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Abstract This work presents the development of a

discrete parameter model consisting of a concentrated

mass which is supported by a set of springs and

dampers positioned in two orthogonal directions, such

that the mass can move horizontally and vertically in a

plane. A non-ideal motor is attached to the mass such

that the phenomenon of resonance capture can occur.

Resonance capture occurs in structures with low

damping which are attached to rotating machines with

limited power supply.When resonance capture occurs,

the mean angular velocity of the motor remains

constant and the displacement of the structure

increases. An investigation on the influence of the

two orthogonal resonance frequencies is presented. It

was found that this model can illustrate the dynamics

of a more complex structure consisting of a portal

frame coupled to a non-ideal unbalanced motor.

Experimental tests are used to support numerical

simulations and the analytical model.

Keywords Non-ideal motor � Sommerfeld effect �
Resonance capture

1 Introduction

The study of interaction between motors and struc-

tures is not new. Probably the first to notice the

dynamics between motors and structures was A.

Sommerfeld [15]. He proposed an experiment of a

motor mounted on a flexible wooden table and

observed that the energy supplied to the motor was

converted in the form of table vibration, instead of

being converted to increase angular velocity of the

motor. This observation was used to explain a class of

motors called non-ideal energy sources. Latter, Laval

was the first to perform an experiment with a steam

turbine to observe that quick passage though critical

speed would reduce significantly the levels of vibra-

tion when compared to steady state excitation [1].

The non-ideal energy source have influence on the

system near the resonance regime. Considering a DC

motor, usually the angular velocity increases accord-

ing to the power supplied to the source. However, due

to the Sommerfeld effect, near the resonance, with

additional energy the mean angular velocity of the DC

motor remains unchanged until it suddenly jumps to a

much higher value upon exceeding a critical input

power. Simultaneously, the amplitude of oscillations

of the excited system jumps to a much lower value.

Before the jump, the non-ideal oscillating system can

not pass through the resonance frequency of the

system, or requires an intensive interaction between

the vibrating system and the energy source to be able

to do so [7].
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Considering the analysis of such systems, Palacios

et al. [12] applied the Bogoliubov Averaging Method

to the study of the vibrations of an elastic foundation,

forced by a non-ideal energy source. They considered

a model consisting of a planar portal frame with

quadratic nonlinearities and internal resonance 1:2,

supporting a direct current motor with limited power.

Quinn et al. [13] presented an approximated method to

identify which sets of initial conditions lead to

resonance capture and in [14] the author presents a

complete study of the conditions of resonance capture

in a three-degree-of-freedom (DOF) system.

Reference [16] considers the dynamical behavior of

a 2-DOF in the presence of a 1:1 resonance between

two components with non-linear inertial coupling.

Kerschen et al. [9] reported an experimental study of

transient resonance capture that may occur in a system

of two coupled oscillators with essential nonlinearity.

It is shown that during transient resonance capture the

two oscillators are in a state of resonance, the

frequency of which varies with time. Lee et al. [11]

studied the dynamics of a 2-DOF nonlinear system

consisting of a grounded linear oscillator coupled to a

light mass by means of an essentially nonlinear

(nonlinearizable) stiffness. They have considered first

the undamped system and performed a numerical

study based on non-smooth transformations to deter-

mine its periodic solutions in a frequency-energy plot.

Bishop and Galvanetto [2] considered the behavior of

a mechanical oscillator with cubic nonlinearity sub-

jected to a forcing excitation whose frequency remains

constant while the amplitude is ramped. They have

found that the reduced level of forcing at the initial

stages of ramping produces a delay in bifurcational

events when compared to the constant sinusoidally

forced counterpart. In ref. [5], a nonlinear control

method is studied based on the phenomenon of mode

saturation which is applied to a portal frame support

and unbalanced motor with limited power. An alter-

native method is analised in ref. [4] which consists in

the energy transfer of a structure (cantilever beam)

with a non-ideal motor using linear electromechanical

vibration absorber (LEVA) and a nonlinear electrome-

chanical vibration absorber (NEVA).

