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Abstract Thepaper proposes a comparisonbetween a

three-dimensional (3D) exact solution and several two-

dimensional (2D) numerical solutions. Numerical

methods include classical 2D finite elements (FEs),

and classical and refined 2D generalized differential

quadrature (GDQ) solutions. The free vibration analysis

of two different configurations of functionally graded

material (FGM) plates and cylinders is proposed. The

first configuration considers a one-layered FGM struc-

ture. The second one is a sandwich configuration with

external classical skins and an internal FGM core. Low

and high order frequencies are analyzed for thick and

thin simply supported structures. Vibration modes are

investigated to make a comparison between results

obtained via the 2D numerical methods and those

obtained by means of the 3D exact solution. The 3D

exact solution is based on the differential equations of

equilibrium written in general orthogonal curvilinear

coordinates. This exact method is based on a layer-wise

approach where the continuity of displacements and

transverse shear/normal stresses is imposed at the

interfaces between the layers of the structure. The 2D

finite element results are obtained by means of a well-

known commercial FE code. Classical and refined 2D

GDQ models are based on a generalized unified

approach which considers both equivalent single layer

and layer-wise theories. The differences between 2D

numerical solutions and 3D exact solutions depend on

the considered mode, the order of frequency, the

thickness ratio of the structure, the geometry, the

embedded material and the lamination sequence.

Keywords Functionally graded materials � Plates �
Cylinders � Finite element method � Exact three-
dimensional solution � Two-dimensional solutions �
Generalized differential quadrature method � Free
vibrations � Vibration modes

1 Introduction

In Functionally Graded Materials (FGMs) two or more

constituent phases have a continuously variable compo-

sition through a particular direction [1, 2]. FGMs are a

new generation of composite materials with a number of

advantages such as a potential reduction of in-plane and

transverse through-the-thickness stresses, an improved

residual stress distribution, enhanced thermal properties,

higher fracture toughness, and reduced stress intensity

factors [3, 4]. In the designof sandwich structures, the use

of FGM cores is a valid alternative to classical cores

because they allow the continuity of in-plane stresses in
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the thickness direction that sandwiches embedding

conventional cores do not have [5, 6]. The severe

temperature loads involved in many engineering appli-

cations, such as thermal barrier coatings, engine compo-

nents or rocket nozzles, require high-temperature

resistant materials and high structural performance. The

use of FGM structures embedding ceramic and metallic

phases that continuously vary through the thickness

direction could be an optimal solution for these applica-

tions [7]. Further FGMapplicationswere described in [8]

where these materials were used to reproduce biological

structures characterized by functional spatially dis-

tributed gradients in which each layer has one or more

specific functions to perform. FGMs require an accurate

evaluation of displacements, strains, stresses and vibra-

tions. These variables are fundamental in the design of

FGM structures. For these reasons, several refined 2D

[11, 12] and 3D models have been developed for the

analysis of plate and shell elements embedding func-

tionally graded layers. A thorough introduction about

some applications of FGM plates and shells in the

literature can be found in the recent reviewpapers [9, 10].

In the literature, three-dimensional solutions for

FGM structures are given for specific geometries

separately and not in a general framework for different

geometries such as plates, cylindrical or spherical shells

[13]. Dong [14] investigated three-dimensional free

vibrations of functionally graded annular plates with

different boundary conditions using the Chebyshev–

Ritz method. Li et al. [15] analyzed free vibrations of

functionally graded material sandwich rectangular

plates using the Chebyshev–Ritz method too. A semi-

analytical approach composed of differential quadrature

method (DQM) and series solution was adopted in

Malekzadeh [16] to solve the equations of motions for

the free vibration analysis of thick FGM plates

supported on two-parameter elastic foundation. Further

three-dimensional models for free vibration analysis of

FGM plates used a closed exact solution [17, 18]. Other

three-dimensional exact models allow static analysis of

FGM plates. Kashtalyan [19] and Xu and Zhou [20]

showed the bending of one-layered functionally graded

plates. Kashtalyan and Menshykova [21] investigated

the bending of sandwich plates embedding FGM cores.

Zhong and Shang [22] developed an exact three-

dimensional analysis for a functionally gradient piezo-

electric rectangular plate that was simply supported and

grounded along its four edges. Further works analyze

FGM shells. Alibeigloo et al. [23] investigated 3D free

vibrations of a functionally graded cylindrical shell

embedded in piezoelectric layers. An analytical method

for simply supported boundary conditions and a semi-

analytical method for non-simply supported conditions

were used. Zahedinejad et al. [24] studied free vibration

analysis of functionally graded (FG) curved thick panels

under various boundary conditions using the three-

dimensional elasticity theory and the differential

quadrature method. The trigonometric functions were

used to discretize the governing equations. Chen et al.

[25] proposed free vibrations of simply supported, fluid-

filled cylindrically orthotropic functionally graded

shells with arbitrary thickness. A laminate approximate

model was employed, it is suitable for an arbitrary

variation ofmaterial constants along the radial direction.

An exact elasticity solutionwas presented in [26] for the

free and forced vibrations of functionally graded

cylindrical shells. Three-dimensional linear elastody-

namics equations were used and they were simplified to

the case of generalized plane strain deformation in the

axial direction. A meshless method based on the local

Petrov-Galerkin approach was presented for three-

dimensional (3-D) axisymmetric linear elastic solids

with continuously varying material properties for the

cases of 3D stress analysis of FGMbodies [27], 3D heat

conduction analysis of FGM bodies [28], and 3D static

and elastodynamic analysis of FGM bodies [29].

It has been demonstrated that an accurate and

reliable numerical approach for solving partial differ-

ential systems of equations is the Generalized Differ-

ential Quadrature (GDQ) method, that belongs to the

family of collocation methods and solves the mathe-

matical problem on structured points located on the

structure [30]. Interesting works about the two-

dimensional GDQ solution for the analysis of FGM

plates and shells can be found in [31–37]. Static

analysis of FGM structures have been investigated in

[31, 32]. The investigation of the free vibration of

shells on Winkler-Pasternak foundation can be found

in [33, 34]. Further general works about GDQ method

and FGMs can be found in [35–37].

The present paper proposes a free vibration analysis

of simply-supported one-layered and sandwich FGM

plates and cylinders. Low and high frequencies and

related modes are investigated. The importance of

higher order frequency investigation has been exten-

sively discussed in the reports by Leissa [38, 39], in the

book byWerner [40] and in the work by Brischetto and

Carrera [41].
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The main aim of this work is the comparison

between the results obtained by means of an exact

three-dimensional (3D) solution, and those obtained by

means of the classical two-dimensional (2D) finite

element method (FEM) and by means of the classical

and refined 2D generalized differential quadrature

(GDQ) models. It is an extension of the previous

authors’ work about the analysis of multilayered

composite and sandwich cylindrical and spherical shell

panels [42]. The proposed exact 3D solution was

developed by Brischetto in [13, 42–47], where the

differential equations of equilibrium written in general

orthogonal curvilinear coordinates were exactly solved

bymeans of the exponential matrix method. The 2D FE

results were obtained bymeans of the commercial finite

element code Patran and Nastran [48]. The 2D mod-

eling of FGM plates and shells has been proposed, by

the authors, for different structural components. First

order shear deformation theory (GDQ-RM) has been

extended to plates, revolution shells and doubly-curved

shells in [49–54]. A unified formulation for high order

2D models has been introduced for the free vibration

problem of laminated FGM and laminated composite

structures in [55, 56], respectively. As far as the static

problem of FGM shells is concerned, preliminary

results were published in [57, 58], where a stress

recovery procedure has been implemented to calculate

the stress and strain behaviors through the shell

thickness. The same approach has been extended to

high order 2D models in [59, 60] where sandwich

composites have been accurately analyzed.

In the most general case of exact three-dimensional

analyses, the number of frequencies for a free vibration

problem is infinite: three displacement components (3

degrees of freedomDOF) in each point (points are1 in

the 3 directions x, y, z) leads to 3�13 vibration

modes. Assumptions are made in the thickness direc-

tion z in the case of a 2D plate/shell model, the three

displacements in each point are expressed in terms of a

given number of degrees of freedom (NDOF) through

the thickness direction z. NDOF varies from theory to

theory. As a result, the number of vibration modes is

NDOF �12 in the case of exact 2Dmodels. For exact

1D beam models, the number of vibration modes is

NDOF �11. In the case of 2D computational mod-

els, such as the Finite Element (FE) method or the

generalized differential quadrature (GDQ) models, the

number of modes is a finite number. This number

coincides with the total number of employed degrees

of freedom:
PNode

1 NDOFi, where Node denotes the

number of nodes used in the FE mathematical model

or in the GDQ analysis, and NDOFi is the NDOF

through the thickness direction z in the i-node. It is

clear that some modes cannot be calculated by

simplified models (such as computational two-dimen-

sional models) [41]. In order to make a comparison

between the 2D FE free vibration results, the 2D GDQ

results and the 3D exact free vibration results, the

investigation of the vibration modes is mandatory in

order to understand which frequencies must be

compared.

In the literature review proposed in this introduction,

only a few works analyzed higher order frequencies for

FGM structures. Moreover, papers that discuss the

comparison between numerical 2D models and exact

3D models are even less frequent. The present work

aims to fill this gap, it compares the free frequencies for

FGM plates and cylinders obtained by means of the

commercial FE code Nastran, the classical and refined

2D GDQ models, and the exact 3D solution. The

proposed 3D exact solution gives results for plates,

cylindrical and spherical shell panels, and cylindrical

closed shells. However, the comparison with the

commercial FE code and the GDQ models is proposed

only for plates and cylinders for the sake of brevity. A

future work will also consider the free frequency

analysis of FGM cylindrical and spherical shells by

means of 3D exact and 2D numerical models. The aim

of the present paper is to understand how to compare

these three different methods (exact 3D and numerical

FE and GDQ solutions) and also to show the limitations

of classical 2D theories.

2 Exact three-dimensional model

Three-dimensional linear elastic constitutive equa-

tions in orthogonal curvilinear coordinates (a, b, z)
(see Fig. 1) are here given for a generic k isotropic

layer. Coefficients Cqr depend on the thickness

coordinate z in the case of functionally graded

materials. The stress components (raa, rbb, rzz, rbz,
raz, rab) are linked with the strain components (�aa,

�bb, �zz, cbz, caz, cab) for each k FGM layer as:

raak ¼ C11kðzÞ�aak þ C12kðzÞ�bbk þ C13kðzÞ�zzk; ð1Þ
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rbbk ¼ C12kðzÞ�aak þ C22kðzÞ�bbk þ C23kðzÞ�zzk; ð2Þ

rzzk ¼ C13kðzÞ�aak þ C23kðzÞ�bbk þ C33kðzÞ�zzk; ð3Þ

rbzk ¼ C44kðzÞcbzk; ð4Þ

razk ¼ C55kðzÞcazk; ð5Þ

rabk ¼ C66kðzÞcabk: ð6Þ

The strain-displacement relations of three-dimen-

sional theory of elasticity in orthogonal curvilinear

coordinates, as also shown in [38, 39, 61], are here

written for the generic k layer of the multilayered FGM

shell with constant radii of curvature (see Fig. 1):

�aak ¼
1

Ha

ouk

oa
þ wk

HaRa
; ð7Þ

�bbk ¼
1

Hb

ovk

ob
þ wk

HbRb
; ð8Þ

�zzk ¼
owk

oz
; ð9Þ

cbzk ¼
1

Hb

owk

ob
þ ovk

oz
� vk

HbRb
; ð10Þ

cazk ¼
1

Ha

owk

oa
þ ouk

oz
� uk

HaRa
; ð11Þ

cabk ¼
1

Ha

ovk

oa
þ 1

Hb

ouk

ob
: ð12Þ

The parametric coefficients for shells with constant

radii of curvature are:

Ha ¼ 1þ z

Ra

� �

¼ 1þ ~z� h=2

Ra

� �

;

Hb ¼ 1þ z

Rb

� �

¼ 1þ ~z� h=2

Rb

� �

; Hz ¼ 1;

ð13Þ

h is the total thickness of the structure. Ha and Hb

depend on z or ~z coordinate (see Fig. 2). Hz ¼ 1

because z coordinate is always rectilinear. Ra and Rb

are the principal radii of curvature along the coordi-

nates a and b, respectively. Symbol o indicates the

partial derivatives. General geometrical relations for

spherical shells in Eqs. (7)–(12) degenerate into

geometrical relations for cylindrical shells when Ra

or Rb is infinite (with Ha or Hb equals one). They

degenerate into geometrical relations for plates when

both Ra and Rb are infinite (with Ha ¼ Hb ¼ 1)

(further details can be found in [38, 39, 61]).

The three differential equations of equilibrium,

written for the case of free vibration analysis of

multilayered spherical shells with constant radii of

curvature Ra and Rb, are here given (the most general

form for variable radii of curvature can be found in

[63, 64]):

Hb
oraak
oa

þ Ha
orabk
ob

þ HaHb
orazk
oz

þ 2Hb

Ra
þ Ha

Rb

� �

razk ¼ qkðzÞHaHb€uk;

ð14Þ

Hb
orabk
oa

þ Ha
orbbk
ob

þ HaHb
orbzk
oz

þ 2Ha

Rb
þ Hb

Ra

� �

rbzk ¼ qkðzÞHaHb€vk;

ð15Þ

Hb
orazk
oa

þ Ha
orbzk
ob

þ HaHb
orzzk
oz

� Hb

Ra
raak

� Ha

Rb
rbbk þ

Hb

Ra
þ Ha

Rb

� �

rzzk

¼ qkðzÞHaHb €wk;

ð16Þ

where qkðzÞ is the mass density that varies through the

thickness of a functionally graded layer.

