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Abstract The solution of mass matrix is one of the

important parts for dynamic analysis of finite element

method (FEM). In general FEM procedure, the

numerical integration of consistent mass matrix needs

to carry out the same operation as the stiffness matrix,

which includes the coordinatemapping and computing

of Jacobian matrix. There has been proposed smoothed

finite elementmethod for evaluating stiffness matrix to

avoid the coordinate mapping and computing of

Jacobian matrix in the numerical integration. In this

work, a novel integration scheme is proposed to

calculate the consistent mass matrix, in which a

symbolic integration is implemented by combining

indefinite integral with Gauss divergence theorem.

Then, the novel integration scheme of consistent mass

matrix is incorporated with the smoothing strain

technique for free and forced vibration analysis. The

accuracy and the convergence properties of the present

method are investigated by several numerical exam-

ples. It can be concluded from the numerical results

that the present method is robust and stability for

dynamic analysis.

Keywords Vibration problems � Consistent mass

matrix � Symbolic integral � Gauss divergence
theorem � SFEM

1 Introduction

Dynamic problems exist in a broad field of applied

science and engineering, such as motor with high

speed rotation, centrifugal compressor and aircraft,

their structural responses are produced by inertia

effect and dynamic load. Due to the limitations of

analytical methods, the finite element method (FEM)

has become one of the most popular numerical

approaches for analysis of structure dynamic prob-

lems. Generally, the dynamic equations of FEM

include stiffness matrix, mass matrix, damping matrix

and force vector, which obtained from the equilibrium

formulations and discretization techniques [1]. How-

ever, because of the Gauss integration with coordinate

mapping and computing of Jacobian matrix, the

computational accuracy of FEM can be significantly

decreased when the elements are severely irregular or

heavily distorted.

In order to overcome the limitations of traditional

FEM, the smoothed FEM (SFEM) has been proposed

[2], which is formulated by incorporating the strain

smoothing technique of mesh-free methods [3] into
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the framework FEM. In the strain smoothing process

of SFEM, the coordinate mapping is not required and

only shape function itself is involved in computing the

field gradients. Compared with the traditional FEM,

the SFEM can yield more accurate results even for the

extremely irregular meshes. Based on the division of

smoothing integral domain, a series of SFEM models

have been proposed, such as the celled-based SFEM

(CS-FEM) [2, 4, 5], node-based SFEM (NS-FEM) [6,

7], edge-based SFEM [8–10] and so on. Many

engineering problems have been employed by the

application of SFEM, including the analysis of plate

[11], shell [12], cracking [13, 14], free and forced

vibration problems [15, 16], etc. However, the SFEM

can not completely avoid the coordinate mapping

when the formulation of finite element matrix is

associated with shape function without partial deriva-

tive, such as the consistent mass matrix and damping

matrix in dynamic analysis. Thus, it should be

significant if the consistent mass matrix and damping

matrix can be obtained as the same with the smoothing

strain matrix to avoid the coordinate mapping.

Generally, there are two ways to construct mass

matrix, i.e., the consistent mass matrix and the lumped

mass matrix. For the consistent mass matrix, the same

displacement model is used for deriving stiffness

matrix and mass matrix. The lumped mass matrix,

which is obtained by concentratedmass at the degree of

freedom (DOF) of nodes, is diagonal and independent

of shape function. Generally, the lumpedmassmatrices

overestimate the mass effect and hence give lower

natural frequencies than the exact ones [17]. On the

other hand, the underestimation of consistent mass

matrices causes higher natural frequencies. But under

certain conditions, the same accuracy can be achieved

by two kinds of mass matrices [18, 19]. However, the

lumped mass matrix has higher computational effi-

ciency than consistent mass matrix, and the consistent

mass matrix has higher convergence rate than lumped

mass matrix for both eigenvalue and eigenfunction in

dynamic analysis [18, 20]. Furthermore, it should be

noted that the lumpedmassmatrix is conditionally used

[18].When the high-order interpolation is used or high-

order eigenproblem is involved in analysis, the accu-

racy of results obtained by lumped mass matrix should

decrease compared with that given by consistent mass

matrix [18]. In this paper, the consistent mass matrix is

employed for dynamic analysis and a novel integration

scheme is adopted to solve the consistent mass matrix.

