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Abstract The main objective of this paper is to

investigate boundary layer character of the velocity in

peristaltic flow of a Sisko fluid in a curved channel

under the influence of strong imposed radial magnetic

field. The Sisko fluid model falls in the category of

generalized Newtonian fluid models. The constitutive

equation of Sisko model is described in terms of three

material constants namely; power-law index (n),

infinite shear rate viscosity (a) and consistency index

(b). This model is capable of predicting shear-thinning

and shear-thickening effects for n\ 1 and n[ 1,

respectively. The equation governing the flow is first

derived under the assumptions of long wavelength and

low Reynolds number, and then made dimensionless

by defining appropriate parameters. In dimensionless

form it contains three dimensionless parameters

namely; generalized ratio of infinite-shear rate viscos-

ity to consistency index, power-law index and Hart-

mann number characterizing strength of the imposed

magnetic field. It is found that the governing equation

of flow becomes singular for large values of Hartmann

number. Asymptotic solutions representing flow

velocity at large values of Hartmann number are

reported for two specific values of power-law index

(namely n = 1 and n = 1/2) using singular perturba-

tion technique. The flow velocity in either case

exhibits qualitatively similar behavior. In fact, it

exhibits boundary layer character i.e., it varies sharply

in thin layer near the walls and varies linearly over rest

of the cross-sections. This is contrary to what that is

observed for flow velocity in straight channel (where

except in thin layer near the channel walls the velocity

over rest of the cross-section is uniform). The

estimates of boundary layer thickness at upper and

lower walls in either case are different. Moreover, the

boundary layer thickness in either case is found to be

inversely proportional to the Hartmann number.

Keywords Curved channel � Peristalsis � Boundary
layer � Radial magnetic field � Asymptotic solutions

1 Introduction

The magnetohydrodynamic (MHD) flows of rheolog-

ical materials have indispensable significance in the
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industrial and physiological applications related to

magnetic abrasive finishing (MAF), blood circulation,

magnetic drug targeting (MDT), magnetic fluid

hyperthermia (MFH), control of liquid metals in

continuous casting, plasma welding, metallurgy, mag-

netic cell separation, oil exploration, geophysics. Also

the interest in peristaltic flow is quite prevalent due to

its extensive applications in medical science, engi-

neering and industrial manufacturing. Peristalsis is a

mechanism of fluid transport in which a progressive

wave of contraction or expansion propagates along the

length of a distensible tube containing fluid. It is

involved in the movement of chyme in the gastroin-

testinal tract, transport of spermatozoa in the ductus

efferentes of the male reproductive tract, the locomo-

tion of worms, transport of lymph in the lymphatic

vessels, fallopian tube, vasomotion of small blood

vessels such as arterioles, venules and capillaries.

Most sophisticated applications can be seen in early

stage embryonic development [1], diabetes pumps [2]

and pharmacological delivery system [3].

A number of attempts have been made in recent

past to analyze peristaltic motion in various scenarios

[4–24]. The impact of curvature on peristaltic trans-

port of fluid is analyzed through the studies [25–36].

These attempts can be broadly classified in terms of

Reynolds number, fluid nature, geometry of the vessel

and heat transfer mechanism. However very few

studies for asymptotic analysis of peristaltic motion

exist in the literature. More recently Asghar et al. [37]

studied the boundary layer structure in the magneto-

hydrodynamic peristaltic flow of Sisko fluid in a

straight channel using the method of matched asymp-

totic expansion. Their analysis motived us to look into

the same problem by taking into account the impact of

curvature of the channel. It is mentioned that this

problem has not been yet studied in the literature in

any manner. We model the flow problem employing

long wavelength and low Reynolds number assump-

tions. The solution of equation governing the flow is

constructed using the method of matched asymptotic

expansion for two specific values of power-law index.

Our main focus is to highlight the boundary layer

character of the solutions. The choice of Sisko model

is driven firstly by its effectiveness in describing the

flow properties of shear-thinning material over four or

five decades of shear rate and secondly due to its

superiority over power-lawmodel. Moreover rheology

of many materials like commercial fabric softener,

aqueous solution of carbopol, polymer liquid crystal

and yogurt can be described by Sisko fluid model [38].

Magnetohydrodynamic (MHD) effects have been

taken into account because of its numerous applica-

tions in bioengineering and medical devices. Specific

applications include magnetic wound or cancer tumor

treatment, bleeding reduction during surgeries and

targeted transport of drugs using magnetic particles as

drug carrier. Apart from that bio-fluids like blood is

magnetrohydrodynamic because of complex intercel-

lular protein, cell membrane and hemoglobin.

The arrangement of the present paper is as follows:

The problem is mathematically formulated with

appropriate assumptions in Sect. 2. Asymptotic solu-

tions for large values of Hartmann number and for two

specific values of power-law index are obtained in

Sect. 3. Graphical illustration of the solutions is also

presented in Sect. 3. We compile the main observa-

tions of the paper in Sect. 4.

