼ x

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r
; t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
;

P�
0 ¼

P0L
2

EI
; P�

1 ¼
P1L

2

EI
;

cd ¼
cL4

EI

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
; x�

i ¼ xi

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r
i ¼ 1; 2;

L/h

C
rit
ic
al
bu
ck
lin
g
lo
ad

(N
)

20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 2 The variation of the critical buckling load with

microbeam length: solid line represents the results obtained

using the formula in Ref. [33] and the symbols show that

obtained by the present study
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where xi denotes the ith natural frequency of the

transverse motion. In what follows, the system

parameters and the numerical results are reported only

in the dimensionless forms and the asterisk notation is

dropped for briefness.

3 Validation of the model for the case of static

buckling

Figure 2 shows the variation of the critical static

buckling load of a microbeam obtained by the

numerical simulations of the present study and that

obtained based on the formula presented by Reddy

[33] for a Timoshenko beam model; the length-scale

parameter is set to zero, while the thickness and width

of the microbeam are chosen the same as those used in

this study. The solid line represents the results

obtained using the formula in Ref. [33] and the

symbols show that obtained via the present nonlinear

analysis. It is seen that the results of both studies

match. Figure 3 shows the bifurcation diagram of a

microbeam obtained by the numerical simulations of

the present study and that obtained by Xia et al. [34];

the system parameters are set to values given in Ref.

[34]. It is seen that the results of both studies almost

match which prove the validity of the numerical

simulations employed in this paper. It is worthwhile

noting that the small differences between the results

are due to the fact that the present study employs the

Timoshenko beam theory while Xia et al. [34]

employed Euler–Bernoulli beam theory.

4 Results and discussions

4.1 Natural frequencies

Based on the solution procedure explained in Sect. 2,

an eigenvalue analysis is applied to the linear part of

the reduced-order model. This results in eigen fre-

quencies (and hence natural frequencies) of the

system. For the analysis of this section, the time-

P0/π
2

w/
L

0 4 8 12 16 20

0

0.1

0.2

0.3

Fig. 3 The bifurcation diagram of a microbeam: solid line

represents the result obtained by the present study and symbols

shows that obtained in Ref. [34]

Table 1 The first two dimensionless natural frequencies of the transverse motion as functions of the amplitude of the mean axial

load

P0 x1 x2

Modified couple

stress theory

Classical

theory

Percentage

difference

Modified couple

stress theory

Classical

theory

Percentage

difference

0.0 10.44 9.86 5.7 41.69 39.38 5.7

1.0 9.96 9.35 6.3 41.22 38.88 5.8

2.0 9.45 8.81 7.1 40.73 38.37 6.0

3.0 8.91 8.23 8.0 40.25 37.85 6.1

4.0 8.34 7.60 9.2 39.75 37.33 6.3

5.0 7.73 6.93 10.9 39.26 36.79 6.5

6.0 7.06 6.17 13.4 38.75 36.25 6.7

7.0 6.32 5.31 17.4 38.24 35.71 6.9

8.0 5.49 4.28 24.6 37.72 35.15 7.1

9.0 4.50 2.91 42.8 37.19 34.58 7.3
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dependent component of the axial load P1 is set to

zero.

Table 1 shows the variations of the first two linear

natural frequencies of the transverse motion as P0 (i.e.

the mean value of the axial load) is varied. As seen in

this table, both the first and second linear natural

frequencies decrease as P0 is increased. Moreover, for

each P0, the model based on the modified couple stress

theory predicts larger values for the first and second

linear natural frequencies of the transverse motion of

the linear system. It is also seen that, as P0 is increased,

the percentage difference between the predicted

natural frequencies by the two theories increases.

4.2 Principal parametric response in subcritical

regime

This section examines the principal parametric reso-

nance of the system in the subcritical regime. In other

words, the mean value of the axial force is set to a

value below the critical value and the principal

parametric response is analysed; this response is due

to the time-dependent component of the axial load. An

interesting feature of this system, classified as a

parametrically excited system, is that parametric

resonances occur in the vicinity of twice any natural

frequency of the linear system, as opposed to exter-

nally excited (e.g. a microbeam subject to a transverse

load). Another interesting feature of this class of

systems is that there is always a trivial solution

throughout the solution space. Moreover, as opposed

to transversely excited systems, there are period-

doubling bifurcations present. In what follows, the

modal damping ratio f is set to 0.017; f is related to cd
through cd = 2fx1.