In order to accurately compute the integration of

function for an arbitrary domain without coordinate

mapping, an integration technique by using symbolic

integration combined indefinite integral with Gauss

divergence theorem is proposed [21, 22]. In the

proposed integration technique [21], the domain integral

can be reduced to boundary integral as the integrand

function is known a priori. For two-dimensional (2D)

problems, the domain integral is converted to boundary

integral along the boundary lines, and the Gaussian

quadrature on each linear segment of boundary can

achieve goodaccuracyeven though severely irregular or

heavily distorted elements are used. Obviously, the

integration for consistent mass matrix of FEM is related

to a pre-defined shape function and hence it can be

evaluated by using the symbolic integration combined

indefinite integral with Gauss divergence theorem.

In this paper, the novel integration scheme of

consistent mass matrix is incorporated into the CS-

FEM for solving the free and forced vibration

problems. The present integration scheme is also

adopted for constant damping matrix which has the

similar formulation as consistent mass matrix. The

performances of the present method are demonstrated

by several numerical examples including the models

under extremely irregular meshes.

2 Symbolic integration combining indefinite

integral with Gauss divergence theorem

The symbolic integration combining indefinite inte-

gral with Gauss divergence theorem is briefed intro-

duced [21] in this section. One crucial step of FEM is

that numerical calculation of the following integralZ
X
f ðxÞdX ð1Þ

where f ðxÞ is generic function defined over an

arbitrary domain X.
The integral formulation (1) can be rewritten as a

scalar form in three-dimensional coordinate system

x; y; zð ÞZ
V

f ðx; y; zÞdV ð2Þ

where V is the integral volume. In order to implement

the divergence theorem, a vector ŵ x; y; zð Þ is con-

structed, which satisfies
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f ¼ divŵ ð3Þ

where

ŵ ¼ u1 î1 þ u2î2 þ u3î3 ð4Þ

The components u1, u2 and u3 are assumed to be

integrable everywhere within the volume V . î1, î2 and
î3 are the unit vectors along the coordinate directions

x, y, z, respectively.

Substituting Eq. (3) into Eq. (2), and applying the

Gauss divergence theorem, leads toZ
V

divŵdV ¼
Z
S

ŵ � n̂dS

¼
Z
S

u1n1 þ u2n2 þ u3n3ð ÞdS ð5Þ

where S is the boundary surface of volume V . n̂ ¼
n1î1 þ n2 î2 þ n3î3 is the outward normal on S.

In order to satisfy f ¼ divŵ, that

u2 ¼ u3 ¼ 0 ð6Þ

and

u1 x; y; zð Þ ¼
Z

f ðx; y; zÞdxþ cðy; zÞ ð7Þ

where c y; zð Þ is an arbitrary function independent of x.
It has been proved in the Ref. [21] that

Z
S

cðy; zÞn1dS ¼ 0 ð8Þ

Then, the volume integral in Eq. (2) can be

rewritten as
Z
V

f ðx; y; zÞdV ¼
Z
S

Z
f x; y; zð Þdx

� �
n1dS ð9Þ

It can be seen from Eq. (9) that the volume integral

in Eq. (2) has been reduced to surface integral with the

indefinite integral.

According to the similar process, the domain

integral of generic function f x; yð Þ in plane coordinate
system x; yð Þ can be given as
Z
S

f ðx; yÞdS ¼
Z
C

Z
f x; yð Þdx

� �
n1dC ð10Þ

in which C is the boundary of integral domain. If the

integral domain includes k-sides, the boundary of

integral domain in Eq. (10) is piecewise smooth and

continuous, thus the boundary integral can be written

as the sum of the integrals on the individual side

Ci i ¼ 1; 2; � � � ; kð Þ of the integral domain

Z
S

f ðx; yÞdS ¼
Xk
i¼1

Z
Ci

Z
f x; yð Þdx

� �
ni1dC ð11Þ

where ni1 is the cosine of angle between outward

normal on Ci and x. The integral of Eq. (11) can be

calculated by analytical integral or numerical integral

with Gaussian quadrature.