2 Mathematical formulation and rheological

constitutive equations

Let us consider two-dimensional incompressible flow

of Sisko fluid in a curved channel having width 2a1
with centre O and R* radius. The flow in the channel is

due to sinusoidal waves of amplitude a2 travelling

along the walls. A schematic diagram illustrating the

flow geometry is provided in Fig. 1. A curvilinear

coordinate system (R, X), in which R is along the radial

direction and X is along the axial direction is used. Let

V1 and V2 be the components of velocity in the radial

(R) and axial (X) directions, respectively. The equa-

tions describing the geometry of upper and lower walls

are:

Fig. 1 Flow diagram of the curved model
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H1 X; tð Þ ¼ a1 þ a2 sin
2p
k

� �
X � ctð Þ

� �
;

Upperwall,

ð1Þ

H2 X; tð Þ ¼ �a1 � a2 sin
2p
k

� �
X � ctð Þ

� �
;

Lowerwall,

ð2Þ

where k and t represent the wavelength and time,

respectively.

The velocity field for the flow under consideration

is

V¼ V1 X;R; tð Þ; V2 X;R; tð Þ; 0½ �: ð3Þ

The flow through the curved channel is governed by

the following equations

r:V¼ 0; ð4Þ

q
dV

dt
¼ r:T þ J � B; ð5Þ

where q, T, J and B represent the fluid density, the

Cauchy stress tensor, the current density and an

applied magnetic field in the radial direction,

respectively.

The Cauchy stress tensor is given by

T ¼ �pI þ S; ð6Þ

where p the isotopic pressure, I is the identity tensor

and S is the extra stress tensor which for Sisko model

satisfies [37]

S ¼ aþ b
ffiffiffiffi
P

p� �n�1
� �

A1; ð7Þ

with the expressions

A1 ¼ Lþ Lt; L ¼ gradV; P ¼ 1

2
tr A2

1

	 

: ð8Þ

In the above equations P is the second invariant of

the symmetric part of the velocity gradient, A1 is the

rate of deformation tensor, n is the power-law index,

a is the infinite shear rate viscosity and b is the

consistency index. The Sisko model reduces to power-

law model by setting a = 0 while the corresponding

tensor of Newtonian model can be obtained by either

putting b = 0, or a = 0 and n = 1 simultaneously.

The model (7) is capable of predicting shear-thinning

and shear-thickening effects for n\ 1 and n[ 1,

respectively.

Let us assume that the flow is subject to applied

magnetic field in the radial direction. Assuming the

magnetic Reynolds number to be small and utilizing

Maxwell equations, we obtain [36]

B ¼ B0R
�

Rþ R�

� �
eR, ð9Þ

where B0 is the characteristic magnetic induction in

the limit R* ? ?, and eR is the unit vector in the

radial direction. It is pointed out here that the magnetic

field given by Eq. (9) is solenoidal.

Using Eq. (9), the term J � B in Eq. (5) is given by

[36]

J � B ¼ � rB2
0V2R

�2

Rþ R�ð Þ2

 !
eX; ð10Þ

where eX is the unit vector in the azimuthal direction.

In view of Eq. (6), we can write Eq. (5) as follows:

q
dV

dt
¼ �rp þ r:Sþ J � B: ð11Þ

For two-dimensional velocity field, Eqs. (4) and

(11) yield the following equations:

o

oR
Rþ R�ð ÞV1f g þ R� oV2

oX
¼ 0; ð12Þ

q
oV1

ot
þ V1

oV1

oR
þ R�V2

Rþ R�
oV1

oX
� V2

2

Rþ R�

� �

¼ � op

oR
þ 1

Rþ R�
o

oR
Rþ R�ð Þ SRR

� �

þ R�

Rþ R�
o

oX
SRX � SXX

Rþ R� ;

ð13Þ

q
oV2

ot
+ V1

oV2

oR
+

R�V2

R + R�
oV2

oX
� V2V1

R + R�

� �

= � R�

R + R�

� �
op

oX
+

1

R + R�ð Þ2
o

oR
R + R�ð Þ2SRX

n o

+
R�

R + R�
o

oX
SXX �rB2

0V2R
�2

R + R�ð Þ2
: ð14Þ

We remark here that curvilinear coordinates (R,

X) with scale factor given by h1 = 1 and h2 = (R ?

R*)/R*are used in the derivation of above equations.

The transformations that relates independent vari-

ables, velocity components and pressure in fixed frame

(R, X) to the corresponding quantities in wave frame

r; xð Þ which is moving with speed c are:
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x ¼ X� ct; r ¼ R; v1 ¼ V1; v2 ¼ V2 � c; p¼ p:

ð15Þ

Employing (15), Eqs. (12)–(14) in wave frame

become

o

or
r þ R�ð Þv1f g þ R� ov2

ox
¼ 0; ð16Þ

q �c
ov1

ox
þ v1

ov1

or
þ R� v2 þ cð Þ

r þ R�
ov1

ox
� v2 þ cð Þ2

r þ R�

" #

¼ � op

or
þ 1

r þ R�
o

or
r þ R�ð Þ Srrf g

þ R�

r þ R�
o

ox
Srx � Sxx

r þ R� ; ð17Þ

q �c
ov2

ox
þ v1

ov2

or
þ R� v2 þ cð Þ

r þ R�
ov2

ox
� v2 þ cð Þv1

r þ R�

� �

¼ � R�

r þ R�

� �
op

ox
þ 1

r þ R�ð Þ2
o

or
r þ R�ð Þ2Srx

n o

þ R�

r þ R�
o

ox
Sxx � rB2

0R
�2 v2 þ cð Þ

r þ R�ð Þ2
: ð18Þ

The characteristics lengths in radial and transverse

directions are k and a1, respectively. Similarly,

characteristic velocity scale in the problem is the

velocity of the peristaltic wave c. Therefore, based on

these length and velocity scales, we define [25–27]