Fig. 1 Geometry, notation and reference system for shells
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(raak; rbbk; rzzk; rbzk; razk; rabkÞ are the six stress com-

ponents. €uk, €vk and €wk indicate the second temporal

derivative of the three displacement components uk, vk
and wk, respectively. Each quantity depends on the k

layer. Ra and Rb are referred to the mid-surface X0 of

the whole multilayered shell. Ha and Hb continuously

vary through the thickness of the multilayered shell

and they depend on the z thickness coordinate.

These equilibrium equations are valid for spher-

ical shell panels and they degenerate in equilib-

rium equations for cylindrical open and closed

shell panels when Ra orRb is infinite (Ha orHb equals

1), and in equilibrium equations for plates when Ra

and Rb are infinite (Ha ¼ Hb ¼ 1). Therefore,

Eqs. (14)–(16) are valid for all the geometries

indicated in Fig. 3.

The closed form of Eqs. (14)–(16) is obtained for

simply supported shells and plates indicated in Fig. 3.

The three displacement components have the follow-

ing harmonic form:

ujða; b; zÞ ¼ UjðzÞeixtcosð�aaÞsinð�bbÞ; ð17Þ

vjða; b; zÞ ¼ VjðzÞeixtsinð�aaÞcosð�bbÞ; ð18Þ

wjða; b; zÞ ¼ WjðzÞeixtsinð�aaÞsinð�bbÞ; ð19Þ

where UjðzÞ, VjðzÞ and WjðzÞ are the displacement

amplitudes in a, b and z directions, respectively. i is

the coefficient of the imaginary unit. x ¼ 2pf is the

circular frequency where f is the frequency value, t is

the time. In coefficients �a ¼ mp
a
and �b ¼ np

b
,m and n are

the half-wave numbers and a and b are the shell

dimensions in a and b directions, respectively (calcu-

lated in the mid-surface X0).

Equations (1)–(12) and (17)–(19) are introduced in

Eqs. (14)–(16) in order to obtain the following system

of equations for each j mathematical layer:

�C55jHb

HaR2
a
� C55j

RaRb
� �a2

C11jHb

Ha

�

��b2
C66jHa

Hb
þqjHaHbx

2

�

Uj

þ ��a�bC12j� �a�bC66j

� �
Vj

þ �a
C11jHb

HaRa
þ �a

C12j

Rb
þ �a

C55jHb

HaRa
þ �a

C55j

Rb

� �

Wj

þ C55jHb

Ra
þC55jHa

Rb

� �

Uj;z

þ �aC13jHbþ �aC55jHb
� �

Wj;zþ C55jHaHb
� �

Uj;zz ¼ 0;

ð20Þ

��a�bC66j � �a�bC12j

� �
Uj

þ �C44jHa

HbR
2
b

� C44j

RaRb
� �a2

C66jHb

Ha
� �b2

C22jHa

Hb

 

þ qjHaHbx
2

!

Vj þ �b
C44jHa

HbRb
þ �b

C44j

Ra
þ �b

C22jHa

HbRb

�

þ�b
C12j

Ra

�

Wj þ C44jHa

Rb
þC44jHb

Ra

� �

Vj;z

þ �bC44jHa þ �bC23jHa
� �

Wj;z þ C44jHaHb
� �

Vj;zz ¼ 0;

ð21Þ

�a
C55jHb

HaRa
� �a

C13j

Rb
þ �a

C11jHb

HaRa
þ �a

C12j

Rb

� �

Uj

þ �b
C44jHa

HbRb
� �b

C23j

Ra
þ �b

C22jHa

HbRb
þ �b

C12j

Ra

� �

Vj

þ C13j

RaRb
þ C23j

RaRb
�C11jHb

HaR2
a
� 2C12j

RaRb
�C22jHa

HbR
2
b

 

��a2
C55jHb

Ha
��b2

C44jHa

Hb
þ qjHaHbx

2

�

Wj

þ ��aC55jHb � �aC13jHb
� �

Uj;z

þ ��bC44jHa � �bC23jHa
� �

Vj;z

þ C33jHb

Ra
þC33jHa

Rb

� �

Wj;z þ C33jHaHb
� �

Wj;zz ¼ 0:

ð22Þ

Fig. 2 Thickness

coordinates and reference

systems for plates and shells
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Elastic coefficients Cqr depend on the thickness

coordinate z when the k layer is a functionally graded

material layer. Parametric coefficients Ha and Hb

depend on the thickness coordinate z in the case of

shell geometry and they are equal 1 in case of plates.

Therefore, Eqs. (20)–(22) do not have constant

coefficients because of FGM layers and/or shell

geometry. In order to obtain Eqs. (20)–(22) with

constant coefficients, each k layer is divided in l

mathematical layers where the coefficients Cqr can be

assumed as constant and parametric coefficients Ha

and Hb can be easily calculated in the middle of each

mathematical layer. Equation (20)–(22) were rewrit-

ten by using j ¼ k � l mathematical layers that allow

constant coefficients to be considered (see [13] for

further details).

Elastic coefficients andmass density can be assumed

as constant in each j mathematical layer even if a

functionally graded material is considered. Parametric

coefficients Ha and Hb are also constant because the

thickness coordinate z is known at the middle of each j

layer. The system of Eqs. (20)–(22) is written in the

following compact form using the nomenclature Asj

(with s from 1 to 19 and j from 1 to the NL

mathematical layer) for terms included in parentheses:

A1jUj þ A2jVj þ A3jWj þ A4jUj;z þ A5jWj;z

þ A6jUj;zz ¼ 0;
ð23Þ

A7jUj þ A8jVj þ A9jWj þ A10jVj;z þ A11jWj;z

þ A12jVj;zz ¼ 0;
ð24Þ

A13jUj þ A14jVj þ A15jWj þ A16jUj;z þ A17jVj;z

þ A18jWj;z þ A19jWj;zz ¼ 0:
ð25Þ

Equations (23)–(25) are a system of three second order

differential equations. They are written for spherical

shell panels with constant radii of curvature but they

automatically degenerate into equations for cylindri-

cal shells and plates (see Fig. 3).

The system of second order differential equations

can be reduced to a system of first order differential

equations using the method described in [65, 66]. A

compact form of the system of first order differential

equations can be:

Dj

oUj

o~z
¼ AjUj; ð26Þ

where
oUj

o~z ¼ U0
j and Uj ¼ ½Uj Vj Wj U

0
j V

0
j W

0
j �. Equa-

tion (26) can be written as:

(a) (b)

(c) (d)

Fig. 3 Geometries for

assessments and

benchmarks
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DjU
0
j ¼ AjUj; ð27Þ

U0
j ¼ D�1

j Aj Uj; ð28Þ

U0
j ¼ A�

j Uj; ð29Þ

with A�
j ¼ D�1

j Aj.

In the case of plate geometry, coefficients A3j, A4j,

A9j, A10j, A13j, A14j and A18j are zero because the radii

of curvature Ra and Rb are infinite. The solution of

Eq. (29) can be written as (see [66, 67]):

Ujð~zjÞ ¼ expðA�
j ~zjÞUjð0Þ with ~zj � ½0; hj�; ð30Þ

where ~zj is the thickness coordinate of each j layer

from 0 at the bottom to hj at the top (see Fig. 2). The

exponential matrix is calculated with ~zj ¼ hj for each j

layer as:

A��
j ¼ expðA�

j hjÞ ¼ I þ A�
j hj þ

A�2
j

2!
h2j þ

A�3
j

3!
h3j

þ � � � þ
A�N
j

N!
hNj ; ð31Þ

where I is the 6� 6 identity matrix. This expansion

has a fast convergence as indicated in [68] and it is not

time consuming from the computational point of view.

This method has already successfully applied by

Messina [69] for the case of plates in rectlinear

orthogonal coordinates (x, y, z) and by Soldatos and

Ye [70] for the case of closed cylinders in cylindrical

coordinates (q,h).
Considering j ¼ NL layers, NL � 1 transfer matri-

ces Tj�1;j must be calculated using for each interface

the following conditions for interlaminar continuity of

displacements and transverse shear/normal stresses:

ubj ¼ utj�1; vbj ¼ vtj�1; wb
j ¼ wt

j�1; ð32Þ

rbzzj ¼ rtzzj�1; rbazj ¼ rtazj�1; rbbzj ¼ rtbzj�1; ð33Þ

that means each displacement and transverse stress

component at the top (t) of the j�1 layer is equal to

displacements and transverse stress components at the

bottom (b) of the j layer.

The structures are simply supported and free

stresses at the top and at the bottom of the whole

multilayered shell, this feature means:

rzz ¼ raz ¼ rbz ¼ 0 for z ¼ �h=2;þh=2

or ~z ¼ 0; h; ð34Þ

w ¼ v ¼ 0; raa ¼ 0 for a ¼ 0; a; ð35Þ

w ¼ u ¼ 0; rbb ¼ 0 for b ¼ 0; b: ð36Þ

Boundary conditions given by Eqs. (35) and (36) are

identically satisfied by the displacement field in

Eqs. (17)–(19). These boundary conditions do not take

part to the determination of the maximal displacement

amplitudes addressed in the remaining of the section.

All these conditions give the following final system:

EU1ð0Þ ¼ 0; ð37Þ

where matrix E has always (6� 6) dimension, inde-

pendently from the number of layers NL, even if the

method uses a layer-wise approach. U1ð0Þ means U

calculated at the bottom of the whole multilayered

shell, first layer 1 with ~z1 ¼ 0. Further details about

this procedure, and all the step missed in this paper can

be found in [13, 42, 43] where the extensions of this

3D exact method have been made for the first time.

The free vibration analysis means to find the non-

trivial solution of U1ð0Þ in Eq. (37) imposing the

determinant of matrix E equals zero:

det½E� ¼ 0; ð38Þ

Equation (38) means to find the roots of an higher

order polynomial in k ¼ x2. For each pair of half-

wave numbers (m, n) a certain number of circular

frequencies (from I to 1) are obtained. This number

depends on the order N chosen for each exponential

matrix A��
j and the number NL of mathematical layers.

A certain number of circular frequenciesxs are found

when half-wave numbers m and n are imposed in the

structures. For each frequency xs, it is possible to find

the vibration mode through the thickness in terms of

the three displacement components. If the frequency

xs is substituted in the (6 � 6) matrix E, this last

matrix has six eigenvalues. We are interested to the

null space of matrix E that means to find the (6� 1)

eigenvector related to the minimum of the six

eigenvalues proposed. This null space is the vector

U calculated at the bottom of the whole structure for

the chosen frequency xs:

U1xs
ð0Þ¼

U1ð0Þ V1ð0Þ W1ð0Þ U0
1ð0Þ V 0

1ð0Þ W 0
1ð0Þ½ �Txs

;

ð39Þ
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T means the transpose of the vector and the subscript

xs means that the null space is calculated for the

circular frequency xs.

It is possible to find Ujxs
ð~zjÞ (with the three

displacement components Ujxs
ð~zjÞ, Vjxs

ð~zjÞ and

Wjxs
ð~zjÞ through the thickness) for each j layer of the

multilayered structure using Eqs. (32)–(33) with the

index j from 1 to NL. The thickness coordinate ~z can

assume all the values from the bottom to the top of the

structure.

2.1 Validation of the 3D exact model

Before the comparison study between the 3D exact

solution and the several 2D numerical methods, the

proposed 3D exact model has been validated by means

of two comparisons with other 3D results already given

in the literature. Further comparisons which validate the

present 3D exact model can be found in [13, 42, 43].

The first assessment considers a simply supported

square sandwich plate as proposed in Li et al. [15] (see

geometry in Fig. 3a). The sandwich plate has two

external skins with thickness h1 ¼ h3 ¼ 0:1h and an

internal core with thickness h2 ¼ 0:8h. The bottom

skin is ceramic and the top skin is metallic. The core is

made of a functionally graded material. Details about

this configuration can be found in Fig. 4 and work [15].

The metallic (m) material has Young modulus Em ¼
70 GPa, mass density qm ¼ 2707 kg/m3 and Poisson

ratio mm ¼ 0:3. The ceramic (c) material has Young

modulus Ec ¼ 380 GPa, mass density qc ¼ 3800 kg/

m3 and Poisson ratio mc ¼ 0:3. The functionally

graded core has constant Poisson ratio m ¼ 0:3. Young

modulus and mass density continuously vary through

the thickness direction z as:

EðzÞ ¼ Em þ ðEc � EmÞVc;

qðzÞ ¼ qm þ ðqc � qmÞVc;
ð40Þ

where Vc is the volume fraction of the ceramic phase

that continuously varies through the thickness as:

Vc ¼ 1� Vm ¼ 1� ð0:5þ z=h2Þp; ð41Þ

Vm is the volume fraction of metallic phase, z varies

from �h2=2 to h2=2. Exponent p can assume values

equal or greater than zero. Li et al. [15] propose a

three-dimensional solution by means of the Ritz

approach, and give the fundamental frequency for

half-wave numbers m ¼ n ¼ 1 and for several thick-

ness ratios a/h and exponents p. The circular frequen-

cies are given in non-dimensional form �x ¼ x a2

h

ffiffiffiffi
q0
E0

q

with E0 ¼ 1 GPa and q0 ¼ 1 kg/m3. Table 1 shows the

comparison between the model proposed in Li et al.

[15] and the present three-dimensional exact solution.

The two methods are in accordance for each thickness

ratio a/h and exponent p for the FGM law.

The second assessment considers a simply supported

cylindrical shell panel as proposed in Zahedinejad et al.

[24] (see geometry in Fig. 3c). The shell has the two

dimensions a and b that are coincident (a ¼ b), the

thickness ratio investigated is a/h equals 5. Two

different radii of curvature Ra are considered, that

means a=Ra equals 0.5 or 1. The radius of curvature Rb

is infinite. The shell is one-layered and it is made of a

functionally graded material as shown in Fig. 4. In this

case the structure is fully metallic at the bottom and

fully ceramic at the top. This feature means that

Eq. (40) is still valid, but the volume fraction of

ceramic phase Vc is considered in the following form:

Vc ¼ ð0:5þ z=hÞp: ð42Þ

The metallic phase and the ceramic phase have the

properties already seen for the first assessment [15].