The surface integral has been recast into line

integral through Eq. (11). When the Gaussian quadra-

ture is implemented, Eq. (11) can be calculated by the

following equation

Z
S

f ðx; yÞdS ¼
Xk
i¼1

XNG

j¼1

1

2
wi;ju1 xGPi;j ; y

GP
i;j

� �
ni1li ð12Þ

and

u1 xGPi;j ; y
GP
i;j

� �
¼

Z
f ðx; yÞdx

� �����
xGP
i;j ;y

GP
i;jð Þ

ð13Þ

where xGPi;j ; y
GP
i;j

� �
is the integral point of boundary

segment of Ci, whose length is denoted as li. wi;j is the

weight corresponding to Gaussian integral point

xGPi;j ; y
GP
i;j

� �
. NG is the number of integral points on

each boundary segment Ci.

3 The novel integration scheme for consistent mass

matrix

The symbolic integration introduced in Sect. 2 is

developed to establish a novel integration scheme for

consistent mass matrix of plane stress problems.

Generally, the consistent mass matrix me can be

written as

me ¼
Z
Ve

qNTNdV ¼
Z
Ae

hqNTNdA ð14Þ

where q is the material density, h is the thickness of

element, Ve and Ae is the volume and area of plane

element, respectively. The non-mapped Lagrange

shape function N xð Þ is used for calculating the shape

function values. For quadrilateral element, the shape

function is given by
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N x; yð Þ ¼ ½ 1 x y xy �

1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4

2
664

3
775
�1

¼ ½ 1 x y xy �

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
664

3
775

ð15Þ

where xi; yi i ¼ 1; 2; 3; 4ð Þ are the global coordinates of
nodes. aij i ¼ 1; 2; 3; 4 j ¼ 1; 2; 3; 4ð Þ is the element

of inverse matrix corresponding to global coordinates

of nodes.

For the problems with uniform thickness and

density, Eq. (14) can be rewritten as

me ¼ hq
Z
Ae

NTNdA ¼

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
664

3
775

ð16Þ

and

mij ¼
hq

R
Ae
NiNjdA 0

0 hq
R
Ae
NiNjdA

� �

¼ ~mij 0

0 ~mij

� �
ð17Þ

where

~mij ¼ hq
Z
Ae

NiNjdA ð18Þ

AndNi i ¼ 1; 2; 3; 4ð Þ is the shape function of node i
of quadrilateral element. From Eq. (14), we can obtain

Ni ¼ a1i þ a2ixþ a3iyþ a4ixy ð19Þ

NiNj ¼ a1iNj þ a2ixNj þ a3iyNj þ a4ixyNj ð20Þ

Appling the theorem of symbolic integration, the

surface integral of Eq. (18) can be rewritten as line

integral

~mij ¼ hq
Z
Ae

NiNjdA ¼ hq
Z
C

Z
NiNjdx

� �
n1dC

ð21Þ

and

Z
NiNjdx ¼ a1i þ a3iyð Þ

Z
Njdx

þ a2i þ a4iyð Þ
Z

xNjdx ð22Þ

Z
Nidx ¼ a1ixþ

1

2
a2ix

2 þ a3iyxþ
1

2
a4ix

2y ð23Þ

Z
xNidx ¼

1

2
a1ix

2 þ 1

3
a2ix

3 þ 1

2
a3ix

2yþ 1

3
a4ix

3y

ð24Þ

Using the Gauss integration, the integral of Eq. (21)

can be evaluated by

~mij ¼ hq
Z
C

Z
NiNjdx

� �
n1dC

¼ hq
Xk
m¼1

XNG

n¼1

1

2
wm;nUij xGPm;n; y

GP
m;n

� �
nm1 lm ð25Þ

and

Uij xGPm;n; y
GP
m;n

� �
¼

Z
NiNjdx

� �����
xGPm;n;y

GP
m;nð Þ

ð26Þ

Here, the integration of consistent mass matrix has

been recast into line integral, which is convenient for

us to implement the Gaussian quadrature. Moreover, it

does not need to map the coordinates and to evaluate

the Jacobian matrix.

4 Dynamic equations of SFEM

A 2D linear elastic dynamic problem with domain

X is considered in this work, which subjects to body

force b, external applied traction ~T on the boundary

Ct and displacement boundary condition u ¼ �u on

Cu. The governing equation of dynamic problem can

be obtained by using the principle of virtual

displacementZ
X
deTDedX�

Z
X
duT b�q€u� c _u½ �dX�

Z
Ct

duT ~TdC

¼ 0

ð27Þ

where e is the strain matrix, u is the displacement

tensor, de and du is the virtual strain and virtual
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displacement, respectively. D is the tensor of material

constants. c is the damping coefficient.