Also, in terms of continuous systems with coupled

motors, Krasnopolskaya [10] studied an infinite plate

immersed in an acoustic medium. The plate was

subject to a point excitation by an electric motor of

limited power-supply, and it was shown that chaos

might occur in the system due to the feedback

influence of waves in the infinite hydro-elastic

subsystem in the regime of motor shaft rotation.

In this work, a 2-DOF discrete (lumped) parameter

model of a mass vibrating in a plane is presented in

Sect. 2 and is used to investigate the phenomenon of

resonance capture. The model analogy presented in [7]

is extended to a 2-DOF system in Sect. 3. In Sect. 4,

different cases are studied varying the ratio of vertical

and horizontal stiffness to identify regions in which

double resonance capture occurs. Section 5 presents a

brief discussion of results obtained by a finite element

method that helps understand the behavior of a

continuous structure, and Sect. 6 contains experi-

mental results showing the effect of structural mod-

ifications on the resonance capture. Finally,

conclusions are given in Sect. 7.

2 System modeling

The system considered in this work is presented in

Fig 1, which consists of a mass M supported by

springs and viscous dampers in two orthogonal

directions (x and y). The spring constants are defined

by k and the damping coefficients by c. The subscripts

x and y indicated the displacement direction. Attached

to the mass, there is a rotating motor, with unbalanced

mass m at a distance r from the center of the motor

shaft. The motor shaft has moment of inertia defined

by J0.

The equations of motion of an electrical motor

attached to a structure are developed based on

Fig. 1 Discrete parameter system with two-degree-of-freedom

and coupled non-ideal unbalanced motor
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Lagrange equations. The model is related to an

experimental device described in Sect. 6.

2.1 Energy equations

To apply Hamilton’s principle, expressions for the

kinetic and potential energy need to be written in terms

of the unknown degrees of freedom. The kinetic

energy is defined as

T ¼ 1

2
M _x2 þ 1

2
M _y2 þ 1

2
J0 _/

2 þ 1

2
m _x2m þ _y2m
� �

ð1Þ

The term J0 defines the motor shaft moment of

inertia, and the terms xm ¼ xþ r cos/ and ym ¼
yþ r sin/ define the position of the motor’s unbal-

anced massm, with r being the distance of this mass to

the motor’s center of rotation. Then, Eq. 1 can be

written as

T ¼ 1

2
M þ mð Þ _x2 þ 1

2
M þ mð Þ _y2

þ 1

2
J0 þ mr2
� �

_/2 þ mr _/ _y cos/� _x sin/ð Þ

ð2Þ

If the gravity potential energy is neglected, then the

system’s potential energy is simply

U ¼ 1

2
kxx

2 þ 1

2
kyy

2 ð3Þ

2.2 Equations of motion

The equations of motion of the system are obtained by

writing the Lagrangian, L ¼ T � U, and first-order

stationary conditions in the form of Hamilton’s

equation

d

dt

oL

o _qi

� �
� oL

oqi

� �
¼ Fi ð4Þ

in which Fi are the non-conservative forces, which are

the viscous damping forces Fdamp
x ¼ �cx _x, F

damp
y ¼

�cy _y and the torque M applied to the motor.