The only difference is for qm, which is equal to 2702

kg/m3 (the first assessment considers qm ¼ 2707 kg/

m3). These material data can be found in Zahedinejad

et al. [24], who propose a three-dimensional

Fig. 4 Functionally graded material law through the thickness direction of the sandwich plate for assessment 1 (on the left) and the one-

layered cylindrical shell panel for assessment 2 (on the right)
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differential quadrature method for the free vibration

analysis of the cylindrical panel for imposed half-

wave numbers m ¼ n ¼ 1 and for several exponent

values p. The results are given as non-dimensional

circular frequencies �x ¼ xh
ffiffiffiffi
qc
Ec

q
. Table 2 shows that

the present three-dimensional exact model gives

results similar to those obtained with the method

proposed by Zahedinejad et al. [24]. The minor

differences are due to the fact that the present 3D

model is given in exact form while the 3D model in

Zahedinejad et al. [24] is proposed by means of a

numerical method such as the differential quadrature

method.

In the two proposed assessments, the present 3D

solution uses NL ¼ 100 mathematical layers. The

exponential matrix in Eq. (31) is approximated with

order N ¼ 3. The convergence of the approximation is

very fast, a small N value is used because of the large

number of layers NL employed to correctly include the

curvature effect and the gradation law of the material.

The computational cost is low because the Ematrix in

Eq. (37) has always 6� 6 dimension even if a layer

wise approach is employed and NL ¼ 100 mathemat-

ical layers are used. The same values of N and NL are

also employed for benchmarks proposed in Sect. 5

where the present 3D solution is compared with

several 2D numerical models.

After these two preliminary assessments, the pre-

sent three-dimensional exact solution can be consid-

ered as validated for the free vibration analysis of one-

layered and multilayered FGM plates and shells. The

benchmarks in Sect. 5 will propose comparisons with

2D numerical models for plate and closed cylinder

geometries. This choice is made for the sake of

brevity. A future work will also consider FGM

cylindrical and spherical shell panels.

3 2D finite element models

The 2D finite element results proposed in this paper

have been obtained by means of the FE commercial

code known as MSC Nastran & Patran [48]. Only

simple geometries are analyzed in this paper (plates

and cylinders). For these structures a maximum

number of 5000 elements is sufficient for a correct

convergence in the case of free vibration analysis

(as it will be demonstrated in the section about the

validation of the FE model). The 2D element

employed in the free vibration analysis is the

SHELL QUAD4 element of Nastran, it has four

nodes for each element that are collocated in the

four corners. The kinematic model used by Nastran

in its 2D FEs is based on the Reissner–Mindlin

hypotheses (equivalent single layer approach and

Table 1 First assessment

for the 3D exact solution:

sandwich plate with FGM

core. Fundamental circular

frequency �x for half-wave

numbers m ¼ n ¼ 1 and

different thickness ratios

a/h and exponents p for the

material law

p 0.5 1.0 2.0 5.0 10

a=h ¼ 100

3D [15] 1.33931 1.38669 1.44491 1.53143 1.59105

Present 3D 1.33928 1.38671 1.44494 1.53148 1.59113

a=h ¼ 10

3D [15] 1.29751 1.34847 1.40828 1.49309 1.54980

Present 3D 1.29748 1.34848 1.40829 1.49311 1.54984

a=h ¼ 5

3D [15] 1.19580 1.25338 1.31569 1.39567 1.44540

Present 3D 1.19575 1.25337 1.31566 1.39564 1.44537

Table 2 Second assessment for the 3D exact solution: one-

layered FGM cylindrical shell panel with thickness ratio

a=h ¼ 5. Fundamental circular frequency �x for half-wave

numbers m ¼ n ¼ 1 and different radii of curvature Ra and

exponents p for the material law

p 0.0 0.5 1.0 4.0 10

a=Ra ¼ 0:5

3D [24] 0.2113 0.1814 0.1639 0.1367 0.1271

Present 3D 0.2129 0.1817 0.1638 0.1374 0.1296

a=Ra ¼ 1:0

3D [24] 0.2164 0.1852 0.1676 0.1394 0.1286

Present 3D 0.2155 0.1848 0.1671 0.1392 0.1300
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constant transverse displacement in the z direction).

Nastran does not have any specified tool for the

analysis of FGM structures, for this reason the FGM

layer has been divided in a number NL of j

mathematical layers where the Young modulus and

the mass density can be considered as constant and

equal to the mean value of the jth layer. Figure 5 shows

two examples for the approximation of the FGM

properties (e.g., the Young modulus) through the

thickness z. After a convergence study, 100 mathe-

matical layers have been considered sufficient to

correctly approximate all the FGM properties. Nastran

has always been tested considering the FGM structures

as multilayered structures with 100 mathematical

layers with constant properties.

3.1 Validation of the finite element models

The FE model will be validated only for plates and

cylinders because in Sect. 5 comparisons will be made

only for these two geometries. This choice is due to the

fact that we want to compare several laminations,

materials and modes without lose in clarity and

conciseness. The investigation for cylindrical and

spherical panels could be the topic of a future work.

The FE code will be validated using the benchmarks

which will be used in Sect. 5 where 2D numerical and

3D exact models will be compared. The description of

these two main benchmarks follows.

The first geometry considered in this investigation

is a simply supported square plate with dimensions

Fig. 5 Approximation of

the FGM law with p = 0.5

through the thickness z by

means of 10 mathematical

layers (at the top) and 100

mathematical layers (at the

bottom)
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a ¼ b ¼ 1 m. Thickness values are h ¼ 0:1, 0.05, 0.01

and 0.001 m that mean thickness ratios a/h = 10, 20,

100 and 1000, respectively (see Fig. 3a). The second

geometry is a simply supported cylinder with radii of

curvature Ra ¼ 10 m and Rb ¼ 1. The dimensions

are a ¼ 2pRa and b ¼ 20 m. The thickness values are

h ¼ 0:01, 0.1, 1 and 2 m that mean thickness ratios

Ra=h ¼ 1000, 100, 10 and 5, respectively (see

Fig. 3b). Both geometries will be considered as

isotropic one-layered FGM (h1 ¼ h) and as three-

layered sandwich with FGM core (skins with h1 ¼
h3 ¼ 0:15h and core with h2 ¼ 0:7h). See Fig. 6 for

further details about these two FGM configurations.

The one-layered FGM configuration (see Fig. 6) has

theYoungmodulus andmass density defined inEq. (40).

The first material configuration is a one-layered func-

tionally graded material structure where the bottom is

fully metallic (m) (Aluminium Alloy Al2024: Young

modulus Em ¼ 73 GPa, mass density qm ¼ 2800 kg/

m3 and Poisson ratio mm ¼ 0:3) and the top is fully

ceramic (c) (Alumina Al2O3: Young modulus Ec ¼
380 GPa, mass density qc ¼ 3800 kg/m3 and Poisson

ratio mc ¼ 0:3). The Poisson ratio is constant through

the thickness. Mass density and Young modulus vary

through the thickness by means of the law indicated in

Eqs. (40) where the volume fraction considered is that

indicated in Eq. (42) for the ceramic phase (Vc ¼ 0 at

the bottom and Vc ¼ 1 at the top). The exponents

p used for the material law are p = 0.0, 0.5, 1.0, 2.0.

p = 0 means fully ceramic structure. The volume

fraction of the ceramic phase is defined by Eq. (42).

The second material configuration is the sandwich

one (see Fig. 6). The bottom skin is metallic (Aluminum

Alloy Al2024 as for the first configuration) and the top

skin is a ceramic different from theAluminaAl2O3 used

in the first configuration (Young modulus Ec ¼ 200

GPa, mass density qc ¼ 5700 kg/m3 and Poisson ratio

mc ¼ 0:3). The functionally graded core has constant

Poisson ratio. Mass density and Young modulus have

the same variation already indicated for the first

material configuration in Eqs. (40) and (42). The p

exponents are 0.5, 1.0 and 2.0. A classical core is also

considered with material properties which are an

average between the top skin and the bottom skin

(E ¼ EcþEm

2
, q ¼ qcþqm

2
and Poisson ratio m ¼ 0:3). For

the FGM core the thickness used in Eq. (42) is

hc ¼ 0:7h.

The 2D FE convergence study considers two exam-

ples: a simply supported one-layered FGM plate with

p = 1 (see Fig. 7) and a sandwich cylinder with FGM

core (p = 0.5) and classical skins (see Fig. 8). In the first

example of Fig. 7 a good convergence of the 2D FE

model with respect the 3D exact solution is obtained for

a 69�69 mesh which means 4760 element. This mesh

will be always used for all the plate results in Sect. 5.

In the second example of Fig. 8 a good convergence of

the 2D FE model with respect the 3D exact solution is

obtained for a 127� 38 mesh which means 4826

elements. This mesh will be always used for all the

cylinder results in Sect. 5. This convergence study is

valid for both thick and thin strcutures as clearly

indicated in Figs. 7 and 8.

The 2D FE model has been validated for both

geometries (plates and cylinders) and for different

material configurations. The FE model correctly con-

vergeswith a 69� 69 mesh for the plate geometry, and

with a 127� 38 mesh for the cylinder. Such values

will always be used in Sect. 5 for the detailed

comparison between the 3D exact solution and the

2D numerical models.

4 Refined 2D generalized differential quadrature

(GDQ) methods

In the present paper two refined 2D shell models have

been considered in accordance with the unified

formulation by Carrera proposed in [62]. An equiva-

lent single layer model and a layer-wise approach are

described. The first model considers the following

displacement field

U ¼
XNcþ1

s¼0

Fsu
ðsÞ; ð43Þ

where U indicates the 3D displacement components

and u stands for the vector of the sth generalized

displacements of the points on the middle surface of

Fig. 6 Functionally graded material law through the thickness

direction for the one-layered benchmarks (on the left) and

sandwich benchmarks (on the right)
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Fig. 7 Convergence analysis via 2D FE for the first frequency of the simply supported one-layered FGM plate with p = 1.0. a/h = 20

at the top and a/h = 1000 at the bottom

Fig. 8 Convergence analysis via 2D FE for the first frequency of the simply supported sandwich cylinder with FGM core (p = 0.5).

Ra=h ¼ 10 at the top and Ra=h ¼ 1000 at the bottom
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the shell [56]. FsðijÞ ¼ dijFs, for i; j ¼ 1; 2; 3 is the

thickness function matrix and d is the Kronecker delta
function. Considering the present general higher-order

approach, the classic first order model based on the

Reissner–Mindlin hypotheses can be deducted when

s ¼ 0; 1 or Nc ¼ 0 (GDQ-RM). A higher-order expan-

sion with Nc ¼ 4 means GDQ-ESL. When the zig-zag

function is added for multilayered structures, a GDQ-

ZZ model is defined. It is obvious that structures made

of a single ply do not need a zigzag effect.

Due to the arbitrary expansion s, the relation

between generalized strains eðsÞ (defined for the

generic order s) and displacement parameters uðsÞ

can be reported, according to [56], as

eðsÞ ¼ DXu
ðsÞ for s ¼ 0; 1; 2; . . .;Nc;Nc þ 1;

ð44Þ

where the definition of DX can be found in explicit

form in [56].

The sth order resultants in terms of generalized sth

order strains eðsÞ can be defined as

SðsÞ ¼
XNcþ1

s¼0

AðssÞeðsÞ for s ¼ 0; 1; 2; . . .;Nc;Nc þ 1

ð45Þ

where the elastic coefficients of the constitutive matrix

AðssÞ ¼
PNL

k¼1

R zkþ1

zk
ZðsÞ� �T �CðkÞZðsÞHaHbdz are also

reported in extended form in [56], where �CðkÞ is the

constitutive matrix for the kth ply and ZðsÞ is a

geometric matrix.

The current generalized approach has, for each s
order, three motion equations which are functions of

the internal actions as in the following

DH

XS
ðsÞ ¼

XNcþ1

s¼0

MðssÞ €uðsÞ for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; ð46Þ

where DH

X is the equilibrium operator and MðssÞ is the

inertia matrix. They can be found in explicit form in

[56]. In detail, the mass matrix M
ðssÞ
ðijÞ ¼ dijI

ðssÞ
0 con-

tains the inertia mass terms I
ðssÞ
0 for i; j ¼ 1; 2; 3 and

can be evaluated as

I
ðssÞ
0 ¼

XNL

k¼1

Z zkþ1

zk

qðkÞFsFsHaHbdz for

s; s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; ð47Þ

where qðkÞ represents the mass density of the material

per unit of volume of the kth ply. Combining the

kinematic (44), constitutive (45) and motion (46)

equations, the fundamental system of equations in

terms of displacement parameters can be found

XNcþ1

s¼0

LðssÞuðsÞ ¼
XNcþ1

s¼0

MðssÞ €uðsÞ for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; ð48Þ

where LðssÞ ¼ DH

XA
ðssÞDX is the fundamental operator

[56].

