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Abstract This paper extends the ideal flow theory,

which is well known for isotropic rigid perfectly

plastic materials, to quite general orthotropic materials

which comply with the principle of maximum plastic

dissipation. The new theory is restricted to steady

planar flow. The original ideal flow theory is widely

used as the basis for inverse methods for the prelim-

inary design of metal forming processes driven by

minimum plastic work. The new theory extends this

area of application to orthotropic materials. Moreover,

another design criterion based on the Cockroft–

Latham ductile fracture criterion is incorporated in

the theory. To this end, the extended Bernoulli’s

theorem relating pressure and velocity along any

streamline during the steady planar flow of rigid

perfectly plastic solids when the streamline is coinci-

dent everywhere with a principal stress trajectory is

used. In particular, this theorem and the concept of

ideal flow combine to evaluate the integral involved in

the ductile fracture criterion. The final result is a

simple relation between process parameters and the

constitutive parameter involved in the ductile fracture

criterion. The simplicity of this relation makes it

suitable for quick design of metal forming processes.

Keywords Ductile fracture � Ideal flow � Bernoulli’s
theorem � Orthotropic material � Rigid plastic material

1 Introduction

Ideal plastic flows are those for which all material

elements undergo minimum work paths [1]. The

theory of bulk ideal flow has been developed for rigid

perfectly plastic solids satisfying Tresca’s yield con-

dition and its associated flow rule. In particular, the

existence of steady three-dimensional ideal flows in

such solids has been demonstrated in [2]. This result

has been extended to non-steady flows in [3]. On the

other hand, it has been clarified in [4] that an additional

condition of the existence of steady three-dimensional

ideal flow is that the perimeter of the product cross-

section is not larger than that of the input cross-

section. A comprehensive overview on the ideal flow

theory has been provided in [5]. This theory has been

used as the basis for inverse methods for the prelim-

inary design of bulk metal forming processes driven

by minimum plastic work [6–8]. In particular, optimal

dies for extrusion (or drawing) have been found in

these papers. Necessary conditions for the optimality

of extrusion dies for rigid plastic materials obeying

strictly convex yield criteria have been derived in [9].
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The development of simplified methods for analysis

and design of metal forming processes is of impor-

tance for applications since standard finite element

simulations are too slow for many purposes [10]. It is

worthy of note that the ideal flow theory results in

rather a general method of analyzing and designing

metal forming processes, whereas many other simpli-

fied methods deal with a specific process (see, for

example, [11] for plate rolling and [12] for wire

drawing). A disadvantage of the existing ideal flow

theory is that it is in general restricted to isotropic rigid

perfectly plastic materials. It has been shown in [13]

that elasticity can be incorporated in the theory for

steady planar flow. However, in many cases elasticity

is not so important for analyzing metal forming

processes. In particular, rigid plastic models are used

even in conjunction with finite element methods (see,

for example, [14, 15]). On the other hand, plastic

anisotropy is very common to metallic materials [16].

This material property has been incorporated in the

ideal flow theory for sheet metal forming [17, 18]. The

present paper concerns with the theory of bulk ideal

flow for plane strain deformation of anisotropic

materials assuming that the model of anisotropic

plasticity proposed in [19] is valid.

In most bulk forming processes, formability is

limited by ductile fracture [20]. It is therefore of

importance to incorporate a ductile fracture model in

the ideal flow theory. Empirical ductile fracture

criteria are widely used to predict the initiation of

fracture in metal forming processes. In particular, such

criteria are included in modern commercial finite

element packages. Reviews of empirical ductile

fracture criteria are provided, for example, in [21–

23]. In the present paper, the fracture criterion

proposed in [24] is adopted. Note that a modified

version of this criterion has been introduced in [25].

However, the original andmodified criteria coincide in

the case under consideration. Therefore, both criteria

are referred to as the Cockroft and Latham criterion in

the present paper. This criterion has been used and/or

evaluated for several metals in [23, 26–33]. In

particular, it has been mentioned in [26, 27, 29] that

the Cockroft and Latham criterion predicts the initi-

ation of ductile fracture more accurately than the other

ductile fracture criteria considered in that papers. The

approach developed in the present paper to incorporate

the Cockroft and Latham criterion in the ideal flow

theory is based on the extended Bernoulli theorem

proven in [34]. A remarkable property of this approach

is that there is no need to know the solution of a

plasticity problem to apply the Cockroft and Latham

criterion. The final expression is very simple and can

be directly used for preliminary design driven by

ductile fracture.