Applying Eqs. 2 and 3 into 4, it is possible to obtain

the cart’s equations of motion for x and y directions

M þ mð Þ€xþ kxxþ cx _x ¼mr _/2 cos/þ €/ sin/
� �

ð5Þ

M þ mð Þ€yþ kyyþ cy _y ¼mr _/2 sin/� €/ cos/
� �

ð6Þ

and the equation of motion for the unbalanced mass

J0 þmr2
� �

€/ ¼ mr €x sin/� €y cos/ð Þ þM _/
� �

ð7Þ

Equations 5, 6 and 7 can be conveniently written in

terms of the parameters

xx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx

M þ m

r

; xy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky

M þ m

r

nx ¼
cx

2ðM þ mÞxx

; ny ¼
cy

2ðM þ mÞxy

l1 ¼
mr

M þ m
; l2 ¼

mr

J0 þ mr2

such that

€xþ x2
xxþ 2nxxx _x ¼l1 _/2 cos/þ €/ sin/

� �
ð8Þ

€yþ x2
yyþ 2nyxy _y ¼l1 _/2 sin/� €/ cos/

� �
ð9Þ

€/ ¼l2 €x sin/� €y cos/ð Þ þM _/
� �	

J0 þ mr2
� �

ð10Þ

2.3 Model order reduction

The order of the equations describing the motion of the

system (Eqs. 8, 9 and 10) are reduced by the use of the

state variables q1 ¼ x, q2 ¼ y, q3 ¼ /, q4 ¼ _x, q5 ¼ _y

and q6 ¼ _/, such that the velocities are re-written as

_q1 ¼q4 ð11Þ

_q2 ¼q5 ð12Þ

_q3 ¼q6 ð13Þ

The accelerations can be calculated by solving the

linear system of differential equations

1 0 � l1 sin/

0 1 l1 cos/

�l2 sin/ l2 cos/ 1

2

64

3

75

€x

€y
€/

2

64

3

75

¼
�x2

xx� 2nxxx _xþ l1 _/
2 cos/

�x2
yy� 2nyxy _yþ l1 _/

2 sin/

Mð _/Þ= J0 þ mr2ð Þ

2

664

3

775

ð14Þ
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in which _q4 ¼ €x, _q5 ¼ €y and _q6 ¼ €/. The solution of

the system shown in equation 14 is presented in the

appendix.

2.4 Non-ideal motor

To define a limited power, or non-ideal, motor, two

parameters are used to represent the torque as a

function of the angular velocity, given by

Mð _/Þ ¼ M0 1�
_/

X0

 !

ð15Þ

in whichM0 andX0 are constants of the motor, the first

related to static torque and the second related to zero

torque.

Equation 15 is represented by the curve shown in

Fig. 2 where the torqueM is a function of the angular

velocity _/. For values of angular velocity equal to X0,

the torque reduces to zero, and when the angular

velocity is zero, the torque is maximum and equal to

M0.

3 Model analogy

A ramp model analogy was presented by [7], which

illustrate the phenomenon of resonance capture by the

use of a wheel climbing a ramp. When considering a

motor mounted over a rigid base, the motor acceler-

ation is defined by

€/ J0 þ mrr
2

� �
¼ M0 1�

_/
X0

 !

ð16Þ

It is possible to develop a model analogy for the

system described in Eq. 16 using the system shown in

Fig. 3. In this figure, a wheel must climb a ramp to

reach a certain level of energy defined by X0. When

considering a motor with resistive torque, the angular

acceleration is no longer constant and decreases as the

angular velocity increases and the rate of changing in

the angular velocity is no longer linear.

When the motor is mounted on a flexible base, it is

clear in Eq. 10 that the angular acceleration is also a

function of the cart motion. Also, the motion of the

cart is a function of the acceleration and angular

velocity of the motor. The system shown in Fig. 4

represents an analogy when the motor is mounted on a

flexible base.

In this case, the ramp path is modified by the cart

resonance frequency x0. The resonance frequency is

represented by the valley in the ramp path. The depth

and the width of the valley in the ramp are related to

the amplitude of the motion of the cart, and in some

cases the wheel can get stuck inside the valley in the

ramp path.

For the system with two resonance frequencies, a

similar analogy is presented in Fig. 5. Now the ramp

path presents two valleys, one related to the resonance

frequency in the x direction (xxÞ and another related to
the resonance frequency in the y direction (xy).