Boundary conditions must be introduced to solve

the differential problem in Eq.(48). Combining con-

veniently the kinematic and static conditions, any

boundary condition can be enforced. Generally, three

configurations are the most classic ones [56]: clamped

edge boundary conditions (C), free edge boundary

conditions (F) and simply-supported edge boundary

conditions (S). Only simply-supported structures are

investigated in this paper in order to make the

comparisons with the three-dimensional exact results:

NðsÞ
a ¼ 0; u

ðsÞ
b ¼ uðsÞz ¼ 0

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1 at a ¼ a0 or

a ¼ a1 b0 � b� b1;

uðsÞa ¼ 0; N
ðsÞ
b ¼ 0; uðsÞz ¼ 0

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1 at b ¼ b0 or

b ¼ b1 a0 � a� a1: ð49Þ

When higher-order generalized layer-wise models are

taken into account (GDQ-LW), the mathematical

background follows similar guidelines provided by

the equivalent single layer model. In fact, the

displacement field takes the following form [60]

UðkÞ ¼
XNcþ1

s¼0

FðkÞ
s uðksÞ for k ¼ 1; 2; . . .;NL: ð50Þ

Comparing Eq.(50) with Eq.(43) it is noted that each

quantity is referred toeach single layer (k). The thickness

functions are assumed in the classic manner [60] as
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FðkÞ
s ¼

Q0 � Q1

2
¼ 1� �zk

2
for s ¼ 0

Qsþ1 � Qs�1 for s ¼ 1; 2; . . .;Nc

Q0 þ Q1

2
¼ 1þ �zk

2
for s ¼ Nc þ 1

8
>>><

>>>:

ð51Þ

where Qs are the Legendre polynomials recursively

defined in [60], and �zk is the dimensionless thickness

co-ordinate �zkðzÞ ¼ zkðzðkÞÞ 2 �1; 1½ �. Considering the
kth layer it becomes zk ¼ 2zðkÞ=hk. The generalized

displacements u
ðk0Þ
a , u

ðk0Þ
b , uðk0Þz for s ¼ 0 are the

displacements at the bottom of the kth layer

ðzðkÞ ¼ �hk=2Þ, whereas u
ðkðNcþ1ÞÞ
a , u

ðkðNcþ1ÞÞ
b ,

uðkðNcþ1ÞÞ
z for s ¼ Nc þ 1 are the displacements at the

top of the kth layer ðzðkÞ ¼ þhk=2Þ.
Due to the present displacement field of Eq. (50),

the kinematic equations can be found:

eðksÞ ¼ D
ðkÞ
X uðksÞ for s ¼ 0; 1; 2; . . .;Nc;Nc þ 1;

k ¼ 1; 2; . . .;NL;

ð52Þ

whereD
ðkÞ
X have been explicitly reported in [60]. Since

a linear and elastic material has been considered, the

relationships between stresses and strains for the kth

ply follow the Hooke’s law, as reported extensively in

[60], and the internal actions, layer by layer, take the

final form

SðksÞ ¼
XNcþ1

s¼0

AðkssÞeðksÞ for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; k ¼ 1; 2; . . .;NL;

ð53Þ

where AðkssÞ ¼
PNL

k¼1

Rþhk=2

�hk=2
ZðksÞ� �T �CðkÞZðksÞH

ðkÞ
a

H
ðkÞ
b dzðkÞ and where the matrices ZðksÞ and ZðksÞ have

been presented in [60]. The sth order generalized

internal action is indicated as SðksÞ and the elastic

coefficients are AðkssÞ which have been already

presented in [60].

The equation of motion are deducted from the

Hamilton’s Principle, in particular a set of three

equilibrium equations for each order s can be found

D
HðkÞ
X SðksÞ ¼

XNcþ1

s¼0

MðkssÞ €uðksÞ for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; k ¼ 1; 2; . . .;NL; ð54Þ

where the equilibrium operator D
HðkÞ
X SðksÞ and the

inertia matrix MðkssÞ have been explicitly shown in

[60].

Finally the fundamental equations in terms of

generalized displacements take the form

XNcþ1

s¼0

LðkssÞuðksÞ ¼
XNcþ1

s¼0

MðkssÞ €uðksÞ for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1; k ¼ 1; 2; . . .;NL;

ð55Þ

where LðkssÞ ¼ D
HðkÞ
X AðkssÞD

ðkÞ
X [60] is the fundamen-

tal operator. Since the approach is based on a layer-by-

layer structure, the compatibility conditions between

the layers must be defined. In detail, the top displace-

ments of the kth ply at each interface must be equal

to the bottom displacements of the ðk þ 1Þth layer,

as

uðk topÞa

u
ðk topÞ
b

uðk topÞz

2

6
6
6
4

3

7
7
7
5
¼

uððkþ1ÞbottomÞ
a

u
ððkþ1ÞbottomÞ
b

uððkþ1ÞbottomÞ
z

2

6
6
6
4

3

7
7
7
5
!

uðkðNcþ1ÞÞ
a

u
ðkðNcþ1ÞÞ
b

uðkðNcþ1ÞÞ
z

2

6
6
6
4

3

7
7
7
5

¼

uððkþ1Þ0Þ
a

u
ððkþ1Þ0Þ
b

uððkþ1Þ0Þ
z

2

6
6
6
4

3

7
7
7
5

for
s ¼ 0; 1; 2; . . .;Nc;Nc þ 1

k ¼ 1; 2; . . .;NL � 1

ð56Þ

In conclusion, three types of boundary conditions can

be reported, by means of the GDQmethod, which have

to be enforced for solving the partial differential

system of equations [60]: clamped edge boundary

conditions (C), free edge boundary conditions (F) and

simply-supported edge boundary conditions (S). Only

simply-supported structures are investigated in this

paper in order to make the comparisons with the three-

dimensional exact results:
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4.1 Validation of the refined GDQ models

The stability and accuracy of the GDQ method has

been proven in several applications already published

in the literature [49–60]. Generally the GDQ method

needs a very small amount of points in order to find an

accurate solution. In fact, for flat structures, such as

plates, the solution is accurate when the number of

points is small [49–60]. The number of points are

functions of the geometry of the problem under

investigation. A cylindrical shell made of a single

ply of Alumina with Ra=h ¼ 1000 is considered in

Fig. 9, the first ten non-symmetric mode shapes

represent the first twenty natural frequencies of the

structure. It can be observed from Fig. 9, where GDQ-

RM and GDQ-LW are used, that low order modes can

be captured using few points, however higher-order

modes need at least 51 points along the circular cross-

section of the cylinder to have a stable solution and

capture all the circumferential modes. On the contrary

on the meridian direction fewer points are kept to

describe meridian mode waves. In fact, the figures re-

port the first nineteen frequencies of cylindrical shells

using IN � 15 points with IN ¼ 15; 17; . . .; 51. In all

the computations made in this paper, a Chebyshev–

Gauss–Lobatto grid has been considered [42], so that

the points along the a and b directions are not

distributed uniformly but they follow a cosine func-

tion. In conclusion, for the flat plate computations a

25� 25 grid has been considered (see [49–60]),

whereas for the cylindrical shells a 51� 15 grid is

used (see Fig. 9).

5 Results

This section proposes a detailed comparison between

the 3D exact model validated and discussed in Sect. 2,

the 2D FE model obtained via the code MSC Nastran

& Patran [48] validated and discussed in Sect. 3, and

classical and refined GDQ models discussed and

validated in Sect. 4. The 3D exact results use an order

of expansionN ¼ 3 for the exponential matrix, and p =

100 fictitious layers for shell and FGM description.

The 2D FE results use the SHELL QUAD4 element of

Nastran with a 69� 69 mesh for all the plate

geometries and a 127� 38 mesh for all the cylinder

geometries. In this case p = 100 fictitious layer are also

used for the FGM description. The classical and

refined 2D GDQ models use a 25� 25 Chebyshev–

Gauss–Lobatto grid for the flat plates and a 51� 15

Chebyshev–Gauss–Lobatto grid for the cylindrical

shells. The comparisons will be made only for plates

and cylinders in order to focus our attention to several

laminations and materials. In this way, we are able to

contain the length of the paper and we do not lose in

clarity. For cylindrical geometries, frequencies with

w 6¼ 0 are obtained twice by Nastran (for each couple

of (m, n)) because the section of the cylinder is

symmetric. However, these two vibration modes are

equal and we will write only one frequency in the

tables. Further geometries, such as cylindrical and

spherical shell panels, could be the topic of a future

comparison work.

5.1 Comparison between the three models

Four different benchmarks will be analyzed in this

section to compare these three different methods (see

Fig. 3c, d). The first benchmark is a one-layered FGM

simply supported plate with different thickness ratios

a/h (several p coefficients will be considered in the

FGM law). The second benchmark is a sandwich plate

with two external classical skins and an internal FGM

core, and different thickness ratios a/h. The core could

be in FGM with different p coefficients or classical.

The third benchmark is a one-layered FGM cylinder

with different thickness ratios Ra=h (the same FGM

NðksÞ
a ¼ 0; u

ðksÞ
b ¼ uðksÞz ¼ 0 for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1

k ¼ 1; 2; . . .;NL

at
a ¼ a0 or a ¼ a1

b0 � b� b1

uðksÞa ¼ 0;N
ðksÞ
b ¼ 0; uðksÞz ¼ 0 for

s ¼ 0; 1; 2; . . .;Nc;Nc þ 1

k ¼ 1; 2; . . .;NL

at
b ¼ b0 or b ¼ b1

a0 � a� a1

ð57Þ
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law already seen for the first benchmark). The fourth

benchmark is a sandwich cylinder with different

thickness ratios Ra=h (the two skins and the internal

core have the same characteristics already seen for the

second benchmark). All the details about these four

different benchmarks have already been given in

Sect. 3 where the 2D FE model has been validated.

For all the benchmarks, the comparison is proposed

calculating the first ten frequencies via the 2D FE

code. From the visualization of these ten vibrations

modes, it is possible to understand the half-wave

numbers m and n in the a and b directions. Therefore,

these half-wave numbers have been used to calculate

the same ten frequencies via the 3D exact model. For

each couple of m and n, the 3D exact model gives

infinite frequencies (from I, II, III until 1). In the

tables, in-plane modes are indicated withw ¼ 0. There

are some frequencies missed by the FE code, but they

have not been investigated via the 3D exact model

because this is not the main aim of the paper. The main

aim of the paper is to understand the differences

between the 2D numerical models and the 3D exact

model for the first ten frequencies given by the 2D FE

code. The classical and refined 2DGDQmodels do not

need to a priori know the half-wave numbers because

they are numerical methods. It is also important to
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Fig. 9 Convergence of the

first nineteen natural

frequencies of a simply-

supported cylinder made of

a single ply of Alumina

varying the number of point

in the circumferential

direction (IN � 15) using a

linear model GDQ-RM (at

the top) and a higher-order

layer-wise model GDQ-LW

(at the bottom)
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understand what are the features that influence the

differences between the several models proposed in

this paper (geometry of the structures, materials,

lamination sequences, thickness ratios, order of

frequencies, vibration modes).

Tables 3, 4, 5, and 6 show frequency results for the

one-layered FGM plate. The FGM law uses parame-

ters p equal 0.0, 0.5, 1.0 and 2.0. In each table thick and

thin plates are investigated (thickness ratios a/h from

10 to 1000). The benchmark proposed in Table 3 is a

classical ceramic plate (p = 0.0), in this case for thick

structures the differences between the 3D exact model

and the 2D FE model are very important. Such

differences are similar for the comparison between the

3D exact model and the GDQ-RM approach which

makes use of the same kinematic model of the 2D FE

model (Reissner–Mindlin theory). Refined ESL and

LWGDQmodels give results very similar to the exact

3D model because they are refined 2D models with

higher order of expansion for the displacement

components through the thickness direction. The plate

is one-layered with an isotropic ceramic material (p =

0.0). For this reason, in the case of thin structures (a/h

equals 100 or 100), the results obtained by means of

exact, GDQ and FE models are very similar. For thick

plates, in the first ten frequencies there are some in-

plane modes (transverse displacement w ¼ 0). In this

case, the 2D FE model gives correct results even if a

Reissner–Mindlin model is used because the kine-

matic hypotheses of this model are correct for this

mode case. Similar considerations can be made for

Tables 4, 5 and 6 where the plate is made of a

functionally graded material with parameter p equals

0.5, 1.0 and 2.0, respectively. Refined ESL and LW

GDQ models are mandatory to obtain correct values

for both low and higher order modes and for both thick

and thin structures. The 2D FE model gives some

problems for higher order frequencies and/or thick

plates. Figure 10 is an example of the first five

vibration modes obtained via the 2D FE model, a

thick plate (a=h ¼ 10) and an FGM law with p = 1.0

are considered. The 2D FE modes are in the left

column and the exact 3D vibration modes are in the

right column. The FE vibration modes are plotted for

all the three directions (a, b, z), they allow to

understand the half-wave numbers m and n to use for

the exact 3D results. In this last case, the vibration

modes in the in-plane directions are known by means

of m and n values. Therefore, only the non-

dimensional displacement amplitudes u� ¼ U=Umax,

v� ¼ V=Vmax and w� ¼ W=Wmax trough the non-

dimensional thickness coordinate z� ¼ z=h are given.

From both 2D FE and 3D exact vibration modes is

clear how the fourth and fifth frequencies are in-plane

vibration modes with zero transverse displacement w.

Tables 7, 8, 9 and 10 propose the first ten frequencies

obtained by means of the 2D FE model in the case of a

sandwich plate with FGM core and external classical

skins.Table 7 considers a classical corewhere the elastic

properties are an average between the properties of the

ceramic skin and the metallic skin. Tables 8, 9 and 10

considers FGM core with exponential parameter

p equals 0.5, 1.0 and 2.0, respectively. Considerations

similar to the one-layered case (Tables 3, 4, 5, 6) can be

obtained.The2DFEmodel gives correct results only for

thin structures and low frequencies. 3D exact results are

correctly obtained for both thin and thick plates and for

low and high frequencies only if 2D refined models are

used (see the frequencies obtained by means the refined

2DZZ and LWmodels solved via the GDQmethod). In

the case of multilayered structures, a zigzag Murakami

function is included in the refinedESLmodel in order to

recovery the typical zigzag form of the displacements

due to the transverse anisotropy. 2D FE model gives

correct results for in-plane modes (even if thick plates

and higher frequencies are considered) because the

transverse displacement w is zero and the Reissner–

Mindlin model correctly describes the kinematic of this

analyzed mode. Both 2D FE model and GDQ-RM

model have several problems for thick plates and/or

higher frequencies because they use a simplified

kinematic model such as the Reissner–Mindlin one. In

this cases the use of refined 2D models (GDQ-ZZ and

GDQ-LW) is mandatory to obtain the 3D exact results.