�x ¼ 2p
k
x; �g ¼ r

a1
; �v1 ¼

v1

c
; �v2 ¼

v2

c
;

Re ¼ qca1
l0

; �p ¼ 2pa21
kl0c

p; �Sij ¼ a1

l0c
Sij; K ¼ R�

a1
;

d ¼ 2pa1
k

; Ha ¼ b0

ffiffiffiffiffi
r
l0

r
; a� ¼ a

l0
; l0 ¼

b

a1
c

	 
n�1
:

ð19Þ

For simplification we will use bar variables without

bar. In view of (19), Eqs. (16)–(18) become

o

og
gþ Kð Þv1f g þ dK

ov2

ox
¼ 0; ð20Þ

dRe �d
ov1

ox
þ v1

ov1

og
þ d

K v2 þ 1ð Þ
gþ K

ov1

ox
� v2 þ 1ð Þ2

gþ K

" #

¼ � op

og
þ d

1

gþ K

o

og
gþ Kð Þ Sggf g

�

þ d
K

gþ K

o

ox
Sg x � Sx x

gþ K

�
; ð21Þ

Re �d
ov2

ox
þ v1

ov2

og
þ d

K v2 þ 1ð Þ
gþ K

ov2

ox
� v2 þ 1ð Þv1

gþ K

� �

¼ � K

gþ K

� �
op

ox
þ 1

gþ Kð Þ2
o

og
gþ Kð Þ2Sgx

n o

þ d
K

gþ K

o

ox
Sxx � Ha2K2 v2 þ 1ð Þ

gþ Kð Þ2
: ð22Þ

In components form, Eq. (7) gives

Sx x ¼ 2 a� þ
ffiffiffiffi
P

p� �n�1
� �

ov1

og
; ð23aÞ

Sx g ¼ a� þ
ffiffiffiffi
P

p� �n�1
� �

� ov2

og
þ K

gþ K

ov1

og
� 1þ v2ð Þ

gþ K

� �
;

ð23bÞ

Sg g ¼ 2 a� þ
ffiffiffiffi
P

p� �n�1
� �

K

gþ K

ov2

ox
þ v1

gþ K

� �
;

ð23cÞ

P ¼ 1

2
2
ov1

og

� �2

þ2
ov2

og
þ K

gþ K

ov1

og
� 1þ v2ð Þ

gþ K

� �2
 

þ 2K

gþ K

ov2

ox
þ 2v1

gþ K

� �2
!
: ð24Þ

In above equations Re, d and K represent the

Reynolds number, the wave number and the dimen-

sionless radius of curvature, respectively. The parameter

Ha is theHartmann number and it is the ratio ofmagnetic

force to the viscous force. Its large values correspond to

the case of strong imposedmagnetic field. The parameter

a* is the generalized ratio of infinite-shear rate viscosity

to the consistency index in a Sisko fluid if n = 1. In the

case of n = 1, a* = 0 denotes a viscous Newtonian

fluid, whilst a* = 0 describes a purely power-law fluid.

Moreover, the case n = 1, a* = 0 corresponds to

Newtonian fluid with viscosity (1 ? a*).

Defining the components of velocity in terms of

stream function by the relations

v1 ¼ d
K

K þ g
ow
ox

; v2 ¼ � ow
og

; ð25Þ

and employing the long wavelength and low Reynolds

number approximations [26], Eqs. (20)–(24) reduce to

op

og
¼ 0; ð26Þ
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� op

ox
þ 1

K K þ gð Þ
o

og
K þ gð Þ2Sg x

� �

� Ha2K

K þ gð Þ 1� ow
og

� �
¼ 0;

ð27Þ

where

Sx x ¼ 0; ð28aÞ

Sgx ¼ a� þ
ffiffiffiffi
P

p� �n�1
� �

�o2w
og2

� 1

gþK
1�ow

og

� �� �
;

ð28bÞ

Sgg ¼ 0; ð28cÞ

P ¼ � o2w
og2

� 1

gþ K
1� ow

og

� �� �2

: ð28dÞ

It should be pointed out here that in view of

Eq. (25) the continuity Eq. (20) is satisfied identically.

Insertion of the expression of Sgx from Eq. (28b) into

Eq. (27) yields

� op

ox
þ 1

K K þ gð Þ
o

og
K þ gð Þ2 a� þ � 1

K þ g

����

� 1� ow
og

� �
� o2w

og2

�2
!n�1

2
!