Depending in the ratio xx=xy, these two valleys can

be far apart, resulting in double resonance capture, or

they can be close to each other and interact, resulting

in single capture. The dynamic factors controlling this

Fig. 2 Motor torque characteristic curve

Fig. 3 Analogy by a wheel climbing a ramp, motor with no

resistive torque (from ref. [7])

Fig. 4 Analogy of the resonance frequency in the ramp path,x0

is the resonance frequency and X0 is the desired angular

frequency (from ref. [7])

2206 Meccanica (2016) 51:2203–2214

123



behavior are explored in the following sections of this

paper.

4 Numerical simulations

In this section numerical simulations are performed

with the system defined by the first order differential

equations developed in the previous sections. The

parameters used in the simulations are defined in

Table 1

4.1 Stationary condition

This numerical example considers the case of setting

the motor angular velocity to a fixed value. The motor

is accelerated from rest to a fixed velocity by changing

the parameter X0. For instance, when setting X0 ¼
1:1x0 the motor does not reach the angular velocity

1:1x0, instead it oscillates with angular velocity x0.

As a consequence, the additional energy increases the

amplitude of the displacement of the cart.

4.2 Model implementation

The numerical model was implemented using GNU

Octave and C language using the GSL (GNU Scien-

tific Library for numerical integration). Both GNU

Octave and GSL are freely available. Two different

numerical integration algorithms were used. The first

is the well known explicit Runge-Kutta method of

order (4, 5) used for non-stiff ordinary differential

equations. The second is the 5 th order algorithm for

stiff ordinary differential equations described in

reference [8]. The parameters which are of interest

in the simulations are the cart displacement (or

velocity) and the motor angular velocity. The motor

angular position is a parameter that is confined in the

range ½0 2p�.
For the simulations, the five cases described in

Table 2 are considered. In these cases, different ratios

of xx=xy are defined, and nx and ny are calculated

accordingly.

4.3 Case 1: ðxx ¼ xyÞ

The simulations for case 1 are performed considering

that the resonance frequenciesxx andxy are the same.

Figure 6 presents the amplitude in both x and y direc-

tions as a function of the parameter X0. Results are

normalized by the resonance frequency xx.

The results shown in Fig. 6a indicate that the

resonance capture occurs in both directions and the

amplitude in x and y directions are the same. Figure 6b

presents the evolution of the angular velocity as a

Fig. 5 Analogy of the resonance frequency in the ramp path,xx

is the resonance frequency in the x direction,xy is the resonance

frequency in the y direction and X0 is the desired angular

frequency

Table 1 System Nominal Parameters

Parameter Value

Mass M 0.064 kg

Unbalanced mass m 0.0021 kg

Shaft inertia J0 1e-7 Nm2

Unbalanced radius r 0.005 m

Motor constant M0 0.005 Nm

Motor constant X0 Variable

Resonance frequency—xx Variable

Resonance frequency—xy Fixed

Damping ratio nx Variable

Damping ratio ny Variable

Table 2 Numerical Simulation Cases

Case number Parameters

Case 1 xx ¼ xy nx ¼ 0:006 ny ¼ 0:006

Case 2 xx ¼ 1
2
xy nx ¼ 0:011 ny ¼ 0:006

Case 3 xx ¼ 1ffiffi
2

p xy nx ¼ 0:008 ny ¼ 0:006

Case 4 xx ¼ 1ffiffi
2

p xy nx ¼ 0:0001 ny ¼ 0:006

Case 5 xx ¼ 1ffiffi
2

p xy nx ¼ 0:006 ny ¼ 0:0001
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function of X0. When resonance capture occurs, the

angular velocity remains the same.