Tables 11, 12, 13 and 14 give the frequency and

vibration mode analysis in the case of one-layered

FGM cylinders. The FGM layer has the same prop-

erties already seen for the one-layered plate case. The

first column of each table includes the first ten

frequencies obtained via the 2D FE model. For each

frequency, the vibration modes are plotted in order to

understand the half-wave numbers m and n to use for

the 3D exact analysis. For cylinders, the circumferen-

tial half wave numbers m can have only even values

because the cylinder has a closed geometry in the a-
direction. m and n values are used to calculate the 3D

exact results. GDQ results are numerical methods and

they do not need to know a priori the half-wave
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Table 3 First benchmark,

simply supported one-

layered FGM plate with p =

0.0 and several thickness

ratios a/h. First ten

frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

p = 0.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

a=h ¼ 10

925.0 1, 1 I 919.4 918.2 919.4 919.4

2226 2, 1 I 2197 2191 2197 2197

2226 1, 2 I 2197 2191 2197 2197

3101 0, 1 IIðw ¼ 0Þ 3101 3101 3101 3101

3101 1, 0 IIðw ¼ 0Þ 3101 3101 3101 3101

3436 2, 2 I 3376 3361 3376 3376

4203 3, 1 I 4117 4096 4117 4117

4203 1, 3 I 4117 4096 4117 4117

4386 1, 1 IIðw ¼ 0Þ 4385 4385 4385 4385

5289 3, 2 I 5171 5138 5171 5171

a=h ¼ 20

472.0 1, 1 I 471.3 471.1 471.3 471.3

1168 2, 1 I 1163 1162 1163 1163

1168 1, 2 I 1163 1162 1163 1163

1850 2, 2 I 1839 1836 1839 1839

2300 3, 1 I 2280 2277 2280 2280

2300 1, 3 I 2280 2277 2280 2280

2959 3, 2 I 2931 2925 2931 2931

2959 2, 3 I 2931 2925 2931 2931

3101 1, 0 IIðw ¼ 0Þ 3101 3101 3101 3101

3101 0, 1 IIðw ¼ 0Þ 3101 3101 3101 3101

a=h ¼ 100

95.05 1, 1 I 95.03 95.03 95.04 95.04

237.6 2, 1 I 237.5 237.5 237.5 237.5

237.6 1, 2 I 237.5 237.5 237.5 237.5

379.9 2, 2 I 379.7 379.7 379.7 379.7

475.2 3, 1 I 474.5 474.5 474.5 474.5

475.2 1, 3 I 474.5 474.5 474.5 474.5

617.2 3, 2 I 616.5 616.5 616.5 616.5

617.2 2, 3 I 616.5 616.5 616.5 616.5

808.1 4, 1 I 805.7 805.6 805.7 805.7

808.1 1, 4 I 805.7 805.6 805.7 805.7

a=h ¼ 1000

9.500 1, 1 I 9.500 9.507 9.507 9.507

23.78 2, 1 I 23.76 23.77 23.77 23.77

23.78 1, 2 I 23.76 23.77 23.77 23.77

38.03 2, 2 I 38.02 38.03 38.03 38.03

47.59 1, 3 I 47.53 47.53 47.53 47.53

47.59 3, 1 I 47.53 47.53 47.53 47.53

61.83 2, 3 I 61.79 61.79 61.79 61.79

61.83 3, 2 I 61.79 61.79 61.79 61.79

81.00 4, 1 I 80.80 80.81 80.81 80.81

81.00 1, 4 I 80.80 80.81 80.81 80.81
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Table 4 First benchmark,

simply supported one-

layered FGM plate with p =

0.5 and several thickness

ratios a/h. First ten

frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

p = 0.5

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

a=h ¼ 10

784.0 1, 1 I 778.0 778.5 779.9 779.9

1894 1, 2 I 1871 1863 1871 1871

1894 2, 1 I 1871 1863 1871 1871

2774 1, 0 IIðw ¼ 0Þ 2775 2775 2775 2775

2774 0, 1 IIðw ¼ 0Þ 2775 2775 2775 2775

2932 2, 2 I 2885 2867 2884 2884

3594 1, 3 I 3525 3499 3524 3524

3594 3, 1 I 3525 3499 3524 3524

3922 1, 1 IIðw ¼ 0Þ 3923 3923 3923 3923

4535 2, 3 I 4438 4399 4437 4437

a=h ¼ 20

399.3 1, 1 I 398.9 398.6 398.8 398.8

989.3 2, 1 I 985.9 984.6 985.7 985.7

989.3 1, 2 I 985.8 984.6 985.7 985.7

1568 2, 2 I 1560 1557 1560 1560

1950 3, 1 I 1936 1931 1936 1936

1950 1, 3 I 1936 1931 1936 1936

2512 3, 2 I 2490 2483 2490 2490

2512 2, 3 I 2490 2483 2490 2490

2775 1, 0 IIðw ¼ 0Þ 2775 2775 2775 2775

2775 0, 1 IIðw ¼ 0Þ 2775 2775 2775 2775

a=h ¼ 100

80.34 1, 1 I 80.37 80.36 80.36 80.36

200.8 1, 2 I 200.8 200.8 200.8 200.8

200.8 2, 1 I 200.8 200.8 200.8 200.8

321.2 2, 2 I 321.2 321.1 321.1 321.1

401.7 3, 1 I 401.4 401.3 401.3 401.3

401.7 1, 3 I 401.4 401.3 401.3 401.3

521.7 3, 2 I 521.5 521.4 521.5 521.5

521.7 2, 3 I 521.5 521.4 521.5 521.5

683.2 4, 1 I 681.6 681.4 681.5 681.5

683.2 1, 4 I 681.6 681.4 681.5 681.5

a=h ¼ 1000

8.036 1, 1 I 8.040 8.039 8.039 8.039

20.10 2, 1 I 20.10 20.10 20.10 20.10

20.10 1, 2 I 20.10 20.10 20.10 20.10

32.15 2, 2 I 32.16 32.15 32.15 32.15

40.23 3, 1 I 40.20 40.19 40.19 40.19

40.23 1, 3 I 40.20 40.19 40.19 40.19

52.26 3, 2 I 52.26 52.25 52.25 52.25

52.26 2, 3 I 52.26 52.25 52.25 52.25

68.46 1, 4 I 68.34 68.33 68.33 68.33

68.46 4, 1 I 68.34 68.33 68.33 68.33
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Table 5 First benchmark,

simply supported one-

layered FGM plate with p =

1.0 and several thickness

ratios a/h. First ten

frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

p = 1.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

a=h ¼ 10

707.3 1, 1 I 703.5 702.4 703.5 703.5

1709 2, 1 I 1689 1683 1689 1689

1709 1, 2 I 1689 1683 1689 1689

2567 1, 0 II(w ¼ 0) 2568 2568 2568 2568

2567 0, 1 IIðw ¼ 0Þ 2568 2568 2568 2568

2647 2, 2 I 2605 2591 2605 2605

3245 3, 1 I 3184 3164 3184 3184

3245 1, 3 I 3184 3164 3184 3184

3628 1, 1 IIðw ¼ 0Þ 3630 3630 3630 3630

4095 2, 3 I 4012 3980 4012 4012

a=h ¼ 20

360.2 1, 1 I 359.6 359.5 359.6 359.6

892.5 2, 1 I 889.0 888.1 889.0 889.0

892.5 1, 2 I 889.0 888.1 889.0 889.0

1415 2, 2 I 1407 1405 1407 1407

1760 3, 1 I 1746 1743 1746 1746

1760 1, 3 I 1746 1743 1746 1746

2266 2, 3 I 2247 2241 2247 2247

2266 3, 2 I 2247 2241 2247 2247

2569 1, 0 IIðw ¼ 0Þ 2569 2569 2569 2569

2569 0, 1 IIðw ¼ 0Þ 2569 2569 2569 2569

a=h ¼ 100

72.47 1, 1 I 72.46 72.46 72.46 72.46

181.2 1, 2 I 181.1 181.1 181.1 181.1

181.2 2, 1 I 181.1 181.1 181.1 181.1

289.7 2, 2 I 289.6 289.6 289.6 289.6

362.4 1, 3 I 361.9 361.8 361.8 361.8

362.4 3, 1 I 361.9 361.8 361.8 361.8

470.6 3, 2 I 470.2 470.1 470.2 470.2

470.6 2, 3 I 470.2 470.1 470.2 470.2

616.3 1, 4 I 614.5 614.4 614.5 614.5

616.3 4, 1 I 614.5 614.4 614.5 614.5

a=h ¼ 1000

7.249 1, 1 I 7.248 7.248 7.248 7.248

18.13 2, 1 I 18.12 18.12 18.12 18.12

18.13 1, 2 I 18.12 18.12 18.12 18.12

29.00 2, 2 I 29.00 28.99 28.99 28.99

36.29 3, 1 I 36.24 36.24 36.24 36.24

36.29 1, 3 I 36.24 36.24 36.24 36.24

47.14 3, 2 I 47.11 47.11 47.11 47.11

47.14 2, 3 I 47.11 47.11 47.11 47.11

61.76 4, 1 I 61.61 61.61 61.61 61.61

61.76 1, 4 I 61.61 61.61 61.61 61.61
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Table 6 First benchmark,

simply supported one-

layered FGM plate with p =

2.0 and several thickness

ratios a/h. First ten

frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

p = 2.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

a=h ¼ 10

642.1 1, 1 I 638.8 638.9 638.8 638.8

1545 1, 2 I 1528 1528 1528 1528

1545 2, 1 I 1528 1528 1528 1528

2317 1, 0 IIðw ¼ 0Þ 2317 2318 2317 2317

2317 0, 1 IIðw ¼ 0Þ 2317 2318 2317 2317

2386 2, 2 I 2351 2351 2352 2352

2919 3, 1 I 2869 2869 2871 2871

2919 1, 3 I 2869 2869 2871 2871

3272 1, 1 IIðw ¼ 0Þ 3274 3275 3274 3274

3676 3, 2 I 3603 3606 3610 3610

a=h ¼ 20

327.7 1, 1 I 327.2 327.2 327.2 327.2

811.1 2, 1 I 808.0 808.1 808.0 808.0

811.1 1, 2 I 808.0 808.1 808.0 808.0

1284 2, 2 I 1278 1278 1278 1278

1596 3, 1 I 1585 1585 1585 1585

1596 1, 3 I 1585 1585 1585 1585

2054 3, 2 I 2037 2037 2037 2037

2054 2, 3 I 2037 2037 2037 2037

2319 1, 0 IIðw ¼ 0Þ 2319 2319 2319 2319

2319 0, 1 IIðw ¼ 0Þ 2319 2319 2319 2319

a=h ¼ 100

65.98 1, 1 I 65.97 65.98 65.98 65.98

164.9 1, 2 I 164.9 164.9 164.9 164.9

164.9 2, 1 I 164.9 164.9 164.9 164.9

263.7 2, 2 I 263.6 263.6 263.6 263.6

329.9 3, 1 I 329.4 329.4 329.4 329.4

329.9 1, 3 I 329.4 329.4 329.4 329.4

428.4 3, 2 I 428.0 428.0 428.0 428.0

428.4 2, 3 I 428.0 428.0 428.0 428.0

561.0 4, 1 I 559.4 559.4 559.4 559.4

561.0 1, 4 I 559.4 559.4 559.4 559.4

a=h ¼ 1000

6.600 1, 1 I 6.590 6.600 6.600 6.600

16.50 1, 2 I 16.50 16.50 16.50 16.50

16.50 2, 1 I 16.50 16.50 16.50 16.50

26.40 2, 2 I 26.39 26.40 26.40 26.40

33.04 3, 1 I 32.99 33.00 33.00 33.00

33.04 1, 3 I 32.99 33.00 33.00 33.00

42.92 3, 2 I 42.89 42.90 42.90 42.90

42.92 2, 3 I 42.89 42.90 42.90 42.90

56.23 4, 1 I 56.09 56.10 56.10 56.10

56.23 1, 4 I 56.09 56.10 56.10 56.10
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Fig. 10 First benchmark,

simply supported FGM plate

with p = 1.0 and thickness

ratio a=h ¼ 10. First five

frequencies via 2D FE

solution (on the left) and via

3D exact solution (on the

right)
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Table 7 Second

benchmark, simply

supported sandwich plate

with classical core and

several thickness ratios

a/h. First ten frequencies in

Hz for the present 3D exact

solution and several

numerical solutions

Classical core

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

a=h ¼ 10

513.2 1, 1 I 510.3 509.9 510.4 510.3

1236 1, 2 I 1221 1218 1221 1221

1236 2, 1 I 1221 1218 1221 1221

1757 0, 1 IIðw ¼ 0Þ 1757 1757 1757 1757

1757 1, 0 IIðw ¼ 0Þ 1757 1757 1757 1757

1908 2, 2 I 1877 1872 1878 1877

2334 3, 1 I 2290 2282 2291 2290

2334 1, 3 I 2290 2282 2291 2290

2485 1, 1 IIðw ¼ 0Þ 2485 2485 2485 2485

2939 3, 2 I 2878 2866 2879 2878

a=h ¼ 20

261.8 1, 1 I 261.4 261.4 261.4 261.4

648.2 1, 2 I 645.6 645.2 645.6 645.6

648.2 2, 1 I 645.6 645.2 645.6 645.6

1027 2, 2 I 1021 1020 1021 1021

1276 1, 3 I 1266 1265 1266 1266

1276 3, 1 I 1266 1265 1266 1266

1642 3, 2 I 1627 1625 1628 1627

1642 2, 3 I 1627 1625 1628 1627

1757 1, 0 IIðw ¼ 0Þ 1757 1757 1757 1757

1757 0, 1 IIðw ¼ 0Þ 1757 1757 1757 1757

a=h ¼ 100

52.72 1, 1 I 52.71 52.71 52.71 52.71

131.8 1, 2 I 131.7 131.7 131.7 131.7

131.8 2, 1 I 131.7 131.7 131.7 131.7

210.7 2, 2 I 210.6 210.6 210.6 210.6

263.6 1, 3 I 263.2 263.2 263.2 263.2

263.6 3, 1 I 263.2 263.2 263.2 263.2

342.3 3, 2 I 342.0 342.0 342.0 342.0

342.3 2, 3 I 342.0 342.0 342.0 342.0

448.2 1, 4 I 446.9 446.9 446.9 446.9

448.2 4, 1 I 446.9 446.9 446.9 446.9

a=h ¼ 1000

5.273 1, 1 I 5.272 5.273 5.273 5.273

13.19 2, 1 I 13.18 13.18 13.18 13.18

13.19 1, 2 I 13.18 13.18 13.18 13.18

21.10 2, 2 I 21.09 21.09 21.09 21.09

26.40 3, 1 I 26.36 26.36 26.36 26.36

26.40 1, 3 I 26.36 26.36 26.36 26.36

34.29 3, 2 I 34.27 34.27 34.27 34.27

34.29 2, 3 I 34.27 34.27 34.27 34.27

44.92 4, 1 I 44.82 44.82 44.82 44.82

44.92 1, 4 I 44.82 44.82 44.82 44.82
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Table 8 Second