2 Material model and deformation process

It has been shown in [35] that the plane strain yield

criterion of any incompressible anisotropic material

which complies with the principle of maximum plastic

dissipation is expressed solely in terms of the stress

variables s ¼ raa � rbb
� ��

2 and s ¼ rab where raa,
rbb and rab are the components of the stress tensor in

an arbitrary curvilinear orthogonal coordinate system

a; bð Þ. Therefore, the yield criterion may be repre-

sented as

F s; sð Þ ¼ 0: ð1Þ

The function F s; sð Þmust satisfy the standard require-

ments imposed on the yield criteria in the theory of

rigid plastic materials based on the associated flow

rule. It is evident from the definition for s and s that the
yield function is independent of the mean stress. The

subsequent investigation is restricted to the orthotro-

pic form of initial anisotropy. This form is most

common to metallic materials [16]. In order to apply

the associated flow rule, s should be represented as

s ¼ 1=2 rab þ rba
� �

where rab ¼ rba. Then, Eq. (1)
and this rule combine to give

naa ¼ k
oF

os
; nbb ¼ �k

oF

os
; nab ¼ k

oF

os
: ð2Þ

Here naa, nbb and nab are the components of the strain

rate tensor in the a; bð Þ coordinate system and k is a

non-negative multiplier. It is assumed that there is no

Bauschinger effect. Then, the yield criterion (1) does

not contain linear terms. Quadratic terms in which the

shear stress occurs linearly are rejected in view of the

symmetry restriction [36]. In this case oF=os ¼ 0 at

s ¼ 0 and it follows from (2) that

nab ¼ 0 if rab ¼ 0: ð3Þ

It also follows from (2) that

naa þ nbb ¼ 0: ð4Þ
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It is evident that this is the equation of incompress-

ibility. It is supposed that the evolution of anisotropy

obeys the model proposed in [19].

Quite a general steady plane strain process of

deformation of rigid plastic material is shown

schematically in Fig. 1. There are two rigid zones

and one plastic zone. Let U1 be the velocity of rigid

zone 1 and U2 be the velocity of rigid zone 2. Then, it

follows from the incompressibility Eq. (4) that

U1H1 ¼ U2H2 ð5Þ

where H1 is the thickness of the strip in rigid zone 1

and H2 is the thickness of the strip in rigid zone 2. The

surface of tool is frictionless and the velocity vector is

continuous across rigid plastic boundaries in steady

ideal flow [2].

The complete system of equations to solve com-

prises Eqs. (1), (2) and the equilibrium equations.

3 Steady planar ideal flow of orthotropic material

The ideal flow theory deals with non-standard bound-

ary value problems of plasticity. In particular, the

shape of tool is unknown and should be found such

that all material elements undergo minimum work

paths. The latter is advantageous for a number of metal

forming processes. Therefore, the ideal flow theory

deals with the design of such processes. This kind of

boundary value problems is difficult to solve by

standard numerical methods. In addition, the system of

equations is hyperbolic [35]. This greatly adds to the

difficulties of numerical solutions, unless the method

of characteristics is used.

Consider three curvilinear orthogonal right-handed

coordinate systems; namely, x1; y1ð Þ, x2; y2ð Þ and

x3; y3ð Þ. The x1; y1ð Þ coordinate system is defined by

the condition that the x1-coordinate curves coincide

with streamlines, the x2; y2ð Þ coordinate system by the

condition that the x2-coordinate curves coincide with

trajectories of the greatest principal stress, and the

x3; y3ð Þ coordinate system by the condition that the x3-

coordinate curves coincide with one of the curvilinear

principal axes of anisotropy. In general, these three

coordinate systems are different (Fig. 2a). However,

by definition (see, for example, [6]), the x1; y1ð Þ and
x2; y2ð Þ coordinate systems coincide in steady planar

ideal flow (Fig. 2b). Let us make an additional

assumption that the x1; y1ð Þ and x3; y3ð Þ coordinate

systems coincide at point M of a generic streamline

Plastic zone

Rigid zone 1

Rigid zone 2

Rigid plastic 
boundary

Rigid plastic 
boundary

H1

H2

U1

U2

M

Streamline

P

Q

Fig. 1 Schematic diagram of a typical steady plane strain

process

x1

y1

x1, x2

y1, y2(b) (c)

x1, x2, x3

y1, y2, y3

Additional condition

(a)

Fig. 2 Influence of the ideal flow and additional assumptions

on the orientation of x1 y1ð Þ, x2 y2ð Þ and x3 y3ð Þ coordinate

systems
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(Fig. 1). Then, the constitutive equation proposed in

[19] shows that the x1; y1ð Þ and x3; y3ð Þ coordinate

systems coincide along this streamline and, therefore,

everywhere in the plastic zone (Fig. 2c). This means

that the yield locus is invariant along the motion. The

importance of this property of constitutive equations

has been emphasized in [37, 38]. The velocity vector

in rigid zone 1 is parallel to the walls of the container.