The hysteresis behaviour was also observed when

increasing or decreasing the parameterX0 for different

initial conditions. This is observed in the result of fig. 7

4.4 Case 2: ðxx ¼ 1
2
xyÞ

In the simulations for this case, the resonance

frequency xx is defined by a half of the resonance

frequency in the y direction. In this case, for the values

of damping considered, the two resonance frequencies

are well separated, and for this reason two resonance

captures occur. This can be see in Fig. 8a, where the

displacement amplitude as a function of X0 is

(a)

(b)

Fig. 6 Displacement amplitude as a function of the parameter

X0 (a) and angular velocity as a function of X0 (b) with

xx=xy ¼ 1

Fig. 7 Displacement amplitude as a function calculated

increasing and decreasing the parameter X0

(a)

(b)

Fig. 8 Displacement amplitude as a function of the parameter

X0 (a) and angular velocity as a function of the parameter X0

(b) with xx=xy ¼ 1=2
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presented. The two resonance captures also can be

seen in the results shown in Fig. 8b for the angular

velocity, which remains in the same value during each

capture.

4.5 Case 3: ðxx ¼ 1ffiffi
2

p xyÞ

For the parameters used in the simulations for this

case, the resonance frequencies are not well separated

such as in case 2. The consequence is that there is an

interaction between the resonance frequencies in both

directions when the angular velocity passes through

these frequencies, even though these frequencies are

farther apart than in the previous case. This can be

observed in Fig. 9a, with the displacements in x and

y directions being influenced by the resonance

frequency of each direction. The same influence can

be observed in the results of Fig. 9b for angular

velocity.

4.6 Case 4: ðxx ¼ 1ffiffi
2

p xyÞ, low damping nx � 0

Another interesting situation occurs when damping is

reduced to nearly zero in one of the directions. In this

simulation case, a small value of damping is assumed

in the x direction, such that the displacement ampli-

tude in this direction is much higher than the

displacement amplitude in the y direction. There is

no resonance capture in the y direction as illustrated in

Fig. 10a. The angular velocity shown in 10b also

indicates that there is only one capture.

(a)

(b)

Fig. 9 Displacement amplitude as a function of the parameter

X0(a) and angular velocity as a function of the parameter X0

(b) with xx=xy ¼ 1=
ffiffiffi
2

p

(a)

(b)

Fig. 10 Displacement amplitude as a function of the parameter

X0 (a) and angular velocity as a function of the parameterX0 (b)
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4.7 Case 5: ðxx ¼ 1ffiffi
2

p xyÞ, low damping ny � 0

Similarly to the simulations presented in case 4, the

value of damping in the damper related to the

y direction was reduced to a very low value. The

system behavior in terms of displacement amplitude

and angular velocity as a function of the parameter X0

is shown in Fig. 11a and 11b. Although the displace-

ment in x direction increases at lower frequencies,

only displacement in y direction demonstrates reso-

nance capture.

4.8 Sensitivity to M and c

Further simulations were performed to better illustrate

the influence of the parameters of the system in the

existance of the double resonance capture. Using the

parameters of Case 1 (xx ¼ xy), a surface showing the

displacement as a function of X0 for varyingM can be

built as in Fig. 12a. The flat portion of this surface

represents the resonant capture, and the discontinuity

in this surface represents the jump when the system is

able to overcome the capture. Although the disconti-

nuity can be seen for a wide range ofM, the size of the

gap decreases considerably for M up to 0.1 kg, and

then decreases at a much lower rate for largerM, as can

be observed in Fig. 12b. A similar surface can be built

for the displacement as a function of X0 for varying c,

showing that the gap decreases at a steady rate for

values of c.

The surface for varying M using the parameters of

Case 2 (xx ¼ 1
2
xy) is shown in Fig. 13a. Double

resonance capture is present forM\0:3. For largerM,

only the resonance capture at X0 near xy remains. The

discontinuity in the surface is very similar to the case

in which xx ¼ xy, and so is the gap sensitivity for

increasing M, as can be seen in Fig. 13b. The surface

built for the displacement as a function of X0 for

varying c (Fig. 14) shows that the gap at both

(a)

(b)

Fig. 11 Displacement amplitude as a function of the parameter

X0 (a) and angular velocity as a function of the parameterX0 (b)

(a)

(b)

Fig. 12 Displacement as a function ofX0 for varyingM (a) and
gap magnitude as function of M (b) for xx ¼ xy
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discontinuities decrease similarly for larger c. With

c[ 0:45, none of the discontinuities remain.