benchmark, simply

supported sandwich plate

with FGM core (p = 0.5)

and several thickness ratios

a/h. First ten frequencies in

Hz for the present 3D exact

solution and several

numerical solutions

FGM core with p = 0.5

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

a=h ¼ 10

494.6 1, 1 I 492.1 491.2 492.1 492.1

1196 1, 2 I 1183 1178 1183 1183

1196 2, 1 I 1183 1178 1183 1183

1780 0, 1 IIðw ¼ 0Þ 1781 1781 1781 1781

1780 1, 0 IIðw ¼ 0Þ 1781 1781 1781 1781

1855 2, 2 I 1826 1816 1826 1826

2275 1, 3 I 2233 2218 2233 2233

2275 3, 1 I 2233 2218 2233 2233

2517 1, 1 IIðw ¼ 0Þ 2518 2518 2518 2518

2874 3, 2 I 2815 2791 2815 2815

a=h ¼ 20

251.7 1, 1 I 251.4 251.2 251.4 251.4

623.9 1, 2 I 621.7 620.9 621.6 621.6

623.9 2, 1 I 621.7 620.9 621.6 621.6

989.3 2, 2 I 984.2 982.5 984.2 984.2

1231 1, 3 I 1222 1219 1222 1222

1231 3, 1 I 1222 1219 1222 1222

1586 3, 2 I 1573 1568 1573 1573

1586 2, 3 I 1573 1568 1573 1573

1781 1, 0 IIðw ¼ 0Þ 1781 1781 1781 1781

1781 0, 1 IIðw ¼ 0Þ 1781 1781 1781 1781

a=h ¼ 100

50.63 1, 1 I 50.63 50.63 50.63 50.63

126.6 2, 1 I 126.5 126.5 126.5 126.5

126.6 1, 2 I 126.5 126.5 126.5 126.5

202.4 2, 2 I 202.3 202.3 202.3 202.3

253.2 1, 3 I 252.9 252.8 252.8 252.8

253.2 3, 1 I 252.9 252.8 252.8 252.8

328.8 2, 3 I 328.6 328.5 328.6 328.6

328.8 3, 2 I 328.6 328.5 328.6 328.6

430.6 1, 4 I 429.4 429.3 429.4 429.4

430.6 4, 1 I 429.4 429.3 429.4 429.4

a=h ¼ 1000

5.064 1, 1 I 5.065 5.064 5.064 5.064

12.67 1, 2 I 12.66 12.66 12.66 12.66

12.67 2, 1 I 12.66 12.66 12.66 12.66

20.26 2, 2 I 20.26 20.26 20.26 20.26

25.35 3, 1 I 25.32 25.32 25.32 25.32

25.35 1, 3 I 25.32 25.32 25.32 25.32

32.93 3, 2 I 32.92 32.92 32.92 32.92

32.93 2, 3 I 32.92 32.92 32.92 32.92

43.15 4, 1 I 43.05 43.05 43.05 43.05

43.15 1, 4 I 43.05 43.05 43.05 43.05
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Table 9 Second

benchmark, simply

supported sandwich plate

with FGM core (p = 1.0)

and several thickness ratios

a/h. First ten frequencies in

Hz for the present 3D exact

solution and several

numerical solutions

FGM core with p = 1.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

a=h ¼ 10

494.5 1, 1 I 492.0 491.6 492.0 492.0

1193 1, 2 I 1180 1178 1180 1180

1193 2, 1 I 1180 1178 1180 1180

1757 1, 0 IIðw ¼ 0Þ 1757 1757 1757 1757

1757 0, 1 IIðw ¼ 0Þ 1757 1757 1757 1757

1847 2, 2 I 1819 1813 1819 1819

2262 1, 3 I 2222 2213 2222 2222

2262 3, 1 I 2222 2213 2222 2222

2483 1, 1 IIðw ¼ 0Þ 2485 2485 2485 2485

2853 3, 2 I 2797 2784 2797 2797

a=h ¼ 20

252.0 1, 1 I 251.6 251.6 251.6 251.6

624.2 1, 2 I 621.9 621.5 621.9 621.9

624.2 2, 1 I 621.9 621.5 621.9 621.9

989.2 2, 2 I 984.0 983.1 984.0 984.0

1230 1, 3 I 1221 1220 1221 1221

1230 3, 1 I 1221 1220 1221 1221

1584 3, 2 I 1571 1568 1571 1571

1584 2, 3 I 1571 1568 1571 1571

1757 1, 0 IIðw ¼ 0Þ 1757 1757 1757 1757

1757 0, 1 IIðw ¼ 0Þ 1757 1757 1757 1757

a=h ¼ 100

50.71 1, 1 I 50.71 50.71 50.71 50.71

126.8 1, 2 I 126.7 126.7 126.7 126.7

126.8 2, 1 I 126.7 126.7 126.7 126.7

202.7 2, 2 I 202.6 202.6 202.6 202.6

253.6 3, 1 I 253.2 253.2 253.2 253.2

253.6 1, 3 I 253.2 253.2 253.2 253.2

329.3 3, 2 I 329.0 329.0 329.0 329.0

329.3 2, 3 I 329.0 329.0 329.0 329.0

431.2 1, 4 I 430.0 430.0 430.0 430.0

431.2 4, 1 I 430.0 430.0 430.0 430.0

a=h ¼ 1000

5.073 1, 1 I 5.072 5.072 5.072 5.073

12.69 2, 1 I 12.68 12.68 12.68 12.68

12.69 1, 2 I 12.68 12.68 12.68 12.68

20.29 2, 2 I 20.29 20.29 20.29 20.29

25.39 3, 1 I 25.36 25.36 25.36 25.36

25.39 1, 3 I 25.36 25.36 25.36 25.36

32.99 2, 3 I 32.97 32.97 32.97 32.97

32.99 3, 1 I 32.97 32.97 32.97 32.97

43.22 1, 4 I 43.11 43.11 43.11 43.11

43.22 4, 1 I 43.11 43.11 43.11 43.11
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Table 10 Second

benchmark, simply

supported sandwich plate

with FGM core (p = 2.0)

and several thickness ratios

a/h. First ten frequencies in

Hz for the present 3D exact

solution and several

numerical solutions

FGM core with p = 2.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

a=h ¼ 10

500.2 1, 1 I 497.6 498.1 497.6 497.6

1202 2, 1 I 1188 1190 1188 1188

1202 1, 2 I 1188 1190 1188 1188

1728 0, 1 IIðw ¼ 0Þ 1729 1729 1729 1729

1728 1, 0 IIðw ¼ 0Þ 1729 1729 1729 1729

1852 2, 2 I 1825 1829 1825 1825

2263 1, 3 I 2225 2231 2225 2225

2263 3, 1 I 2225 2231 2225 2225

2443 1, 1 IIðw ¼ 0Þ 2446 2446 2446 2446

2846 3, 2 I 2793 2802 2793 2793

a=h ¼ 20

255.6 1, 1 I 255.2 255.2 255.2 255.2

632.2 1, 2 I 629.8 630.2 629.8 629.8

632.2 2, 1 I 629.8 630.2 629.8 629.8

1001 2, 2 I 995.3 996.1 995.3 995.3

1243 1, 3 I 1234 1235 1234 1234

1243 3, 1 I 1234 1235 1234 1234

1599 3, 2 I 1586 1588 1586 1586

1599 2, 3 I 1586 1588 1586 1586

1729 1, 0 IIðw ¼ 0Þ 1729 1729 1729 1729

1729 0, 1 IIðw ¼ 0Þ 1729 1729 1729 1729

a=h ¼ 100

51.48 1, 1 I 51.47 51.47 51.47 51.47

128.7 1, 2 I 128.6 128.6 128.6 128.6

128.7 2, 1 I 128.6 128.6 128.6 128.6

205.8 2, 2 I 205.7 205.7 205.7 205.7

257.4 1, 3 I 257.0 257.0 257.0 257.0

257.4 3, 1 I 257.0 257.0 257.0 257.0

334.2 2, 3 I 333.9 333.9 333.9 333.9

334.2 3, 2 I 333.9 333.9 333.9 333.9

437.6 1, 4 I 436.3 436.4 436.3 436.3

437.6 4, 1 I 436.3 436.4 436.3 436.3

a=h ¼ 1000

5.149 1, 1 I 5.149 5.149 5.149 5.149

12.88 1, 2 I 12.87 12.87 12.87 12.87

12.88 2, 1 I 12.87 12.87 12.87 12.87

20.60 2, 2 I 20.60 20.60 20.60 20.60

25.78 3, 1 I 25.74 25.74 25.74 25.74

25.78 1, 3 I 25.74 25.74 25.74 25.74

33.49 3, 2 I 33.47 33.47 33.47 33.47

33.49 2, 3 I 33.47 33.47 33.47 33.47

43.87 4, 1 I 43.76 43.77 43.77 43.77

43.87 1, 4 I 43.76 43.77 43.77 43.77
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Table 11 Third

benchmark, simply

supported one-layered FGM

cylinder with p = 0.0 and

several thickness ratios

Ra=h. First ten frequencies

in Hz for the present 3D

exact solution and several

numerical solutions

p = 0.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

Ra=h ¼ 5

70.25 4, 1 I 70.21 70.51 70.20 70.20

93.34 6, 1 I 93.34 93.44 93.34 93.34

97.76 2, 1 I 97.76 97.79 97.76 97.76

98.77 2, 0 Iðw ¼ 0Þ 98.87 98.82 98.69 98.85

147.4 8, 1 I 146.7 146.3 146.7 146.7

155.7 0, 1 Iðw ¼ 0Þ 155.0 155.0 155.0 155.0

155.9 4, 2 I 153.7 153.9 153.7 153.7

156.5 0, 1 IIðw ¼ 0Þ 156.0 155.8 156.0 156.0

168.9 6, 2 I 167.2 167.1 167.2 167.2

169.0 2, 2 I 166.0 166.1 166.0 166.0

Ra=h ¼ 10

56.39 6, 1 I 56.25 56.40 56.25 56.25

59.22 4, 1 I 59.12 59.24 59.12 59.12

81.46 8, 1 I 81.11 81.16 81.11 81.11

96.16 2, 1 I 96.13 96.14 96.13 96.13

98.74 2, 0 Iðw ¼ 0Þ 98.74 98.76 98.74 98.72

113.9 6, 2 I 113.0 113.2 113.0 113.0

120.8 10, 1 I 119.9 119.7 119.9 119.9

124.1 4, 2 I 123.2 123.3 123.2 123.2

126.4 8, 2 I 125.5 125.6 125.5 125.5

149.3 2, 2 I 148.3 148.4 148.3 148.3

Ra=h ¼ 100

18.82 10, 1 I 18.72 18.73 18.72 18.72

20.54 12, 1 I 20.39 20.40 20.39 20.39

22.17 8, 1 I 22.09 22.10 22.09 22.09

25.40 14, 1 I 25.16 25.17 25.16 25.16

32.17 16, 1 I 31.76 31.77 31.77 31.77

32.74 6, 1 I 32.66 32.66 32.66 32.66

38.48 14, 2 I 38.09 38.10 38.09 38.09

40.21 18, 1 I 39.67 39.67 39.67 39.67

40.32 12, 2 I 39.84 39.85 39.84 39.84

41.08 16, 2 I 40.60 40.61 40.60 40.60

Ra=h ¼ 1000

6.223 18, 1 I 6.116 6.117 6.117 6.117

6.308 20, 1 I 6.178 6.178 6.178 6.178

6.734 16, 1 I 6.641 6.642 6.642 6.642

6.842 22, 1 I 6.671 6.672 6.672 6.672

7.701 24, 1 I 7.473 7.474 7.474 7.474

8.008 14, 1 I 7.922 7.922 7.922 7.922

8.802 26, 1 I 8.497 8.495 8.495 8.495

10.09 28, 1 I 9.688 9.701 9.700 9.700

10.30 12, 1 I 10.21 10.21 10.21 10.21

11.55 30, 1 I 11.02 11.10 11.10 11.10
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Table 12 Third

benchmark, simply

supported one-layered FGM

cylinder with p = 0.5 and

thickness ratios Ra=h. First
ten frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