A requirement of ideal flow is that there is no velocity

discontinuity across rigid plastic boundaries. There-

fore, the tangent to the streamline atM is parallel to the

walls of the container (Fig. 1). Thus the additional

assumption made requires that the principal axes of

anisotropy in rigid zone 1 be parallel and orthogonal to

the walls of the container. Using the same arguments it

is possible to demonstrate that the principal axes of

anisotropy in rigid zone 2 are parallel and orthogonal

to the direction of the velocity vector of this zone. The

coincidence of the x1; y1ð Þ, x2; y2ð Þ and x3; y3ð Þ
coordinate systems is an additional condition imposed

on the standard system of equations of the anisotropic

rigid plastic material under consideration. The exis-

tence of non-trivial steady ideal flows depends on the

possibility to satisfy this additional condition without

violating the standard system of equations for a

sufficiently large class of problems. The present

section provides a proof of the existence of steady

planar ideal flow for the material model chosen. In

what follows, it is assumed that x1 � x2 � x3 � a and
y1 � y2 � y3 � b. In this case s ¼ rab ¼ 0 every-

where. Therefore, Eq. (3) results in

nab ¼ 0 ð6Þ

and the yield criterion (1) reduces to

raa � rbb ¼ mK ð7Þ

where K is a material constant, m ¼ þ1 if raa [ rbb
and m ¼ �1 if raa\rbb. Equations (4) and (6)

replace two equations of the associated flow rule (2).

The third equation determines k. Since rab ¼ 0, the

equilibrium equations are [39]

hb
oraa
oa

þ raa � rbb
� � ohb

oa
¼ 0;

ha
orbb
ob

þ rbb � raa
� � oha

ob
¼ 0: ð8Þ

Here ha and hb are the scale factors for the a- and b-
lines, respectively. Eliminating raa � rbb in (8) by

means of (7) and integrating yield

hb

Hb bð Þ ¼ exp � raa
mK

� �
;

ha

Ha að Þ ¼ exp
rbb
mK

� �
: ð9Þ

Here Ha að Þ is an arbitrary function of a and Hb bð Þ is
an arbitrary function of b. However, different choices
of these functions merely change the scale of the

coordinate curves. Therefore, without loss of gener-

ality it is possible to choose Ha að Þ ¼ Hb bð Þ ¼
ffiffiffi
e

p
.

Then, Eq. (9) reduces to

raa
mK

¼ 1

2
� ln hb;

rbb
mK

¼ ln ha �
1

2
: ð10Þ

Substituting (10) into (7) gives

hahb ¼ 1: ð11Þ

Let ua and ub be the velocity components referred

to the a; bð Þ coordinate system. The component ub
vanishes everywhere since the a-lines coincide with

streamlines. Therefore, the strain rate components are

given by [39]

naa ¼
oua

haoa
; nbb ¼ ua

hahb

ohb

oa
;

2nab ¼ oua

hbob
� ua

hahb

oha

ob
: ð12Þ

Equations (4) and (12) combine to yield

oua

oa
þ ua

hb

ohb

oa
¼ 0:

This equation can be immediately integrated to give

ua ¼
V1 bð Þ
hb

: ð13Þ

Here V1 bð Þ is an arbitrary function of b. Equations (6)
and (12) combine to yield

oua

ob
� ua

ha

oha

ob
¼ 0:

This equation can be immediately integrated to give

ua ¼ V2 að Þha: ð14Þ

Here V2 að Þ is an arbitrary function of a. It follows
from Eqs. (13) and (14) that
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hahb ¼ V1 bð Þ
V2 að Þ : ð15Þ

It is evident from Eqs. (11) and (15) that the stress and

velocity solutions are compatible if V1 bð Þ ¼
V2 að Þ ¼ V0 ¼ constant. Then, Eqs. (13) and (14)

become

ua ¼ V0ha: ð16Þ

Equations (10), (11) and (16) connect the velocity and

stress components. In particular,

raa
mK

¼ 1

2
þ ln

ua

V0

� 	
;

rbb
mK

¼ � 1

2
þ ln

ua

V0

� 	
:

This is a restriction imposed by the ideal flow

conditions on all possible solutions for the material

model chosen.

4 Design driven by ductile fracture

In the case under consideration the ductile fracture

criterion proposed in [24] has the form

Zaf

aM

raaneqha
Kua

da ¼ C if m ¼ 1

Zaf

aM

rbbneqha
Kua

da ¼ C if m ¼ �1:

ð17Þ

Here C is a constitutive parameter, neq is the equiv-

alent strain rate, aM is the value of a atM (Fig. 1), and

af is the value of a at the site of the initiation of ductile
fracture. The definition for the equivalent strain rate is

usually associated with the plastic work rate [36].