� � 1

K þ g
1� ow

og

� ��
�o2w
og2

��

� Ha2K

K þ gð Þ 1� ow
og

� �
¼ 0; ð29Þ

Elimination of pressure between Eqs. (26) and (29)

results in the following compatibility equation

o

og
1

K þ gð Þ
o

og
K þ gð Þ2 a� þ � 1

K þ g

�����

� 1� ow
og

� �
� o2w

og2

�2
!n�1

2

1
A

� � 1

K þ g
1� ow

og

� �
� o2w

og2

� ��

� Ha2K2

K þ gð Þ 1� ow
og

� ��
¼ 0: ð30Þ

Equation (30) is subject to following boundary

conditions [25]

w¼� f

2
;
ow
og

¼ 1; at g ¼ h1 ¼ 1þUsinx; ðaÞ

w¼ f

2
;
ow
og

¼ 1; at g ¼ h2 ¼�1�Usinx; ðbÞ

9>>=
>>;

ð31Þ

where U = a2/a1 is the amplitude ratio. The dimen-

sionless mean flow rateH, in laboratory frame, and f in

wave frame are related according to the following

expression [25]:

H ¼ f þ 2: ð32Þ

We remark here that boundary conditions qw/
qg = 1 at g = h1 and qw/qg = 1 at g = h2 are

consequence of no-slip at the surface. However, the

boundary conditions w = - f/2 at g = h1 and w = f/2

at g = h2 come from the definition of flow rate f in the

wave frame. According to this definition [25]

f ¼ �
Zh1
h2

ow
og

dg ¼ w h2ð Þ � w h1ð Þ: ð33Þ

The above expression furnish the conditions

w(h1) = - f/2 and w(h2) = f/2. It is pointed out that

for flow problem under consideration, either the

pressure difference across one wavelength or the

relative flow rate in the wave frame f, (or the absolute

flow rate in the laboratory frame, H) must be

prescribed. In the present analysis, we followed later

approach and prescribed f as a constant.

3 Asymptotic solution

Due to the nonlinear nature of Eq. (30), an exact

solution is difficult to find. However, it is possible to

obtain an asymptotic solution of this equation for large

values of Hartmann number. To this end, we rewrite

Eq. (30) in the form

o

og
1

K þ gð Þ
o

og
K þ gð Þ2 a� þ 1

K þ g

����

� 1� ow
og

� �
þ o2w

og2

�n�1
!

� � 1

K þ g
1� ow

og

� �
� o2w

og2

� ��

� Ha2K2

K þ gð Þ 1� ow
og

� ��
¼ 0:

ð34Þ
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where Ha ¼ 1=e and e � 1:
The above equation in terms of small parameter e

becomes

o

og
e2

K þ gð Þ
o

og
K þ gð Þ2 a� þ 1

K þ g

����

� 1� ow
og

� �
þ o2w

og2

�n�1
!

� � 1

K þ g
1� ow

og

� �
� o2w

og2

� ��

� K2

K þ gð Þ 1� ow
og

� ��
¼ 0:

ð35Þ

Since the small parameter e multiplies with highest

derivative in Eq. (35), therefore Eq. (35) subject to

boundary conditions (31) constitute a singular pertur-

bation problem. The singular perturbation problems in

fluid mechanics usually exhibit boundary layer phe-

nomena [40]. In such problems the greatest gradients in

flow velocity are confined in a thin layer (boundary

layer) near the solid surface. Therefore, it is expected

that solution of Eq. (30) subject to boundary conditions

(31) exhibits boundary character for large values of

Hartmann number. Themethod ofmatched asymptotic

expansion is used to obtain the solution. In this method

an inner solution at the location of two walls and an

outer solution away from the wall while remaining

inside the channel are obtained. Then by defining some

intermediate variable each inner and outer solution are

matched at the upper and lower walls to determine the

unknown constants. Finally based on these solutions a

composite solution valid for small values of e is

expressed. We refer the reader to Ref. [37] by Asghar

et al. and book by Bush [39] for procedural details.

3.1 The case n = 1 and a� 6¼ 0

For n = 1 and a* = 0, Eq. (35) takes the following

form

o

og
e2ða� þ 1Þ
K þ gð Þ

o

og
K þ gð Þ2 � 1

K þ g

���

� 1� ow
og

� �
� o2w

og2

��
� K2

K þ gð Þ 1� ow
og

� ��

¼ 0:

ð36Þ

3.1.1 Inner solutions

To find inner solution at g = h1, let us introduce the

stretched variable

s ¼ h1 � g
ep

: ð37Þ

In new variable, Eq. (36) becomes

e2 a� þ 1ð Þ h1 þ K � epsð Þ e�4p o
4win

os4
� 2 e�3p o

3win

os3

�

� e�2p

h1 þ K � epsð Þ
o2win

os2
� e�p

h1 þ K � epsð Þ2
owin

os

:

� 1

h1 þ K � epsð Þ2

!
� e�2pK2

h1 þ K � epsð Þ
o2win

os2

� e�pK2

h1 þ K � epsð Þ2
owin

os
� K2

h1 þ K � epsð Þ2
¼ 0; ð38Þ

where win is the solution satisfying the inner boundary

condition at g = h1.