According to the spatial discretization procedure of

FEM, the Eq. (27) can be rewritten as

ddTe

Z
Ae

hBTDBdedA

� ddTe

Z
Ae

hNT b�qN€de�cN _de
	 


dA

� ddTe

Z
Cte

N ~TdC ¼ 0

ð28Þ

and

due¼ Ndde ¼
X
I

NIddI ; ue¼ Nde ¼
X
I

NIdI

ð29Þ

dee¼ Bdde ¼
X
I

BIddI ; ee¼ Bde ¼
X
I

BIdI

ð30Þ

where dI ¼ uI vI½ �T is the nodal displacement vector

of element, and B is the strain matrix. For 2D linear

elastic dynamic problems, the strain matrix can be

expressed as

BI ¼

oNI

ox
0

oNI

oy

0
oNI

oy

oNI

ox

2
664

3
775
T

ð31Þ

Due to the arbitrary variation of displacements, the

governing equation of element can be written as

kede þme
€de þ ce _de ¼ fe ð32Þ

and

ke ¼
Z
Ae

hBTDBdA ð33Þ

me ¼
Z
Ae

hNTqNdA ð34Þ

ce ¼
Z
Ae

hNTcNdA ð35Þ

fe ¼
Z
Ae

hNTbdAþ
Z
Ct

N ~TdC ð36Þ

where ke, me and ge is the stiffness, mass and damp

matrix of element, separately. fe is the element force

vector.

In the SFEM, the strain matrix in Eq. (31) is

calculated by strain smoothing operation [15]. The

strain of an arbitrary point xC can be written as the

divergence of a spatial average of standard strain field

~ee xCð Þ ¼
Z
XC

ee xð Þ/ x� xCð ÞdX ð37Þ

where XC may be an entire element or part of an

element. / x� xCð Þ is the smoothing function and

defined as

/ðx� xCÞ ¼
1=AC; x 2 XC

0; x 62 XC

(
ð38Þ

where AC ¼
R
XC

dX is the area of smoothing cellXC in

the element Xe. The subdivision of smoothing cells in

the element can be found in the Ref. [2].

Substituting / and ee into Eq. (37), the following

equation can be obtained

~ee xCð Þ ¼
Z
XC

Bde/ x� xCð ÞdX ¼ ~BCde ð39Þ

where the smoothed matrix ~BC is defined by

~BC ¼ 1

AC

Z
XC

BðxÞdX ð40Þ

Substituting Eq. (31) into ~BC, the term of ~BIC can

be written as

~BIC ¼ 1

AC

Z
XC

oNI

ox
0

oNI

oy

0
oNI

oy

oNI

ox

2
664

3
775
T

dX ð41Þ

Equation (41) can be changed by applying the

divergence theorem to the smoothing cellXC and their

boundary CC ¼ oXC, which is rewritten as

~BICðxCÞ ¼
1

AC

Z
CC

nxNI 0 nyNI

0 nyNI nxNI

� �T
dC

¼
~bI1ðxCÞ 0 ~bI2ðxCÞ

0 ~bI2ðxCÞ ~bI1ðxCÞ

� �T
ð42Þ

where n ¼ ðnx; nyÞ is the outward unit normal, and
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~bIiðxCÞ ¼
1

AC

Z
CC

niðxÞNIðxÞdC ð43Þ

The integral in Eq. (43) can be evaluated by the

Gaussian integration along each segment of boundary

CC of XC, Eq. (43) is transformed to algebraic form

~bIiðxCÞ ¼
1

AC

Xk
m¼1

XNG

n¼1

1

2
wm;nn

m
i NI xGPm;n

� �
lm

ði ¼ 1; 2Þ
ð44Þ

where xGPm;n is the integral point (Gaussian point) of

boundary segment of CC, whose length and outward

unit normal are denoted as lm and nm, respectively.