p = 0.5

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

Ra=h ¼ 5

61.50 4, 1 I 61.53 61.75 61.53 61.53

78.76 6, 1 I 78.94 78.84 78.92 78.93

87.72 2, 0 Iðw ¼ 0Þ 87.65 87.62 87.47 87.62

87.81 2, 1 I 87.47 87.60 87.15 87.47

123.5 8, 1 I 123.3 122.5 123.3 123.3

135.7 4, 2 I 133.6 133.7 133.5 133.5

139.0 0, 1 I 137.4 137.6 137.4 137.4

142.2 0, 1 IIðw ¼ 0Þ 140.9 140.9 140.9 140.9

144.8 6, 2 I 143.3 143.1 143.3 143.3

148.5 2, 2 I 145.1 145.4 145.1 145.1

Ra=h ¼ 10

48.37 6, 1 I 48.35 48.43 48.34 48.34

52.61 4, 1 I 52.56 52.66 52.56 52.56

68.56 8, 1 I 68.44 68.37 68.43 68.43

86.26 2, 1 I 86.07 86.13 86.07 86.07

88.03 2, 0 Iðw ¼ 0Þ 87.96 87.99 87.96 87.95

98.95 6, 2 I 98.23 98.37 98.22 98.22

101.4 10, 1 I 100.9 100.6 100.8 100.8

107.9 8, 2 I 107.3 107.2 107.2 107.2

109.6 4, 2 I 108.7 108.8 108.6 108.6

132.6 2, 2 I 131.3 131.5 131.3 131.3

Ra=h ¼ 100

16.42 10, 1 I 16.35 16.35 16.35 16.35

17.60 12, 1 I 17.49 17.49 17.48 17.48

19.70 8, 1 I 19.63 19.64 19.63 19.63

21.56 14, 1 I 21.37 21.37 21.37 21.37

27.21 16, 1 I 26.89 26.89 26.89 26.89

29.26 6, 1 I 29.20 29.21 29.20 29.20

33.44 14, 2 I 33.11 33.12 33.11 33.11

34.06 18, 1 I 33.54 33.53 33.54 33.54

35.26 16, 2 I 34.86 34.87 34.86 34.86

35.42 12, 2 I 35.11 35.12 35.11 35.11

Ra=h ¼ 1000

5.442 20, 1 I 5.342 5.342 5.342 5.342

5.453 18, 1 I 5.351 5.351 5.351 5.351

5.861 22, 1 I 5.719 5.717 5.717 5.717

5.954 16, 1 I 5.874 5.873 5.873 5.873

6.559 24, 1 I 6.369 6.368 6.368 6.368

7.131 14, 1 I 7.056 7.055 7.055 7.055

7.471 26, 1 I 7.217 7.213 7.213 7.213

8.551 28, 1 I 8.213 8.222 8.222 8.222

9.201 12, 1 I 9.128 9.127 9.127 9.127

9.775 30, 1 I 9.330 9.395 9.396 9.396
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Table 13 Third

benchmark, simply

supported one-layered FGM

cylinder with p = 1.0 and

several thickness ratios

Ra=h. First ten frequencies

in Hz for the present 3D

exact solution and several

numerical solutions

p = 1.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

Ra=h ¼ 5

56.37 4, 1 I 56.43 56.63 56.43 56.43

70.80 6, 1 I 71.05 70.95 71.05 71.05

80.88 2, 0 Iðw ¼ 0Þ 80.77 80.76 80.75 80.70

81.44 2, 1 I 80.97 81.15 80.97 80.97

110.5 8, 1 I 110.5 109.8 110.5 110.5

123.9 4, 2 I 121.8 122.0 121.8 121.8

128.2 0, 1 I 126.1 126.5 126.1 126.1

131.0 6, 2 I 129.8 129.6 129.8 129.8

133.1 0, 1 IIðw ¼ 0Þ 131.7 131.7 131.7 131.7

136.2 2, 2 I 132.8 133.1 132.8 132.8

Ra=h ¼ 10

43.91 6, 1 I 43.93 43.99 43.93 43.93

48.56 4, 1 I 48.53 48.62 48.53 48.53

61.64 8, 1 I 61.58 61.49 61.58 61.58

79.96 2, 1 I 79.70 79.79 79.70 79.70

81.33 2, 0 Iðw ¼ 0Þ 81.24 81.23 81.17 81.24

90.36 6, 2 I 89.70 89.83 89.70 89.70

90.95 10, 1 I 90.56 90.27 90.56 90.56

97.64 8, 2 I 97.11 97.10 97.11 97.11

100.9 4, 2 I 99.88 100.1 99.88 99.88

120.3 10, 2 I 119.6 119.3 119.6 119.6

Ra=h ¼ 100

15.04 10, 1 I 14.97 14.97 14.97 14.97

15.98 12, 1 I 15.87 15.87 15.87 15.87

18.18 8, 1 I 18.12 18.12 18.12 18.12

19.49 14, 1 I 19.31 19.31 19.31 19.31

24.55 16, 1 I 24.26 24.25 24.26 24.26

27.08 6, 1 I 27.03 27.03 27.03 27.03

30.56 18, 1 I 30.24 30.23 30.24 30.24

30.72 14, 2 I 30.26 30.26 30.26 30.26

32.04 16, 2 I 31.67 31.68 31.67 31.67

32.57 12, 2 I 32.28 32.29 32.28 32.28

Ra=h ¼ 1000

4.972 20, 1 I 4.869 4.869 4.869 4.869

4.989 18, 1 I 4.905 4.904 4.904 4.904

5.321 22, 1 I 5.189 5.189 5.189 5.189

5.484 16, 1 I 5.408 5.409 5.408 5.408

5.938 24, 1 I 5.764 5.763 5.763 5.763

6.588 26, 1 I 6.520 6.518 6.518 6.518

6.753 14, 1 I 6.517 6.517 6.517 6.517

7.723 28, 1 I 7.413 7.422 7.422 7.422

8.512 30, 1 I 8.417 8.443 8.443 8.443

8.823 12, 1 I 8.443 8.477 8.477 8.477
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Table 14 Third

benchmark, simply

supported one-layered FGM

cylinder with p = 2.0 and

several thickness ratios

Ra=h. First ten frequencies

in Hz for the present 3D

exact solution and several

numerical solutions

p = 2.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ESL GDQ-LW

Ra=h ¼ 5

50.94 4, 1 I 51.05 51.26 51.05 51.05

63.65 6, 1 I 64.07 64.08 64.07 64.07

72.77 2, 0 Iðw ¼ 0Þ 72.67 72.67 72.69 72.67

73.72 2, 1 I 73.20 73.42 73.20 73.20

98.89 8, 1 I 99.24 98.99 99.24 99.24

111.7 4, 2 I 109.8 110.1 109.8 109.8

115.4 0, 1 I 113.1 113.5 113.1 113.1

117.8 6, 2 I 116.9 117.1 116.9 116.9

121.2 0, 1 IIðw ¼ 0Þ 119.9 119.9 119.4 119.4

122.8 2, 2 I 119.4 128.4 127.9 127.9

Ra=h ¼ 10

39.71 6, 1 I 39.78 39.84 39.78 39.78

43.90 4, 1 I 43.88 43.98 43.88 43.88

55.69 8, 1 I 55.75 55.70 55.75 55.74

72.30 2, 1 I 72.02 72.12 72.02 71.90

73.32 2, 0 Iðw ¼ 0Þ 73.23 73.20 73.19 72.34

81.68 6, 2 I 81.10 81.26 81.10 81.09

82.06 10, 1 I 81.89 81.73 81.89 81.89

88.23 8, 2 I 87.83 87.92 87.84 87.83

91.11 4, 2 I 90.16 90.38 90.17 90.15

108.6 10, 2 I 108.1 108.0 108.1 108.1

Ra=h ¼ 100

13.63 10, 1 I 13.56 13.57 13.56 13.56

14.51 12, 1 I 14.41 14.42 14.41 14.41

16.43 8, 1 I 16.38 16.38 16.38 16.38

17.72 14, 1 I 17.56 17.56 17.56 17.56

22.33 16, 1 I 22.07 22.07 22.07 22.07

24.46 6, 1 I 24.41 24.41 24.41 24.41

27.70 14, 2 I 27.42 27.43 27.43 27.43

27.94 18, 1 I 27.51 27.51 27.51 27.51

29.08 16, 2 I 28.75 28.76 28.75 28.75

29.47 12, 2 I 29.21 29.21 29.21 29.21

Ra=h ¼ 1000

4.511 20, 1 I 4.418 4.418 4.418 4.418

4.519 18, 1 I 4.443 4.442 4.442 4.442

4.835 22, 1 I 4.715 4.714 4.714 4.714

4.960 16, 1 I 4.891 4.892 4.891 4.891

5.400 24, 1 I 5.241 5.241 5.241 5.241

5.953 26, 1 I 5.888 5.888 5.888 5.888

6.144 14, 1 I 5.932 5.930 5.930 5.930

7.028 28, 1 I 6.747 6.755 6.755 6.755

7.688 12, 1 I 7.625 7.626 7.625 7.625

8.031 30, 1 I 7.662 7.717 7.717 7.717

2088 Meccanica (2016) 51:2059–2098

123



Table 15 Fourth

benchmark, simply

supported cylinder with

classical core and several

thickness ratios Ra=h. First
ten frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

Classical core

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

Ra=h ¼ 5

39.43 4, 1 I 39.42 39.58 39.42 39.38

51.34 6, 1 I 51.41 51.45 51.42 51.47

55.62 2, 1 I 55.35 55.38 55.35 55.27

55.64 2, 0 Iðw ¼ 0Þ 55.45 55.48 55.45 55.48

80.64 8, 1 I 80.45 80.22 80.48 80.61

87.23 4, 2 I 85.90 86.04 85.91 85.87

88.22 0, 1 I 87.37 87.36 87.38 87.39

89.72 0, 1 II 88.27 88.27 88.27 88.14

93.72 6, 2 I 92.81 92.84 92.84 92.84

94.93 2, 2 I 92.90 93.01 92.91 92.85

Ra=h ¼ 10

31.35 6, 1 I 31.32 34.09 31.32 31.31

33.47 4, 1 I 33.43 35.24 33.43 33.40

44.87 8, 1 I 44.76 49.34 44.76 44.76

54.62 2, 1 I 54.46 55.66 54.46 54.42

55.79 2, 0 Iðw ¼ 0Þ 55.67 56.36 55.63 55.66

63.71 6, 2 I 63.24 68.06 63.25 63.21

66.43 10, 1 I 66.03 72.88 66.04 66.04

69.93 4, 2 I 69.34 73.37 69.35 69.31

70.12 8, 2 I 69.69 76.16 69.69 69.67

84.30 2, 2 I 83.53 87.59 83.53 83.49

Ra=h ¼ 100

10.59 10, 1 I 10.51 10.51 10.51 10.51

11.44 12, 1 I 11.36 11.37 11.37 11.36

12.53 8, 1 I 12.49 12.49 12.49 12.49

14.10 14, 1 I 13.97 13.98 13.97 13.97

17.84 16, 1 I 17.62 17.62 17.62 17.62

18.54 6, 1 I 18.51 18.51 18.51 18.50

21.56 14, 2 I 21.34 21.35 21.34 21.34

22.34 18, 1 I 21.99 21.99 21.99 21.99

22.64 12, 2 I 22.44 22.45 22.44 22.44

22.90 16, 2 I 22.64 22.65 22.64 22.64

Ra=h ¼ 1000

3.496 18, 1 I 3.436 3.685 3.436 3.436

3.528 20, 1 I 3.455 3.746 3.455 3.455

3.799 22, 1 I 3.719 3.975 3.719 3.719

3.813 16, 1 I 3.746 4.066 3.746 3.746

4.283 24, 1 I 4.157 4.569 4.157 4.157

4.530 14, 1 I 4.480 4.721 4.481 4.481

4.889 26, 1 I 4.720 5.202 4.718 4.718

5.603 28, 1 I 5.377 5.946 5.385 5.385

5.832 12, 1 I 5.785 6.074 5.785 5.785

6.408 30, 1 I 6.113 6.805 6.157 6.157
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Table 16 Fourth

benchmark, simply

supported sandwich

cylinder with FGM core (p

= 0.5) and several thickness

ratios Ra=h. First ten
frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

FGM core with p = 0.5

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

Ra=h ¼ 5

39.22 4, 1 I 39.24 39.35 39.24 39.23

49.79 6, 1 I 49.98 49.88 49.97 50.11

56.25 2, 0 Iðw ¼ 0Þ 55.97 55.99 55.95 55.89

56.34 2, 1 I 55.95 56.02 55.96 55.96

78.01 8, 1 I 78.03 77.52 78.04 78.30

86.42 4, 2 I 85.09 85.09 85.09 85.13

89.13 0, 1 I 88.12 88.12 88.12 88.14

91.44 0, 1 II 89.54 90.79 91.02 91.15

91.84 6, 2 I 91.02 92.78 92.73 92.76

94.84 2, 2 I 92.73 99.71 99.68 99.73

Ra=h ¼ 10

30.68 6, 1 I 30.69 30.74 30.69 30.70

33.68 4, 1 I 33.65 33.71 33.65 33.63

43.27 8, 1 I 43.24 43.19 43.24 43.29

55.36 2, 1 I 55.15 55.17 55.15 55.12

56.47 2, 0 Iðw ¼ 0Þ 56.30 56.22 56.39 56.28

62.98 6, 2 I 62.56 62.62 62.56 62.56

63.93 10, 1 I 63.70 63.50 63.70 63.77

68.33 8, 2 I 67.99 67.96 67.99 68.03

70.08 4, 2 I 69.49 69.56 69.48 69.47

84.41 10, 2 I 83.96 83.76 83.96 84.03

Ra=h ¼ 100

10.46 10, 1 I 10.41 10.42 10.41 10.41

11.14 12, 1 I 11.07 11.07 11.07 11.07

12.61 8, 1 I 12.57 12.57 12.57 12.57

13.61 14, 1 I 13.49 13.49 13.49 13.49

17.16 16, 1 I 16.96 16.95 16.95 16.96

18.77 6, 1 I 18.74 18.74 18.74 18.73

21.27 14, 2 I 21.06 21.07 21.06 21.06

22.47 18, 1 I 21.14 21.14 21.14 21.14

22.34 16, 2 I 22.09 22.09 22.09 22.09

22.62 12, 2 I 22.42 22.43 22.42 22.42

Ra=h ¼ 1000

3.462 20, 1 I 3.391 3.391 3.391 3.391

3.468 18, 1 I 3.410 3.410 3.409 3.409

3.710 22, 1 I 3.618 3.618 3.618 3.618

3.807 16, 1 I 3.755 3.755 3.755 3.755

4.144 24, 1 I 4.022 4.022 4.022 4.022

4.569 14, 1 I 4.520 4.520 4.520 4.520

4.715 26, 1 I 4.553 4.551 4.551 4.551

5.393 28, 1 I 5.178 5.185 5.185 5.185

5.901 12, 1 I 5.854 5.854 5.854 5.854

6.163 30, 1 I 5.880 5.922 5.922 5.922
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Table 17 Fourth