By taking only dominant terms in Eq. (38), we can

write

a� þ 1ð Þ h1 þ Kð Þ e2�4p o
4win

os4
� e�2pK2

h1 þ Kð Þ
o2win

os2
¼ 0:

ð39Þ

From Eq. (39), p is to be determined by the

principle of the least degeneracy. In order to balance

the terms in Eq. (39), we require p = 1, and thus

o4win

os4
� a21

o2win

os2
¼ 0; ð40Þ

where a1 ¼ 1ffiffiffiffiffiffiffiffi
a�þ1

p K
h1þK

� �
:

The inner solution win is subject to the following

boundary conditions at g = h1,

win ¼ � f

2
;
owin

os
¼ 0; at s ¼ 0: ð41Þ

Now we proceed for a two terms perturbation

solution of Eq. (40). To this end we write

winðsÞ ¼ win
0 ðsÞ þ e win

1 ðsÞ: ð42Þ

Substituting Eq. (42) into Eq. (40) and (41), we

obtain the leading order system as follows:
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o4win
0

os4
� a21

o2win
0

os2
¼ 0; ð43Þ

win
0 ¼ � f

2
;
owin

0

os
¼ 0; at s ¼ 0: ð44Þ

The solution of above system is

win
0 ðsÞ ¼ � f

2
þ C0 ea1s � 1� a1sð Þ

þ D0 e�a1s � 1þ a1sð Þ: ð45Þ

We choose the constant C0 ¼ 0 to avoid the

exponential growth in above solution. Thus we get

win
0 ðsÞ ¼ � f

2
þ D0 e�a1s � 1þ a1sð Þ: ð46Þ

At order e we have the following system

o4win
1

os4
� a21

o2win
1

os2
¼ 0; ð47Þ

win
1 ¼ 0;

owin
1

os
¼ �1; at s ¼ 0: ð48Þ

It can be easily shown that the solution of above

equation is

win
1 ðsÞ ¼ �sþ C1 ea1s � 1� a1sð Þ

þ D1 e�a1s � 1þ a1sð Þ: ð49Þ

Again we choose C1 ¼ 0 and write Eq. (49) in the

form

win
1 ðsÞ ¼ �sþ D1 e�a1s � 1þ a1sð Þ: ð50Þ

Substitution of Eqs. (46) and (50) into Eq. (42)

yield the two terms inner solution at g = h1 as

follows:

win
2termðsÞ ¼ � f

2
þ D0 e�a1s � 1þ a1sð Þ

þ e �sþ D1 e�a1s � 1þ a1sð Þð Þ; ð51Þ

where D0 and D1 are unknown constants to be

determined by the matching technique.

To find the inner solution at g = h2, let us introduce

the following stretched variable

n ¼ g� h2

er
: ð52Þ

Performing the same procedure as above, the two

terms inner solution at g = h2 is

wIN
2termðnÞ ¼

f

2
þ H0 e�a2n � 1þ a2n

	 

þ e nþ H1 e�a2n � 1þ a2n

	 
	 

; ð53Þ

with a2 ¼ 1ffiffiffiffiffiffiffiffi
a�þ1

p K
h2þK

� �
and H0 and H1 are unknown constants to be

determined by the matching technique.

3.1.2 Outer solution

For the outer solution, we only choose terms indepen-

dent of e in Eq. (36) and write

� 1

gþ kð Þ
o2wout

og2
þ 1

gþ kð Þ2
owout

og
� 1

gþ kð Þ2
¼ 0:

ð54Þ

To find a two terms solution of above equation we

expand

woutðgÞ ¼ wout
0 ðgÞ þ e wout

1 ðgÞ: ð55Þ

Substituting Eq. (55) into Eq. (54) and solving the

resulting systems, we get

woutðgÞ ¼ gþ kgþ g2

2

� �
a0 þ b0

þ e kgþ g2

2

� �
c1 þ d1

� �
; ð56Þ

as two terms outer solution. In Eq. (56) a0, b0, c1, and

d1 are unknown constants to be determined by higher-

order matching of two inner expansions and one outer

expansion.

The higher-order matching of the inner solution at

g = h1 and the outer solution is done by defining an

intermediate region of O(ea) and an intermediate

parameter z by

z ¼ h1 � g
ea

; ð57Þ

and then converting the inner and outer solutions given

by Eqs. (51) and (56) in the intermediate parameter z

and discarding the terms higher than O(ea). In this

way, we get
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woutð Þint¼ h1 þ Kh1 þ
h21
2

� �
a0 þ b0

þ e Kh1 þ
h21
2

� �
c1 þ d1

� �

� zea 1þ K þ h1ð Þa0ð Þ þ O eaþ1
	 


; ð58Þ

win
	 
int¼ � f

2
þ D0 �1þ a1ze

a�1
	 


þ zea �1þ a1D1ð Þ � eD1: ð59Þ

The above two solutions are matched by comparing

the various power of e to get

h1þ Kh1þ
h21
2

� �
a0þ b0 ¼� f

2
�D0; D0 ¼ 0;

D1 ¼� Kþ h1ð Þ
a1

a0; Kh1þ
h21
2

� �
c1þ d1 ¼�D1:

9>>>=
>>>;