Figure 4 shows the size-dependent principal reso-

nant response of the system; a frequency sweep is

conducted around twice the first linear natural fre-

quency of the transverse motion, when P0 = 4.0,

P1 = 4.0, and x1 = 8.34. Sub-figures (a) and (b) cor-

respond to the transverse displacement at the mid-

point and rotation at x = 0, respectively. Theoreti-

cally, as the frequency ratio (X/x1) is increased from

1.95, the system stays at rest until reaching

X = 1.9853x1, where the first period-doubling bifur-

cation occurs, and a non-trivial stable solution branch

bifurcates. It is worth noting that sharp increase in the

transverse amplitude (from zero) hints the occurrence

of a buckling. A second period-doubling bifurcation

occurs at point PD2 (X = 2.0138x1); the trivial

solution branch is unstable between the two period-

doubling bifurcations. At the second period-doubling

bifurcation point, a non-trivial unstable solution

branch emerges. The two stable and unstable solution

branches coincide at X = 2.1995x1, where a limit

point bifurcation occurs. Figure 5 shows the details of

the dynamic response of the system at X = 2.10x1,

through (a, b) time traces, (c, d) phase-plane portraits,

(e, f) fast Fourier transforms (FFTs), of the transverse

motion and rotation, respectively. The time histories

of the transverse motion at several excitation frequen-

cies are depicted in Fig. 6. It is seen that, as a result of

Ω/ω1

w m
ax

1.95 2 2.05 2.1 2.15 2.2

0

0.05

0.1

0.15

0.2

0.25

0.3
Stable
Unstable LP

PD1 PD2

Ω/ω1

φ m
ax

1.95 2 2.05 2.1 2.15 2.2

0

0.004

0.008

0.012

0.016 Stable
Unstable

(a)

(b)

Fig. 4 Frequency–response curves of the system: a the max-

imum amplitude of the transverse motion at the centre of the

microbeam; b the maximum amplitude of the rotation at x = 0;

P0 = 4.0, P1 = 0.52, and x1 = 8.34
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(b)(a)

(d)(c)

(f)(e)
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Fig. 5 The details of the dynamics of the system of Fig. 4 at X = 2.10x1: a, b time traces, c, d phase-plane portraits, and e, f FFTs of
the transverse motion and rotation, respectively
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increased amplitude of oscillation, the nonlinear

frequency of the oscillation increases as well.

When P0 is set to 4.0, which is lower than the

critical value, and also X is set to 2.05x1, the system

response is plotted in Fig. 7 as the amplitude of axial

load variations, P1, is varied. There are two bifurcation

points. The first one is of a period-doubling type

(P1 = 0.8617); this bifurcation is responsible for

bifurcating the unstable non-trivial solution (of sub-

critical type). The second bifurcation is a limit point

type, which occurs at P1 = 0.4896; this bifurcation is

responsible for regaining stability. An important

feature of the response is the occurrence of the limit

(a) 

(b) 

(c) 

t

w

196 197 198 199 200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
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t

w
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0
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0.3
Ω=2.15ω1
Ω=2.18ω1

bFig. 6 Time histories of the transverse motion of the system of

Fig. 4 at a X = 2.03x1 and X = 2.06x1, b X = 2.09x1 and

X = 2.12x1, and c X = 2.15x1 and X = 2.18x1

P1

w m
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Fig. 7 Force–response curves of the system: a the maximum

amplitude of the transverse motion at the centre of the

microbeam; b the maximum amplitude of the rotation at

x = 0; P0 = 4.0, X = 2.05x1, and x1 = 8.34
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point bifurcation earlier than the period-doubling

bifurcation, i.e. the system displays subcritical bifur-

cation. From design perspective, this is crucial, since,

when P1 is increased, a jump (from rest at zero to a

non-zero amplitude) could occur at values lower than

P1 corresponding to the period-doubling bifurcation,

and thus the system may experience a large-amplitude

motion prior to reaching the period-doubling bifurca-

tion point.

The principal parametric resonant responses

obtained based on the modified couple stress and

classical continuum theories are shown in Fig. 8. As

seen in this figure, based on the modified couple stress

theory, the peak-amplitude occurs at a smaller exci-

tation frequency (i.e. the frequency of the axial load

variations); the peak-amplitude is also smaller based

on the modified couple stress theory. Both the theories

predict a hardening-type nonlinear behaviour.