Then, the stiffness matrix of SFEM is expressed as

ke ¼
Z
Ae

hBTDBdA ¼
XSC
C¼1

Z
AC

h ~B
T

CD
~BCdA ð45Þ

where SC is the number of smoothing cells that an

element is subdivided, and Ae ¼
PSC

C¼1 AC. When the

element is uniform thickness, the integral term of

smoothing domain is constant, then Eq. (45) can be

rewritten as

ke ¼
XSC
C

ACh ~B
T

CD
~BC ð46Þ

Incorporating the novel integration scheme of con-

sistent mass matrix into the SFEM formulation and

assembling all the element matrices, the global system

equation can be obtained by

~Kdþ ~M€dþ C _d ¼ F ð47Þ

where ~K is the smoothed global stiffness matrix, ~M is

the global consistent mass matrix obtained by the

novel integration scheme, C is the global damp matrix

obtained as the same with global consistent mass

matrix, d is the vector of displacements of all the nodes

in the entire problem domain. F is the equivalent nodal

force vector.

For free vibration analysis, the damping and

external forces are set equal to zero. Then, the

discretized system Eq. (47) becomes

~Kdþ ~M€d ¼ 0 ð48Þ

Generally, the solution of Eq. (48) can be assumed

as

d ¼ �d exp ixtð Þ ð49Þ

where �d is the eigenvector, x is the frequency and t is

the time. By substituting Eq. (49) into (48), we obtain

~K� x2 ~M
� �

�d ¼ 0 ð50Þ

For forced vibration analysis with constant damp-

ing coefficient c, the damping matrix of Eq. (47) can

be rewritten as

~Ce ¼
Z
Ae

hNTcNdA ¼ hc

Z
Ae

NTNdA ð51Þ

It can be found in Eq. (51) that the evaluation of

domain integral can be easily recast into line integral

as the procedure of mass matrix.

The Newmark’s method [25] is used to solve the

dynamic Eq. (47) in this paper. The formulations of

Newmark’s method are

utþDt ¼ uþ Dt _ut þ
1

2
� d

� �
Dt2 €ut þ dDt2 €utþDt

ð52Þ

_utþDt ¼ _ut þ 1� gð ÞDt€ut þ gDt€utþDt ð53Þ

where d and g are parameters determined by stability

and integral accuracy. Dt is the time increment.

Substituting Eqs. (52) and (53) into Eq. (47), the

dynamic response at time t þ Dt can be obtained.

The Newmark’s method is unconditionally stable,

if

g� 0:5 and d� 1

4
gþ 0:5ð Þ2 ð54Þ

In this work, g ¼ 0:5, d ¼ 0:25 are used.

In present work, the four-node quadrilateral (Q4)

element and cell-based strain smoothing operation are

used for numerical implementation. Four quadrilateral

smoothing cells (SC = 4) are divided to calculate the

integral of Q4 element. In order to investigate the

influence of irregular meshes on numerical results, the

irregular meshes can be constructed by the following

equations

x0 ¼ xþ rcaDx

y0 ¼ yþ rcaDy

(
ð55Þ

where x; y are the initial coordinates of nodes of

regular meshes, x0; y0 are the new coordinates of nodes

of irregular meshes. rc is a random number from-1 to

1, and a is a prescribed irregularity factor whose value
is chosen from 0 to 0.5. Dx and Dy is the element size
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in x- and y-directions of the initial regular mesh,

respectively [2]. In present work, the irregular ele-

ments with a ¼ 0:1; 0:2; 0:3; 0:4 are adopted to

compare with the regular elements.

5 Numerical examples

5.1 Free vibration analysis

In this numerical example, a cantilever beam, as

shown in Fig. 1, is analyzed as a free vibration

problem. The dimensionless parameters taken in the

computation are length L ¼ 48 , height H ¼ 12 ,

thickness h ¼ 1:0 , Young’s modulus E ¼ 3:0� 107,

Possion’s ratio v ¼ 0:3, mass density q ¼ 1. Figure 2

is the typical regular meshes of cantilever beam for

analysis.

The eigenvalues are investigated in this example.

Table 1 lists the natural frequencies obtained by

different number of regular meshes. Two Gaussian

points are used for each boundary segment of

smoothing cells in the present method. The results

obtained by SFEM and FEM are also listed in Table 1,

in which the traditional consistent mass matrix is

adopted for the calculation of SFEM. It can be

observed in Table 1 that the results obtained by

present method are the same as those of SFEM, and it

indicates that the novel integration scheme of consis-

tent mass matrix, which no coordinate mapping is

required, possesses the same accuracy as the tradi-

tional consistent mass matrix. Because in the calcu-

lation of FEM, the lumped mass matrix overestimates

the mass effect and the consistent mass matrix

underestimates the mass effect [17], the exact natural

frequencies should be located in the interval of results

obtained by FEM with lumped mass matrix and those

with consistent mass matrix. Hence, it can be

confirmed that the results given by present method

are close to the exact solutions, see from Table 1. The

first to ninth eigenmodes obtained by present method

are plotted in Fig. 3. The results shown in Fig. 3 are

consistent with those given in Ref. [23, 24].