ð60Þ

The above matching procedure is repeated by

taking inner solutions at g = h2 and thus we write

w ¼ g� h2

ef
: ð61Þ

In the same way as done before, we convert the

inner and outer solutions given by Eqs. (58) and (61)

in the intermediate parameter w and discard the terms

higher than O(e1).Thus we get

woutð Þint¼ h2 þ Kh2 þ
h22
2

� �
a0 þ b0

þ e Kh2 þ
h22
2

� �
c1 þ d1

� �

þ wef 1þ K þ h2ð Þa0ð Þ þ O efþ1
	 


; ð62Þ

wIN
	 
int¼ f

2
þ H0 �1þ Kwef�1

K þ h2

� �

þ wef 1þ KH1

K þ h2

� �
� eH1: ð63Þ

Again, the above two solutions are matched by

comparing the various power of e to get

h2 þ Kh2 þ
h22
2

� �
a0 þ b0 ¼

f

2
� H0; H0 ¼ 0;

K þ h2ð Þ
a2

a0 ¼ H1; Kh2 þ
h22
2

� �
c1 þ d1 ¼ �H1:

9>>>=
>>>;

ð64Þ

Solving Eqs. (60) and (64), we find

a0 ¼ � 1þ f

h1 � h2

� �
1

K
;

b0 ¼
f

2
� h2 þ Kh2 þ

h22
2

� �
1þ f

h1 � h2

� �
1

K
;

c1 ¼ � 1

h1 � h2ð ÞK
K þ h1ð Þ
a1

þ K þ h2ð Þ
a2

� �

� 1þ f

h1 � h2

� �
;

d1 ¼ � K þ h1ð Þ
a1

þ Kh1 þ
h21
2

� �
1

h1 � h2ð Þ

�

K þ h1ð Þ
a1

þ K þ h2ð Þ
a2

� ��
1þ f

h1 � h2

� �
1

K
;

D1 ¼
K þ h1ð Þ
a1

1þ f

h1 � h2

� �
1

K
;

H1 ¼ � K þ h2ð Þ
a2

1þ f

h1 � h2

� �
1

K
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð65Þ

The two terms composite solution is defined by

wcomposite ¼ wout þ winðsÞ � win
	 
intþwINðnÞ

� wIN
	 
int

; ð66Þ

which is view of Eqs. (56), (51), (59), (53) and (63)

becomes

wcomposite ¼ �h2 þ
f

2
þ gþ � Kgþ g2

2

� ��

þ Kh2 þ
h22
2

� ��
1þ f

h1 � h2

� �
1

K

þ e � K þ h1ð Þ
a1

� Kgþ g2

2

� �
1

h1 � h2ð ÞK

�

� K þ h1ð Þ
a1

þ K þ h2ð Þ
a2

� �
þ Kh1 þ

h21
2

� �

� 1

h1 � h2ð ÞK
K þ h1ð Þ
a1

þ K þ h2ð Þ
a2

� �

� K þ h1ð Þ
a1

e�a1
h1�gð Þ
e � K þ h2ð Þ

a2
e�a2

g�h2ð Þ
e

�

� 1þ f

h1 � h2

� �
1

K
;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð67Þ

The presence of exponential terms in Eq. (67)

clearly shows that the character of solution (67) is of

boundary layer type. Equation (67) further suggests

that the boundary layer growth is of

O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� þ 1

p
h1 þ kð Þ=kHa

 	 

at the upper wall while
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it is of O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� þ 1

p
h2 þ kð Þ=kHa

 	 

at the lower wall.

This indicates that boundary layer thickness is

inversely proportional to Hartmann number whilst it

is directly proportional to a*. This boundary layer

character of solution is also confirmed through Figs. 2

and 3. In such case the variation in velocity is confined

in thin layers near the walls.

3.2 The case n ¼ 1=2 and a� 6¼ 0

In this subsection, we shall find the solution of

governing Eq. (35) for shear-thinning fluid (n\ 1)

and large values of Hartmann number. To this end, we

rewrite Eq. (35) as follows:

o

og
e2

ðkþgÞ
o

og
kþgð Þ2 a� � 1

kþg
1�ow

og

� �����

�o2w
og2

�
� 1

Kþg
1�ow

og

� �
þo2w
og2

� �n
!!

� k2

ðkþgÞ 1�ow
og

� ��
¼ 0: ð68Þ

An order of magnitude analysis reveals that

Eq. (68) is tractable for n\ 1 which corresponds

to the case of shear-thinning fluids and as a

particular choice, we take n ¼ 1=2. Now following

the similar procedure as given in Sect. 3.1, the two

terms inner solution at g = h1 and g = h2 is given

by

win
2termðsÞ ¼ � f

2
þM0 e�a3s � 1þ a3sð Þ

þ e �sþM1 e�a3s � 1þ a3sð Þð

þ 4
ffiffiffiffiffiffi
M0

p

3a�a3
e�

a3s
2

�
�1þ a3s

2

��
;

ð69Þ

wIN
2termðnÞ ¼

f

2
þ U0 e�a4n � 1þ a4n

	 

þ e nþ U1 e�a4n � 1þ a4n

	 
	

þ 4
ffiffiffiffiffiffi
U0

p

3a�a4
e�

a4n
2

�
�1þ a4n

2

��
;

ð70Þ

where a3 ¼ 1ffiffiffiffi
a�

p K
h1þK

� �
; a4 ¼ 1ffiffiffiffi

a�
p K

h2þK

� �
, M0, M1, U0

and U1 are unknown constants and their values are

found by using the matching procedure.