benchmark, simply

supported sandwich

cylinder with FGM core (p

= 1.0) and several thickness

ratios Ra=h. First ten
frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

FGM core with p = 1.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

Ra=h ¼ 5

38.87 4, 1 I 38.90 39.02 38.90 38.92

49.45 6, 1 I 49.73 49.67 49.73 49.94

55.42 2, 0 Iðw ¼ 0Þ 55.09 55.06 55.09 55.10

55.70 2, 1 I 55.24 55.29 55.24 55.18

77.35 8, 1 I 77.56 77.19 77.57 77.97

85.63 4, 2 I 84.28 84.34 84.28 84.39

87.85 0, 1 I 86.71 86.73 86.71 86.72

90.66 0, 1 II 88.51 88.51 88.51 88.39

91.08 6, 2 I 90.33 90.24 90.34 90.59

93.80 2, 2 I 91.58 91.66 91.58 91.65

Ra=h ¼ 10

30.50 6, 1 I 30.54 30.59 30.54 30.58

33.31 4, 1 I 33.28 33.34 33.28 33.27

43.12 8, 1 I 43.16 43.11 43.16 43.25

54.68 2, 1 I 54.43 54.45 54.43 54.40

55.68 2, 0 Iðw ¼ 0Þ 55.49 55.31 55.45 55.44

62.49 6, 2 I 62.09 62.16 62.09 62.12

63.71 10, 1 I 63.57 63.41 63.57 63.71

67.98 8, 2 I 67.70 67.69 67.70 67.78

69.33 4, 2 I 68.71 68.79 68.71 68.70

83.91 10, 2 I 83.69 83.08 83.01 82.99

Ra=h ¼ 100

10.39 10, 1 I 10.34 10.34 10.34 10.34

11.11 12, 1 I 11.04 11.04 11.04 11.04

12.47 8, 1 I 12.43 12.43 12.43 12.43

13.61 14, 1 I 13.49 13.49 13.49 13.49

17.17 16, 1 I 16.97 16.97 16.97 16.97

18.53 6, 1 I 18.50 18.50 18.50 18.49

21.14 14, 2 I 20.93 20.94 20.93 20.93

21.49 18, 1 I 21.16 21.16 21.16 21.17

22.27 16, 2 I 22.02 22.02 22.02 22.02

22.41 12, 2 I 22.21 22.22 22.21 22.21

Ra=h ¼ 1000

3.442 20, 1 I 3.376 3.376 3.375 3.376

3.447 18, 1 I 3.384 3.384 3.384 3.384

3.703 22, 1 I 3.611 3.611 3.611 3.611

3.768 16, 1 I 3.716 3.717 3.717 3.716

4.142 24, 1 I 4.020 4.020 4.020 4.020

4.515 14, 1 I 4.466 4.466 4.466 4.466

4.717 26, 1 I 4.554 4.553 4.553 4.553

5.399 28, 1 I 5.182 5.189 5.189 5.189

5.826 12, 1 I 5.779 5.779 5.779 5.779

6.171 30, 1 I 5.887 5.929 5.929 5.929
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Table 18 Fourth

benchmark, simply

supported sandwich

cylinder with FGM core (p

= 2.0) and several thickness

ratios Ra=h. First ten
frequencies in Hz for the

present 3D exact solution

and several numerical

solutions

FGM core with p = 2.0

2D FE m, n Mode 3D exact GDQ-RM GDQ-ZZ GDQ-LW

Ra=h ¼ 5

38.61 4, 1 I 38.67 38.81 38.67 38.70

49.53 6, 1 I 49.90 49.97 49.91 50.19

54.47 2, 0 Iðw ¼ 0Þ 54.13 54.09 54.13 54.14

54.92 2, 1 I 54.44 54.49 54.44 54.37

77.37 8, 1 I 77.75 77.74 77.75 78.28

85.11 4, 2 I 83.76 83.97 83.76 83.93

86.41 0, 1 I 85.17 85.21 85.17 85.18

89.52 0, 1 II 87.25 90.38 87.23 87.10

90.83 6, 2 I 90.16 90.39 90.16 90.52

92.87 2, 2 I 90.57 90.72 90.57 90.67

Ra=h ¼ 10

30.55 6, 1 I 30.62 30.67 30.62 30.67

32.92 4, 1 I 32.90 32.95 32.90 32.88

43.47 8, 1 I 43.56 43.56 43.56 43.68

53.85 2, 1 I 53.59 53.61 53.59 53.55

54.77 2, 0 Iðw ¼ 0Þ 54.56 54.45 54.55 54.55

62.27 6, 2 I 61.88 61.99 61.88 61.94

64.21 10, 1 I 64.16 64.11 64.16 64.36

68.18 8, 2 I 67.94 68.03 67.94 67.99

68.62 4, 2 I 67.99 68.08 67.99 68.08

82.79 10, 2 I 81.84 81.91 81.84 81.81

Ra=h ¼ 100

10.35 10, 1 I 10.31 10.31 10.31 10.31

11.19 12, 1 I 11.12 11.12 11.12 11.12

12.32 8, 1 I 12.28 12.28 12.28 12.28

13.77 14, 1 I 13.65 13.65 13.65 13.65

17.41 16, 1 I 17.20 17.20 17.20 17.21

18.25 6, 1 I 18.21 18.22 18.21 18.21

21.12 14, 2 I 20.92 20.92 20.92 20.92

21.80 18, 1 I 21.47 21.46 21.47 21.47

22.23 12, 2 I 22.04 22.05 22.04 22.04

22.40 16, 2 I 22.15 22.16 22.15 22.16

Ra=h ¼ 1000

3.429 18, 1 I 3.371 3.371 3.371 3.371

3.455 20, 1 I 3.384 3.384 3.384 3.384

3.730 22, 1 I 3.638 3.638 3.638 3.638

3.732 16, 1 I 3.681 3.681 3.681 3.681

4.187 24, 1 I 4.063 4.063 4.063 4.064

4.455 14, 1 I 4.407 4.407 4.407 4.407

4.777 26, 1 I 4.611 4.610 4.610 4.611

5.472 28, 1 I 5.253 5.260 5.260 5.260

5.739 12, 1 I 5.692 5.693 5.693 5.693

6.258 30, 1 I 5.970 6.013 6.014 6.014
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Fig. 11 Fourth benchmark,

simply supported sandwich

cylinder with FGM core (p =

0.5) and thickness ratio

Ra=h ¼ 10. First five

frequencies via 2D FE

solution (on the left) and via

3D exact solution (on the

right)
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numbers m and n. A sufficiently high number of nodes

must be considered in order to describe high order

mode shapes. In the case of one-layered structures (see

also the one-layered FGM plate in Tables 3, 4, 5, 6),

there are no differences between the ESL model and

the LW model. 2D FE model and GDQ-RM model

have some difficulties for thick cylinders and/or higher

frequencies because they use a simplified kinematic

model such as the Reissner–Mindlin model. GDQ-

ESL and GDQ-LW models are always very similar to

3D exact results because of the refined kinematic

model used to approximate the displacement compo-

nents through the thickness direction. Some in-plane

vibration modes with zero transverse displacement w

are present in the first ten frequencies of Tables 11, 12,

13 and 14 when thick cylinders are considered

(thickness ratios Ra=h equals 5 or 10). In Tables 11

and 12, in the case of thick cylinders (Ra=h ¼ 5), the

difficulties of the 2D FEmodel is confirmed by the fact

that some frequencies are exchanged (e.g., the sixth

and seventh frequencies in Table 11 and the ninth and

tenth frequency in Table 11 for p = 0 and Ra=h ¼ 5, or

the third and fourth frequencies in Table 12 for p = 0.5

and Ra=h ¼ 5).

Tables 15, 16, 17 and 18 show the first ten

frequencies for the sandwich cylinder with FGM core.

The FGM sandwich configuration is the same already

seen for the plate case. All the considerations already

seen for the other plate and cylinder cases (Tables 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14) are here still valid. 2D

FE and GDQ-RM models have some difficulties for

thick cylinders and/or higher frequencies. The use of

2D refined models (GDQ-ZZ and GDQ-LW) is

mandatory to obtain the 3D exact frequencies for each

thickness ratio Ra=h, for each FGM law of the core and

for both lower and higher frequency orders. In the case

of cylinder geometry and multilayer configuration,

LW models have some difficulties with respect to the

ESL models (with and without the zigzag Murakami

function) to impose the correct simply supported

boundary conditions. For this reason in Tables 15, 16,

17 and 18 there are some differences between the

GDQ-ZZ model and the GDQ-LW model. Figure 11

shows an example for the first five vibration modes

Fig. 12 First benchmark,

simply supported FGM plate

with p = 1.0 and thickness

ratios a=h ¼ 10 (at the top)

and a=h ¼ 1000 (at the

bottom). First (I) 3D

frequencies versus half-

wave numbers m (from 0 to

6) and n (from 1 to 3)
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obtained via the 2D FE model. A thick cylinder

(Ra=h ¼ 10) and an FGM law with p = 0.5 are

considered. The 2D FE modes are in the left column

and the exact 3D vibration modes are in the right

column. From both 2D FE and 3D exact vibration

modes is clear how the fifth frequency is an in-plane

vibration mode with zero transverse displacement w.

Figures 12 and 13 show a 3D exact analysis for a

simply supported FGM plate with p = 1.0 and a simply

supported sandwich FGM cylinder with p = 0.5,

respectively. In Fig. 12, the 3D exact model is used to

investigate the first natural frequency (I) when the

half-wave number n varies from 1 to 3 and the half-

wave number m varies from 0 to 6. The frequency

value increases when the m value increases. Each

curve f versus m move to higher frequency values

when the n half-wave number increases. The cylinder

case is analyzed in Fig. 13, the 3D exact model is used

to investigate the first natural frequency (I) when the

longitudinal half-wave number n varies from 1 to 3

and the circumferential half-wave number m varies

around the minimum value. The coupling due to the

curvature effect gives curves which have a minimum

of frequency for a m value different from 0 or 1. Such

curves f versus m move to higher frequency value

when the longitudinal half-wave number n increases.

These curves have a minimum in frequency moved to

higher m values. Figures 12 and 13 are useful to

understand the differences between the plate and

cylinder behavior, these differences are due to the

curvature coupling.

6 Conclusions

An exact three-dimensional model and several refined

and classical two-dimensional generalized differential

quadrature (GDQ) methods have been proposed for

the free vibration analysis of one-layered and sand-

wich plates and cylinders embedding functionally

graded material (FGM) layers. Finite element (FE)

results have also been proposed in order to explain the

Fig. 13 Fourth benchmark,

simply supported sandwich

cylinder with FGM core (p =

0.5) and thickness ratios

Ra=h ¼ 10 (at the top) and

Ra=h ¼ 1000 (at the

bottom). First (I) 3D

frequencies versus half-

wave numbers m (values

around that for minimum

frequency) and n

(from 1 to 3)
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method used for the comparison between exact 3D and

numerical 2D models and also to see the possible

differences between an exact 3D solution and numer-

ical 2D solutions.

The exact 3D solution gives infinite vibration

modes from I to 1 (for all the possible combinations

of half-wave numbers (m, n)). A 2D numerical code

gives a finite number of vibration modes because it

uses a finite number of degrees of freedom in the plane

and in the thickness direction. A possible method to

make a 3D versus 2D comparison is to calculate the

frequencies via the 2D numerical code (e.g., the 2D FE

code) and then to evaluate the 3D exact frequencies by

means of the appropriate half-wave numbers (obtained

via a correct visualization of the vibration modes via

the FE method). The 3D analysis could give some

frequencies that are missed by the 2D numerical

codes, but this investigation is not the main aim of the

present paper. The paper tries to explain what could be

the advantages and the limitations of 2D numerical

codes. A typical 2D FE code uses a Reissner–Mindlin

model for the approximation of displacement compo-

nents through the thickness direction. Results in this

paper show how this model employed by commercial

FE codes could give errors for thick and moderately

thick structures, complicated FGM laws and multi-

layered configurations, higher order frequencies and

particular vibration modes. In all these cases, the use

of refined 2D GDQ models is mandatory to obtain the

3D exact frequencies.

The behavior of frequency values and vibration

modes versus imposed half-wave numbers has been

investigated via the 3D exact model. The behavior is

simple and easily predictable for plate structures

because the increasing of m and/or n values gives

larger frequency values. In the case of cylinder

geometry there is a coupling between the displacement

components due to the curvature Ra. For this reason,

when the half-wave number n is imposed, the mini-

mum of frequency is obtained for a value of the half-

wave number m different from 0 or 1. When the half-

wave number n increases, the frequency versus

m curves move to higher values of frequencies and

the minimum in frequency moves to higher values of

the half-wave number m. These last considerations are

very similar for one-layered and sandwich FGM

cylinders.
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