
Chemical reaction effect on MHD viscoelastic fluid
over a stretching sheet through porous medium

M. K. Nayak

Received: 3 August 2014 /Accepted: 13 November 2015 / Published online: 28 November 2015

� Springer Science+Business Media Dordrecht 2015

Abstract The heat and mass transfer effects in a

boundary layer flow through porous medium of an

electrically conducting viscoelastic fluid subject to

transverse magnetic field in the presence of heat

source/sink and chemical reaction have been analyzed.

It has been considered the effects of radiation, viscous

and Joule dissipations and internal heat generation/

absorption. Closed form solutions for the boundary

layer equations of viscoelastic, second-grade and

Walters’ B0 fluid models are obtained. The method

of solution involves similarity transformation. The

transformed equations of thermal and mass transport

are solved by applying Kummer’s function. The

solutions of temperature field for both prescribed

surface temperature as well as prescribed surface heat

flux are obtained. It is important to remark that the

interaction of magnetic field is found to be counter-

productive in enhancing velocity and concentration

distribution whereas the presence of chemical reaction

as well as porous matrix with moderate values of

magnetic parameter reduces the temperature and

concentration fields at all points of flow domain.

Keywords Stretching sheet � Porous medium �
Viscoelastic � Chemical reaction � Kummer’s function

List of symbols

a Thermal diffusivity

k Thermal conductivity

Rc Viscoelastic parameter

Pr Prandtl number

Sc Schmidt number

T Non-dimensional temperature

t Non-dimensional time

q Density of the fluid

t Kinematics coefficient of viscosity

r Electrical conductivity

R Radiation parameter

Ec Eckert number

Cf Skin friction coefficient

k0 Modulus of the viscoelastic fluid

mw Rate of mass flux

k1 Mean absorption coefficient

Kp Permeability parameter

Mn Magnetic parameter

B0 Magnetic field strength

Q Heat source/sink parameter

T0 Temperature of the field

p Pressure

D Molecular diffusivity

qr Radiative heat flux

r� Stefan–Boltzmann constant

Cp Specific heat
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qw Wall heat flux

sw Wall shear stress

T1 Temperature far from sheet

Tw Wall temperature

Kc Chemical reaction parameter

A, B, E0, E1 Constants

1 Introduction

The importance of fluid flow over a stretching sheet

can be perceived for its ever increasing inevitable ap-

plications in industries and in contemporary technol-

ogy. The applications of the stretching sheet problem

are such as polymer sheet extrusion from a dye,

drawing, thinning and annealing of copper wires, glass

fiber and paper production, the cooling of a metallic

plate in a cooling bath etc. The production of these

sheets requires that the melt issues from a slit and is

stretched to get the desired thickness. The final

product depends on rate of cooling in the process

and the process of stretching. Sakiadis [1] was first to

study the boundary-layer behavior on a continuous

solid surface moving with constant speed. Crane [2]

was the first to achieve an elegant analytical solution

to the boundary layer equations for the problem of

steady two-dimensional flow through a stretching

surface in a quiescent incompressible fluid.

The growing need for chemical reaction and

hydrometallurgical industries needs the study of heat

and mass transfer with chemical reaction. There are

numerous transport processes that are governed by

the combined action of buoyancy forces due to both

thermal and mass diffusion in the presence of

chemical reaction effect. These processes occur in

the nuclear reactor safety and combustion systems,

solar collectors, metallurgical and chemical engi-

neering etc.

Khan and Sanjayanand [3] reported an analytical

solution of the viscoelastic boundary layer flow and

heat transfer over an exponentially stretched sheet

considering the viscous dissipation in the heat trans-

port equation. Kar et al. [4] investigated the heat and

mass transfer effects on a dissipative and radiative

viscoelastic MHD flow over a stretching porous sheet.

Nayak et al. [5] analyzed the effects of chemical

reaction on MHD flow of a viscoelastic fluid through

porous medium.

Stagnation point flow is important because stagna-

tion point appears in virtually all flow fields in science

and engineering. The stagnation-region encounters the

highest pressure, heat transfer and rates of mass

diffusion. This problem has been studied extensively

by Hayat et al. [6] and widely studied in several

situations recently on account of the importance of its

applications in industries and manufacturing

processes.

Bataller [7] investigated the effect of thermal

radiation on heat transfer in a boundary layer

viscoelastic second order fluid over a stretching

sheet with internal heat source/sink. Recently, Hayat

et al. [8] studied the effects of chemical reaction of

unsteady three dimensional flow of couple stress

fluid over a stretching surface. Gireesha et al. [9]

have studied the boundary-layer flow and heat

transfer of a dusty fluid flow over a stretching sheet

in presence of non-uniform heat source/sink and

radiation. Parsa et al. [10] investigated the MHD

boundary-layer flow over a stretching surface with

internal heat generation or absorption. But these

studies are confined to hydrodynamic flow and heat

transfer in Newtonian fluids. However, most of the

practical situations demand non-Newtonian fluids

which are extensively used in many industrial and

engineering applications.