In order to investigate the influence of the number

of Gaussian integral points, which are used for each

boundary segment of smoothing cells, on the accuracy

of present method, the results of first to ninth

eigenmodes of the cantilever beam are listed in

Table 2, in which 20 9 8 elements are used for

analysis. The number of Gaussian integral points to be

used depends on the complexity of the integrand, and

the use of m Gaussian integral points gives the exact

results of a polynomial integrand of up to order of

n = 2m - 1. In this case, it can be observed from

Table 2 that two Gaussian points are enough to obtain

the stable and accurate results in this numerical

example.

Due to the strain smoothing technique for stiffness

matrix and the novel integration scheme for mass

matrix, one of the advantages of the present method is

that the numerical accuracy can be maintained for

irregular meshes. Figure 4 shows the 20 9 8 irregular

elements with a ¼ 0:4. Table 3 gives the results of

first to fifth natural frequencies of the cantilever beam

obtained by different irregular elements. It can be seen

that the good stable and accurate results are also

obtained by present method with different irregular

meshes.Fig. 1 Cantilever beam for free vibration analysis

Fig. 2 Typical regular meshes of the cantilever beam. a Number of elements: 10 9 8, b number of elements: 20 9 8
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5.2 Forced vibration analysis

In this example, a cantilever beam subjected to a

dynamic force P ¼ 1000g tð Þ at the right end is used

for forced vibration analysis. gðtÞ is a function of time

to represent the dynamic loading. The geometrical

parameters and material parameters are the same as

those of Sect. 5.1. Three types of dynamic loading are

implemented for analysis, including simple harmonic

loading, constant loading and transient loading. The

cantilever beam model and different dynamic loading

are given in Fig. 5.

In the case of harmonic loading, a simple harmonic

load g tð Þ ¼ sin xtð Þ is used, as shown in Fig. 5b. x is

the frequency of dynamic load, and x ¼ 27 is used in

this example. The damping is neglected in this case.

The dynamic responses at point A obtained by the

present method are shown in Fig. 6. Different time

increments are employed with 20 9 8 elements to

investigate the robustness of time increment for

dynamic analysis. It can be seen from Fig. 6 that the

good results can be obtained when Dt� 0:01. The time

increment Dt ¼ 0:005 will be employed in the

following calculation. Figure 7 shows the results

obtained by present method with different irregular

elements. The present results compared with SFEM

and FEM are shown in Fig. 8. It is observed that the

numerical accuracy of present method can maintain

even for extremely distorted meshes. However, the

accuracy of FEM is poor when irregular meshes with

a ¼ 0:4 are used.

When the dynamic loading is constant gðtÞ ¼ 1:0,

as shown in Fig. 5c, it can be taken as a dynamic

relaxation to check the stability and efficiency of

present numerical method [23]. If the damping is

neglected, the response of this problem is stable vibra-

tion with the static deformation, and the displacement

at point A can be obtained by analytical solution [26].

When the damping is considered, the response will

converge to the static deformation. In this case,

40 9 16 elements with different irregular factors are

implemented. The damping coefficient is c = 0:4.

Table 4 demonstrates the results obtained in the stage

of convergence, in which the results obtained by

SFEM, FEM and Ref. [23] are included for compar-

ative study. It can be found that the stable and accurate

results can be obtained by present method even though

the severely irregular meshes are used. The results of

present method are almost the same as those of SFEM,T
a
b
le

1
T
h
e
n
at
u
ra
l
fr
eq
u
en
ci
es

o
b
ta
in
ed

b
y
d
if
fe
re
n
t
m
es
h
d
is
tr
ib
u
ti
o
n
s

M
o
d
e

1
0
9

4
el
em

en
ts

2
0
9

8
el
em

en
ts

4
0
9

1
6
el
em

en
ts

F
E
M

(4
8
5
0
D
O
F
)