The outer solution of Eq. (68) will remain same as

given in (56) i.e.

woutðgÞ ¼ gþ Kgþ g2

2

� �
a0 þ b0

þ e Kgþ g2

2

� �
c1 þ d1

� �
; ð71Þ

In order to find unknown constants, we rewrite

Eqs. (69) and (71) at g = h1 in terms of intermediate

parameter z for higher-order matching:

woutð Þint¼ h1 þ Kh1 þ
h21
2

� �
a0 þ b0

þ e Kh1 þ
h21
2

� �
c1 þ d1

� �

� zea 1þ K þ h1ð Þa0ð Þ þ O eaþ1
	 


; ð72Þ

win
	 
int¼ � f

2
þM0 �1þ a3ze

a�1
	 


þ zea �1þ a3M1 þ
2
ffiffiffiffiffiffi
M0

p

3a�a3

� �

� e M1 þ
4
ffiffiffiffiffiffi
M0

p

3a�a4

� �
: ð73Þ

Now matching various powers ofein Eqs. (72) and

(73), we get
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Fig. 2 Variation of velocity profile v2(g) for K = 3, H = 1.5,

n = 1, a� ¼ 1 and x = p
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Fig. 3 Variation of velocity profile v2(g) forK = 2.5,H = 1.5,

Ha = 1, n = 1 and x = p
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h1þ Kh1þ
h21
2

� �
a0þ b0 ¼� f

2
�M0; M0 ¼ 0;

M1 ¼� Kþ h1ð Þ
a3

a0; Kh1þ
h21
2

� �
c1þ d1 ¼�M1:

9>>>=
>>>;

ð74Þ

Similarly, we obtain some unknown constants at

g = h2 by using again higher-order matching:

h2 þ Kh2 þ
h22
2

� �
a0 þ b0 ¼

f

2
� U0; U0 ¼ 0;

K þ h2ð Þ
a4

a0 ¼ U1; Kh2 þ
h22
2

� �
c1 þ d1 ¼ �U1:

9>>>=
>>>;

ð75Þ

From Eqs. (74) and (75), we get

a0 ¼ � 1þ f

h1 � h2

� �
1

K
;

b0 ¼
f

2
� h2 þ Kh2 þ

h22
2

� �
1þ f

h1 � h2

� �
1

K
;

c1 ¼ � 1

h1 � h2ð ÞK2

K þ h1ð Þ
a3

þ K þ h2ð Þ
a4

� �

� 1þ f

h1 � h2

� �
;

d1 ¼
K þ h1ð Þ
a3

þ Kh1 þ
h21
2

� �
1

h1 � h2ð ÞK

�

� K þ h1ð Þ
a3

þ K þ h2ð Þ
a4

� ��
1þ f

h1 � h2

� �
1

K
;

D1 ¼
K þ h1ð Þ
a3

1þ f

h1 � h2

� �
1

K
;

H1 ¼ � K þ h2ð Þ
a4

1þ f

h1 � h2

� �
1

K
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð76Þ

The composite solution of Eq. (68) is defined by

wcomposite ¼ wout þ winðsÞ � win
	 
intþwINðnÞ

� wIN
	 
int

; ð77Þ

which is view of Eqs. (56), (58), (61), (64) and (69)

yields

wcomposite ¼ �h2 þ
f

2
þ gþ � Kgþ g2

2

� ��

þ Kh2 þ
h22
2

� ��
1þ f

h1 � h2

� �
1

K

þ e � K þ h1ð Þ
a3

þ � Kgþ g2

2

� ����

þ Kh1 þ
h21
2

� ��
1

h1 � h2ð ÞK

� K þ h1ð Þ
a3

þ K þ h2ð Þ
a4

� �
þ K þ h1ð Þ

a3
e�a3

h1�gð Þ
e

� K þ h2ð Þ
a4

e�a4
g�h2ð Þ

e

��
1þ f

h1 � h2

� �
1

K
;

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð78Þ

It is remarked here that asymptotic solution of

Eq. (68) is not possible for shear-thickening case

(n[ 1), in the sense that corresponding nonlinear

equation can be solved but its solution does not satisfy

the required boundary conditions. This fact has also

been pointed out Asghar et al. [37] in their study on

peristaltic flow of Sisko fluid in an asymmetric

channel. The non-existence of boundary layer solution

in case of shear-thickening fluid for large Hartmann

number is because of the fact that in flow of such fluids

the viscous force is of comparable magnitude to the

magnetic force. The solution given by Eq. (78) is

clearly of boundary layer type due to the presence of

exponential terms. In this case Eq. (78) suggests that

the boundary layer thickness at upper and lower walls

is of O
ffiffiffiffiffi
a�

p
h1 þ kð Þ=kHa

 	 

and O

ffiffiffiffiffi
a�

p
h2 þ kð Þ=

	
kHaj
; respectively. The qualitative behavior of

solution predicted on the basis of (78) is also

confirmed through graphical illustration given in

Fig. 4. It is further observed through Figs. 3–5 that

the structure of flow velocity in a curved channel is

markedly different than that in a straight channel. As

with the flow velocity structure in a straight channel

[37] (where except in a thin layers near the channel

walls the velocity over rest of the cross-section is

uniform), the velocity in a curved channel also varies

sharply in thin layers near the channel walls. However,

distinct from the flow velocity in the straight channel,
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the velocity in a curved channel varies linearly over

rest of the cross-section.