5 Portal frame model

The experimental system considered in this work is a

frame structure consisting of a long horizontal beam

supported by two shorter vertical beams, as shown

sche-matically in Fig. 15. The bending stiffness of the

horizontal beam corresponds to ky of the 2-DOF

discrete system shown in Fig. 1, while the equivalent

bending stiffness of the two vertical beams corre-

sponds to kx. Attached to the center of the horizontal

beam is a non-ideal electrical DC motor with unbal-

anced mass, which excites the structure at a frequency

determined by its angular velocity.

A finite element model was developed to help

understand the dynamics and to determine the natural

frequencies and mode shapes of the continuous

system, as these are necessary for the correct analysis

of the experimental results in the next section. The

finite element model was developed using GMSH

software [6] for meshing and Calculix Solver, which is

based on the theory described in reference [3]. A total

of 80 second order beam elements are used to

represent the structure. Properties were set using

Young’s Modulus E ¼ 193 GPa and density of 8000

k/m3. The horizontal and vertical beams have thick-

ness of 1:21� 10�3 m and width of 24:0� 10�3 m.

The length of the horizontal beam is 0.4 m and the

height of the vertical beams is 0.05 m.

Analysis was performed using the Lanczos Method

to determine the natural frequencies and mode shapes

of the portal frame. The first two mode shapes are

shown in Figs. 16 and 17. In the first mode, the

horizontal beam has large bending motion, while the

(a)

(b)

Fig. 13 Displacement as a function ofX0 for varyingM (a) and

gap magnitude as function of M (b) for xx ¼ 1
2
xy

(a)

(b)

Fig. 14 Displacement as a function of X0 for varying c (a) and

gap magnitude as function of c (b) for xx ¼ 1
2
xy

Fig. 15 Schematic representation of the portal frame system

with unbalanced motor
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vertical beams have very small motion. In the second

mode, all beams present large bending motion.

6 Experimental tests

This section explains the experimental procedure used

to verify some of the characteristics investigated by

the numerical model studied in this work. The

experiment consisted in measuring the voltage at a

piezoelectric element positioned as shown in Fig. 18.

The voltage at the piezoelectric element corresponds

to the level of vibration experienced by the portal

frame. Themeasurements were made in only one point

in the structure, as this point presents motion on both

modes and can indicate resonance in each mode.

The procedure to obtain the results shown in Fig. 19

were performed by slowly increasing the voltage

applied to the DC motor and measuring the voltage

produced by the piezoelectric element. The angular

frequency of the motor was obtained using the optical

sensor illustrated in Fig. 22 of the appendix. After that,

a similar procedure was performed by slowly decreas-

ing the voltage applied to the motor. The results of

Fig. 19 show the nonlinear behavior with double

resonance capture corresponding to the natural fre-

quencies of the two first mode shapes of the portal

structure, with each peak corresponding to capture in

one mode. It is also possible to observe the jumps

when the system escapes capture. These results are in

good agreement with what was observed with the

discrete system in Sect.4.

6.1 Structural modifications

The structural modifications are performed by adding

concentrated mass to some specified positions in the

structure. The masses used in the experiments are

considerably large compared to the structure of the

portal frame, therefore changes can be easily identi-

fied. The purpose is not to develop algorithms to

quantify structural changes, but to understand the

dynamics involved in the system. The chosen locations

for positions of these masses are shown in Fig. 20.

The results obtained with structural changes are

compared with the baseline conditions of Fig. 19 and

are presented in Fig. 21. In the first modification, the

mass is positioned at 35 mm from the right edge of the

horizontal beam. In the second modification, the mass

is positioned closer to the motor, at 160 mm from the

horizontal beam right edge.