Using (4), (6) and (7) the plastic work rate is

represented as

dw

dt
¼ raanaa þ rbbnbb þ 2rabnab ¼ mKnaa ð18Þ

where d=dt denotes the convected derivative. There-

fore, it is natural to put neq ¼ mnaa. Then, Eq. (17)
becomes

Zaf

aM

raanaaha
Kua

da ¼ C if m ¼ 1

Zaf

aM

raanaaha
Kua

daþ
Zaf

aM

naaha
ua

da ¼ �C if m ¼ �1:

ð19Þ

Here Eq. (7) has been taken into account. In the case

under consideration Eq. (18) becomes

ua
ow

oa
¼ mK

oua

oa
: ð20Þ

Here Eq. (12) for naa has been used. Equation (20) can

be immediately integrated to give

w ¼ mK ln
ua

U1

� 	
: ð21Þ

It has been taken into account here that ua ¼ U1 and

w ¼ 0 at the rigid plastic boundary between the plastic

zone and rigid zone 1 (Fig. 1). In the case of steady

ideal flow the following relation is immediate from the

extended Bernoulli’s theorem [34],

oraa
oa

� ow

oa
¼ 0:

This equation can be immediately integrated to give

raa � w ¼ Kp: ð22Þ

Here p is a constant of integration. Eliminating w in

(21) by means of (22) yields

raa
K

¼ pþ m ln
ua

U1

� 	
: ð23Þ

Substituting Eq. (12) for naa and (23) into (19) results

in the following condition for flow without the

initiation of ductile fracture

ZU2

U1

pþ ln
ua

U1

� 	
 �
dua

ua
\C if m ¼ 1

ZU2

U1

p� ln
ua

U1

� 	
 �
dua

ua
þ

ZU2

U1

dua

ua

������

������
\C if m ¼ �1:

ð24Þ
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It has been taken into account here that ua ¼ U1 at the

rigid plastic boundary between the plastic zone and

rigid zone 1 and ua ¼ U2 at the rigid plastic boundary

between the plastic zone and rigid zone 2 (Fig. 1).

Integrating Eq. (24) gives

p ln
U2

U1

� 	
þ 1

2
ln2

U2

U1

� 	
\C if m ¼ 1

pþ 1ð Þ ln U2

U1

� 	
� 1

2
ln2

U2

U1

� 	����

����\C if m ¼ �1

:

ð25Þ

Using (5) Eq. (25) may be transformed to

p ln
H1

H2

� 	
þ 1

2
ln2

H1

H2

� 	
\C if m ¼ 1

pþ 1ð Þ ln H1

H2

� 	
� 1

2
ln2

H1

H2

� 	����

����\C if m ¼ �1:

ð26Þ

This result is valid for any steady planar ideal flow of

the anisotropic material under consideration.

5 Fracture in drawing

A schematic diagram of the drawing/extrusion process

is shown in Fig. 1. The shape of the die is determined

by an ideal flow solution. This shape can be calculated

using the general theory developed in Sect. 3. How-

ever, the initiation of ductile fracture can be predicted

without knowing the exact shape of the die. In the case

of drawingm ¼ 1, P ¼ 0 andQ 6¼ 0. Therefore, raa ¼
0 along the rigid plastic boundary between the plastic

zone and rigid zone 1. By definition, w ¼ 0 along this

boundary. Then, it follows from (22) that p ¼ 0.

Substituting this value of p into (26) gives

ln2
H1

H2

� 	
\2C: ð27Þ

Ductile fracture does not initiate if this inequality is

satisfied.

6 Conclusions

It has been shown that non-trivial steady planar ideal flow

solutions exist in anisotropic plasticity assuming that the

model proposed in [19] is valid. In this case the yield

locus is invariant along the motion. The importance of

this property of constitutive equations has been empha-

sized in [37, 38].An additional requirement, as compared

to ideal flow in isotropic plasticity, is that the principal

axes of anisotropy in rigid zone 1 (Fig. 1) are parallel and

perpendicular to the walls of the container. This require-

ment is not so restrictive. For example, the principal axes

of anisotropy induced by flat rolling are parallel and

perpendicular to the sides of products. The theory

developed in Sect. 3 provides an efficient method of

metal forming design driven by minimum plastic work.

Using this method an optimal shape of tool can be found

in the same manner as in isotropic plasticity (see, for

example, [6]). In addition, it has been shown that the

design based on the ideal flow theory can be supple-

mented with the Cockroft–Latham ductile fracture

criterion by means of Eq. (26). This simple equation

relates the constitutive parameterC, which is supposed to

be known for a given material, geometric parameters of

the deformation process and p. The latter is determined

by stress boundary conditions. In particular, in the case of

drawing Eq. (26) reduces to Eq. (27). The simplicity of

Eq. (26)makes it suitable for quick design of the process.

This preliminary design can also be used as an initial

guess for sophisticated design solutions based on

numerical methods.
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