4 Conclusions

A study is performed to investigate the effect of

applied magnetic field on peristaltic flow of Sisko fluid

through a curved channel. The asymptotic formulae of

stream function for large Hartmann number are

obtained using singular perturbation method for two

cases namely; n = 1, a* = 0 and n = 1/2, a* = 0,

where n is the power-law index and a*is the general-

ized ratio of infinite shear rate viscosity (a) to the

consistency index (b). The former case corresponds to

Newtonian viscous fluid with viscosity (1 ? a*) while

later case describes shear-thinning fluids with viscos-

ity a� þ
ffiffiffiffi
P

p	 
n�1
; where

ffiffiffiffi
P

p
is the magnitude of rate

of deformation tensor. In the former case, the bound-

ary layer thickness is ofO
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� þ 1

p
h1 þ kð Þ=kHa

 	 

at

the upper wall whilst at lower wall it is of

O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� þ 1

p
h2 þ kð Þ=kHa

 	 

. Similarly, in the second

case the layer thickness at upper and lower walls is of

O
ffiffiffiffiffi
a�

p
h1 þ kð Þ=kHa

 	 

and O

ffiffiffiffiffi
a�

p
h2 þ kð Þ=kHa

 	 

;

respectively. The following important conclusions are

drawn from this study.

• In the first case (n = 1, a* = 0), a thin boundary

layer exists at the channel walls for large values of

Hartmann number or small values of a*. Moreover,

the thickness of the boundary layer is inversely

proportional to the Hartmann number. However, it

shows increasing trend with a*.

• In the second case (n = 1/2, a* = 0), the quali-

tative behavior of flow velocity is similar to

corresponding behavior of flow velocity in case

1. However, the estimates of boundary layer

thickness in either case are different.

• The structure of flow velocity in a curved channel

is quite different from that in a straight channel. In

a straight channel, except in thin layers near the

walls, the velocity over rest of the cross-section is

uniform. The analytical estimates of boundary

layer thickness reveal that in a straight channel, the

thickness of boundary layers at the upper and

lower walls is same. On the contrary, in a curved

channel the boundary layer thickness at the upper

wall is greater than that at the lower wall. This is

because that in a curved channel boundary layer

thickness at upper and lower walls depends upon

both the curvature of channel and the axial

coordinate x. For instance, the choice of parame-

ters k = 2.5, a* = 1, Ha = 100, x = 0 yields

0.014 and 0.006, respectively as thickness of

boundary layer at upper and lower walls.

• The large values of the dimensionless radius of

curvature produce velocity profile exhibiting

boundary layer similar to that in a straight channel.

• The formation of boundary layer for large values

of Hartmann number is justified on the following

grounds. In the present flow situation the magnetic

force acts as a resistance to the flow and its

magnitude is proportional to the transverse veloc-

ity [See Eq. (10)], hence amplitude of flow near

the channel center is suppressed. To maintain the

given flow rate, the relatively small velocity near

boundaries will increase. A combination of both

effects leads to the formation of boundary layer at

the channel walls. Due to the symmetry of velocity

about the centerline, the thickness of boundary

layer at either wall is same in a straight channel.

−1 −0.8 −0.6 −0.4 −0.2 0
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−0.5
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2
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Fig. 4 Variation of v2(g) forK = 2.5,H = 1.5, a* = 1, n = 1/

2 and x = p
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Fig. 5 Variation of v2(g) for Ha = 50, H = 1.5, a* = 1,

n = 1/2 and x = p
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Moreover, the suppression of velocity amplitude

due to magnetic force is uniform near the center in

a straight channel and that is why the middle-most

region out of the boundary layers moves with a

uniform velocity. However, due to asymmetry of

the velocity in the curved channel the suppression

of velocity amplitude due to magnetic force is not

uniform in the region outside boundary layers.

Therefore, the velocity in this region varies

linearly with radial distance. Because of asymme-

try in the velocity, the boundary layer thickness at

either wall is also different in a curved channel.

• It is important to mention that boundary layer

phenomenon in peristaltic flow of a Sisko fluid for

large values of Hartmann number was already

reported by Wang et al. [41] and Asghar et al. [37]

in a straight channel. No other study is a variable in

the literature highlighting the boundary layer

phenomena in peristalsis. In fact, the present study

extends the results reported in above investigations

for a curved channel. It is worth mentioning that

our results in the limit when K ? ? are compat-

ible with the existing results of Wang et al. [41]

and Asghar et al. [37].
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