The principal parametric response of the system for

several values of P0 (i.e. the constant component of the

axial load) is plotted in Fig. 9, illustrating that for

larger values of P0, the non-trivial response emerges at

lower frequency ratios. Moreover, the peak-amplitude

is larger for larger values of P0 and occurs at larger

frequency ratios.
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Fig. 8 Frequency–response curves of the system obtained via

the modified couple stress and classical continuum theories:

a the maximum amplitude of the transverse motion at the centre

of the microbeam; b the maximum amplitude of the rotation at

x = 0; P0 = 4.0 and P1 = 0.52
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Fig. 9 Frequency–response curves of the system for several

values of P0: a the maximum amplitude of the transverse motion

at the centre of the microbeam; b the maximum amplitude of the

rotation at x = 0; P1 = 0.52

2468 Meccanica (2016) 51:2459–2472

123



Figure 10 demonstrates the relation between the

amplitude of axial load variations, P1, and the

frequency ratios corresponding to the period-doubling

bifurcations in the frequency–response curves. As

seen in this figure, as P1 is increased, the first period-

doubling bifurcation (PD1) occurs at smaller fre-

quency ratios and the second one (PD2) occurs at

larger frequency ratios.

The principal parametric response of the system,

when P1 is varied as the control parameter (i.e. the

force–response curve), is illustrated in Fig. 11 for

several values of P0. It is seen that as the value of P0 is

increased, the period-doubling bifurcation occurs at

larger values of P1, and the subcritical behaviour

becomes stronger (i.e. the difference between the

period-doubling and limit point bifurcations increases).

Figure 12 shows a closer look at the variation of the

amplitude of P1 corresponding to the period-doubling

bifurcation with P0, illustrating that as the amplitude of

P0 is increased, a larger P1 is required to reach the

period-doubling bifurcation (instability).

The effect of the frequency ratio on the force–

responses of the system is depicted in Fig. 13, showing

that for higher value of X/x1, the amplitude of

oscillation is larger at sufficiently large P1. Moreover,

it is seen that for frequency ratios less than or equal to

2.0, no limit point bifurcation occurs after the occur-

rence of the period-doubling bifurcation. Figure 14

demonstrates the variation of the amplitude of P1

corresponding to the period-doubling bifurcation with

X/x1. It is seen that as the frequency ratio is increased

from 1.90, the amplitude of P1 corresponding to the

period-doubling bifurcation decreases until reaching a

minimum value at X/x1 = 2.0. The amplitude of P1

corresponding to the period-doubling bifurcation

increases thereafter with increasing frequency ratio.

5 Conclusions

The nonlinear dynamic stability in parametric reso-

nant response of axially excited Timoshenko
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Fig. 10 The variations of the excitation frequencies corre-

sponding to the period-doubling bifurcations in the frequency–

response curves of the system with P1; P0 = 4.0 and x1 = 8.34
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Fig. 11 Force–response curves of the system for several values

of P0: a the maximum amplitude of the transverse motion at the

centre of the microbeam; b the maximum amplitude of the

rotation at x = 0; X = 16.80
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microbeams has been examined numerically; the

microbeam was subject to a time-dependent axial

load. A continuous model based on the modified

couple stress theory was constructed and reduced via

Galerkin’s method. The pseudo-arclength continua-

tion method, a direct time integration method based on

the modified Rosenbrock scheme, an eigenvalue

extraction method, and the Floquet method were

employed to obtain the system response and its

stability.

The linear analysis showed that as the amplitude of

mean axial load is increased, the natural frequencies of

the system decrease. Moreover, it was shown that the

modified couple stress theory predicts a larger natural

frequency, compared to the classical continuum

theory, at arbitrary amplitude of the mean axial load.

The nonlinear principal parametric response of the

system showed that: (1) as the frequency of the axial

load variations is varied around twice the first linear

natural frequency of the transverse motion, non-trivial

solution branches bifurcate, due to occurrences of

period-doubling bifurcations; (2) the force–response

of the system displays a sub-critical behaviour, with

the possibility of jumping to the non-trivial branch at

amplitudes of the axial load variations prior to the

occurrence of period-doubling bifurcation; (3) the

modified couple stress theory predicts the occurrence

of non-trivial solution branch at larger excitation

frequencies; (4) as a result of increased amplitude of

the axial load variations, the unstable region between

the two period-doubling bifurcations becomes larger;

(5) the minimum amplitude of the axial load variation

corresponding to the period-doubling bifurcation in

the force–response of the system occurs at X/
x1 = 2.0.
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