Fig. 17 The second mode shape of the structure, corresponding

to 37 Hz

Fig. 18 The experimental apparatus consisting of a portal

frame, an unbalanced DC motor, and an additional mass to

represent structural modifications. Vibration of the frame is

measured using a piezoelectric element

Fig. 19 The voltagem amplitude measured by the piezoelectric

element as a function of the angular frequency of the motor. Two

situations with increasing and decreasing voltage applied to the

motor

Fig. 16 The first mode shape of the structure, corresponding to

16 Hz
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The results shown in Fig. 21 indicate that the

second resonance frequency is affected by the changes

of mass in these two positions, although the modifi-

cation 1 does not have significant effect on the first

resonance frequency. This is explained by the mode

shapes shown in Figs. 16, 17. Position 1 is close to a

nodal point for the first mode shape, so placing a mass

in this position does not have influence on the first

resonance peak (16 Hz), related to this mode. How-

ever, adding mass at Position 1 does influence the

second peak, reducing the resonance frequency from

30 to 23 Hz.

On the other hand, the second position can affect

both mode shapes, as it is not close to any nodal point

of the mode shapes. This second structural modifica-

tion has a significant effect on the first peak, as it was

not observed resonance capture for the first natural

frequency. Still, the effect on the second peak was

similar to modification 1.

7 Conclusions

This work presented an analysis of discrete parameter

spring-mass-damper free to move in two orthogonal

directions which is attached to a non-ideal rotating

machine. The system behaves differently according to

the values of resonance frequencies in the two

orthogonal directions. Depending on the values of

these frequencies and the values of damping, reso-

nance capture can occur in both directions, only in one

direction, or can not occur.

An experiment was conducted with a structure

consisting of a portal frame with an unbalanced DC

motor such that two resonance captures could occur

for the system. Structure modifications were per-

formed by placing a mass at different positions of the

horizontal beam. It was shown that these modifica-

tions alter the coupling between the beam and the

motor, to the extent that resonance capture can be

prevented.

Appendix

The equations of motion in terms of the uncoupled

accelerations are given in Eqs. 17, 18 and 19.

€x ¼� l1sin /ð ÞMð _/Þ
J1 l1l2 � 1ð Þ

þ
l1l2cos /ð Þsin /ð Þ l1sin /ð Þ _/2 � Fy

� �

l1l2 � 1

þ
l1l2cos /ð Þ2 � 1
� �

l1cos /ð Þ _/2 � Fx

� �

l1l2 � 1

ð17Þ

€y ¼ l1cos /ð ÞMð _/Þ
J1 l1l2 � 1ð Þ

þ
l1l2sin /ð Þ2 � 1
� �

l1sin /ð Þ _/2 � Fy

� �

l1l2 � 1

þ
l1l2cos /ð Þsin /ð Þ l1cos /ð Þ _/2 � Fx

� �

l1l2 � 1

ð18Þ

Fig. 21 The voltage amplitude measured by the piezoelectric

element as a function of the angular frequency of the the motor.

Baseline and two positions for the concentrated mass

Fig. 20 Positions of the concentrated mass, 35 mm (a) and

160 mm (b) from the right edge of the horizontal beam
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€/ ¼� Mð _/Þ
J1 l1l2 � 1ð Þ þ

l2cos /ð Þ l1sin /ð Þ _/2 � Fy

� �

l1l2 � 1

�
l2sin /ð Þ l1cos /ð Þ _/2 � Fx

� �

l1l2 � 1

ð19Þ

in which,

Fx ¼x2
xxþ 2nxxx _x ð20Þ

Fy ¼x2
yxþ 2nyxy _y ð21Þ

J1 ¼J0 þ mr2 ð22Þ

l1 ¼
mr

M þ m
ð23Þ

l2 ¼
mr

J1
ð24Þ

Encoder

Figure 22 shows the optical sensor used tomeasure the

angular velocity of the motor during the experimental

tests.
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