P
re
se
n
t

m
et
h
o
d

S
F
E
M

F
E
M

P
re
se
n
t

m
et
h
o
d

S
F
E
M

F
E
M

P
re
se
n
t

m
et
h
o
d

S
F
E
M

F
E
M

L
u
m
p
ed

m
as
s

C
o
n
si
st
en
t

m
as
s

L
u
m
p
ed

m
as
s

C
o
n
si
st
en
t

m
as
s

L
u
m
p
ed

m
as
s

C
o
n
si
st
en
t

m
as
s

L
u
m
p
ed

m
as
s

C
o
n
si
st
en
t

m
as
s

1
2
8
.3
1

2
8
.3
1

2
8
.6
0

2
8
.7
4

2
7
.8
8

2
7
.8
8

2
7
.7
6

2
7
.9
9

2
7
.7
5

2
7
.7
5

2
7
.7
8

2
7
.7
9

2
7
.7
2

2
7
.7
3

2
1
4
6
.4
5

1
4
6
.4
5

1
4
4
.1
2

1
4
8
.2
3

1
4
2
.2
9

1
4
2
.2
9

1
4
1
.7
9

1
4
2
.7
8

1
4
1
.1
9

1
4
1
.1
9

1
4
1
.0
7

1
4
1
.3
2

1
4
0
.8
6

1
4
0
.9
2

3
1
8
0
.1
0

1
8
0
.1
0

1
7
9
.7
7

1
8
0
.1
5

1
7
9
.8
2

1
7
9
.8
2

1
7
9
.8
2

1
7
9
.8
4

1
7
9
.7
4

1
7
9
.7
4

1
7
9
.7
2

1
7
9
.7
5

1
7
9
.7
1

1
7
9
.7
1

4
3
4
4
.8
5

3
4
4
.8
5

3
2
8
.4
7

3
4
8
.4
9

3
2
9
.1
1

3
2
9
.1
1

3
2
8
.0
1

3
3
0
.1
4

3
2
5
.0
4

3
2
5
.0
4

3
2
4
.0
9

3
2
5
.3
1

3
2
3
.8
9

3
2
4
.0
1

5
5
4
2
.5
8

5
4
2
.5
8

5
2
3
.3
6

5
4
2
.9
0

5
3
5
.9
6

5
3
5
.9
6

5
3
4
.2
3

5
3
7
.5
7

5
2
6
.1
4

5
2
6
.1
4

5
2
3
.0
9

5
2
6
.5
8

5
2
3
.4
3

5
2
3
.6
2

6
5
7
4
.5
0

5
7
4
.5
0

5
3
2
.4
1

5
7
9
.8
7

5
3
8
.0
9

5
3
8
.0
9

5
3
8
.0
8

5
3
8
.1
9

5
3
6
.9
1

5
3
6
.9
1

5
3
6
.2
9

5
3
6
.9
5

5
3
6
.5
7

5
3
6
.5
9

7
8
2
5
.0
5

8
2
5
.0
5

7
1
6
.3
5

8
3
1
.6
4

7
5
3
.6
0

7
5
3
.6
0

7
5
1
.1
5

7
5
5
.8
4

7
3
5
.1
3

7
3
5
.1
3

7
2
8
.4
5

7
3
5
.7
5

7
3
0
.0
4

7
3
0
.3
4

8
9
0
7
.6
2

9
0
7
.6
2

8
5
9
.2
3

9
0
9
.2
8

8
8
7
.7
2

8
8
7
.7
2

8
8
7
.6
9

8
8
8
.2
2

8
8
2
.7
0

8
8
2
.7
0

8
7
9
.6
9

8
8
2
.8
4

8
8
1
.2
8

8
8
1
.3
5

9
9
6
9
.4
9

9
6
9
.4
9

8
7
5
.8
4

9
7
1
.7
8

9
2
1
.7
8

9
2
1
.7
8

9
2
0
.3
6

9
2
3
.0
7

9
0
4
.6
5

9
0
4
.6
5

8
9
7
.2
3

9
0
5
.0
9

8
9
9
.6
9

8
9
9
.8
8

1
0

1
1
0
2
.6
7

1
1
0
2
.6
7

9
5
6
.3
4

1
1
0
8
.5
1

1
0
2
5
.0
7

1
0
2
5
.0
7

1
0
2
2
.7
8

1
0
2
7
.1
9

1
0
0
5
.3
0

1
0
0
5
.3
0

9
9
6
.5
0

1
0
0
5
.8
5

1
0
0
0
.2
2

1
0
0
0
.4
6

1904 Meccanica (2016) 51:1897–1911

123



but are more accurate than those of FEM and Ref. [23].

Furthermore, the calculation of FEM is invalid when

the extremely irregular meshes with a ¼ 0:4 are used.

Figure 9 is the dynamic responses at point A obtained

by present method, it can be seen that the good

stable results are obtained by different irregular

elements.

In the following, the cantilever beam subjected to a

transient loading is investigated, as shown in Fig. 5d,

the loading function in this case is given as

gðtÞ ¼ 1 0� t� 0:5
0 t[ 0:5



ð56Þ

In this computation, 20 9 8 elements are used.

Figures 10 and 11 are the dynamic responses at point

A without damping. Figures 12 and 13 are the results

with damping c = 0:4. The results obtained by differ-

ent irregular elements are also given in these figures. It

can be seen that good stability and accuracy can also

be obtained by the present method for forced vibration

analysis. However, as shown in Figs. 11 and 13, the

results of FEM are sensitive to irregular meshes and

the accuracy of results is poor for a ¼ 0:4.

6 Conclusions

The symbolic integration combining indefinite integral

with Gauss divergence theorem has been employed to

form a novel integration scheme for consistent mass

matrix of FEM. Then the novel integration scheme of

consistent mass matrix is incorporated into SFEM for

solving 2D linear elastic dynamic problems. Compar-

ingwith the conventional FEM, no coordinate mapping

is required for consistent mass matrix and damping

matrix. From the results illustrated in several numerical

examples, it can also be concluded that the present

Fig. 3 First to ninth

eigenmodes of the cantilever

beam

Table 2 First to fifth natural frequencies of cantilever beam

by using different number of Gaussian points

Mode Number of Gaussian points

1 2 3 4 5

1 27.88 27.88 27.88 27.88 27.88

2 142.32 142.29 142.29 142.29 142.29

3 179.82 179.82 179.82 179.82 179.82

4 329.21 329.11 329.11 329.11 329.11

5 536.19 535.96 535.96 535.96 535.96

Fig. 4 Irregular elements with a = 0.4 (20 9 8 elements)

Table 3 First to fifth natural frequencies of the cantilever

beam by using irregular elements (20 9 8 elements)

Mode a ¼ 0 a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4

1 27.88 27.88 27.84 27.80 27.84

2 142.29 142.29 142.12 142.22 142.24

3 179.82 179.73 179.41 178.79 178.14

4 329.11 329.09 329.08 330.25 328.14

5 535.96 536.22 536.11 535.81 534.06
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Fig. 5 Cantilever beam for forced vibration analysis. a Cantilever beam, b harmonic loading, c constant loading, d transient loading

Fig. 6 Responses at point

A without damping under

harmonic load with different

time increments
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method can obtain accurate results as well as conven-

tional FEM, moreover, the present method can main-

tain the numerical accuracy even the severely irregular

elements are used.

Benefit from the novel integration scheme, it can be

forecasted that the integral of matrices of FEM

evaluated along the boundary of smoothing cells can

be taken as a robust technique for numerical

Fig. 7 Responses at point

A without damping under

harmonic load by present

method with irregular

elements

Fig. 8 Responses at point A without damping under harmonic load by different methods with irregular elements
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Table 4 Results obtained

by different irregular

elements under constant

loading (t ¼ 50 s)

Displacement uy (exact: uy ¼ �0:0089)

a ¼ 0 a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4

Present method -0.008866 -0.008877 -0.008896 -0.008956 -0.009087

SFEM -0.008866 -0.008875 -0.008915 -0.008981 -0.009087

FEM -0.008846 -0.008844 -0.008829 -0.008806 –

Ref. [23] -0.008842

Fig. 9 Responses at point

A with damping under

constant loading

Fig. 10 Responses at point

A without damping under

transient loading obtained

by present method
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Fig. 11 Responses at point A without damping under transient loading obtained by different methods

Fig. 12 Responses at point

A with damping under

transient loading obtained

by present method
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simulation. It is also easily extended the present

integration scheme to solve the matrices of FEM

which contain non partial derivative terms of shape

function, such as in the problems of plate, shell and

etc.
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