Mustafa et al. [11, 12] studied the boundary layer

flow as well as axisymmetric flow of nano fluid over a

non-linearly stretching sheet. A common feature of the

above investigations is that nano fluids can impart

dramatic improvements in the thermal conductivity of

host fluids compared to that of traditional fluids. This

further leads to enhance the heat transfer and viscosity.

Raptis [13] studied the heat transfer in a viscous

fluid over a stretching sheet with viscous dissipation

with and without porous medium. Nayak et al. [14]

discussed the unsteady radiative MHD free convective

flow and mass transfer of a viscoelastic fluid past an

inclined porous plate. Cortell [15] has worked on

viscous flow and heat transfer over a nonlinearly

stretching sheet. Effect of viscous dissipation and

radiation on the thermal boundary layer over a

nonlinearly stretching sheet was also studied by

Cortell [16].

Singh [17] and Chen [18] contributed recently to

this field of study. All their works are related to

viscoelastic fluid model in the presence of magnetic

field. They considered either an oscillatory stretching
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surface or surface with a linearly varying velocity.

They have used hyper-geometric function i.e., Kum-

mer’s function. All these works reported above

considered either radiation effect/viscous dissipation

or both. The novelty of the present study is starred due

to the following three aspects.

1. Inclusion of porous media is justified since the

flow and heat transport processes occur by using

insulating material (porous matrix) which greatly

prevents heat loss and accelerates the process of

cooling/heating as the case may be serving as a

heat exchanger.

2. Consideration of mass diffusion as the flow of

industrial fluids is subjected to more than one fluid

either generated/provided externally.

3. Inclusion of chemical reaction term in the mass

transport equation which is vital since the fluids

may be chemically reactive.

Second grade or Walters’ B models are considered

in the present study. This is because this two models

provide relative response to flow and heat transfer rate.

Moreover, elastic property of Walters’ B flow model

reduces the flow instabilities which are mainly driven

by the fluid normal stresses or by the nature of

boundary conditions.

The present study is a generalized approach by

which we can discuss the results of Chen [18] as a

special case, without considering mass diffusion and

porous medium. Moreover, it is intended to bring out

the effects of the emerging parameters on the heat and

mass transport phenomena. The confluent hyper-

geometric function i.e. Kummer’s function has been

used to solve the heat and mass transport equations

after using similarity transformation which reduces

the governing partial differential equations into to

ordinary differential equations.

2 Formulation of the problem

Consider a steady two-dimensional boundary-layer

flow of an electrically conducting, viscoelastic fluid

past a stretching sheet embedded in a porous medium,

the flow being confined to y[ 0. Two equal and

opposite forces are applied along x-axis so that the

surface is stretched, keeping the origin fixed. Assum-

ing that a uniform magnetic field of strength B0 is

applied along y-axis that generates magnetic effect in

the x-direction. Under the usual boundary layer

assumptions, the equations of continuity, momentum,

energy and species concentration for the flow of

viscoelastic fluid are:

ou

ox
þ ov

oy
¼ 0 ð1Þ
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ou

ox
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ou

oy
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o2u
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þ v

oC

oy
¼ D

o2C

oy2
� K 0

cðC � C1Þ ð4Þ

Rosseland’s approximation for thermal radiation gives

qr ¼ � 4r�
3k1

oðT4Þ
oy

. It is assumed that the temperature

variation within the flow is such that T4 may be

expanded in a Taylor series. Expanding T4 about T1
and neglecting the higher order terms, we have

T4 ¼ 4T3
1T � 3T4

1 and
oqr

oy
¼ � 16r�T3

1
3k1qCp

o2T

oy2
:

Substituting the above value of oqr
oy

in Eq. (3), we get

u
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þ l
qCp
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þ 16r�T3
1

3k1qCp
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ðT � T1Þ þ rB2
0

qCp

u2

ð5Þ
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The boundary conditions are:

3 Solution of the flow field

Equations (1) and (2) admit self–similar solutions of

the form

f ¼ w

t
ffiffiffiffiffiffiffiffi
Rex

p ; g ¼ y

x

ffiffiffiffiffiffiffiffi
Rex

p
ð7Þ

where f is the dimensionless stream function and g is

the similarity variable and Rex ¼ uwx=t is the local

Reynolds number, w ðx; yÞ is the stream function

satisfying the continuity Eq. (1).

Substituting Eqs. (7) in (2), we get

f 000 þ ff 00 � ðf 0Þ2 þ Rc 2f 0f 000 � ðf 00Þ2 � ff iv
n o

� Mn þ
1

Kp

� �
f 0 ¼ 0;

ð8Þ

where Rc ¼ k0E=l is the viscoelastic parameter,Mn ¼
rB2

0=qE is the magnetic parameter and Kp ¼
EK 0

p

m is the

non-dimensional permeability parameter.

The corresponding boundary conditions are:

f ð0Þ ¼ fw; f
0ð0Þ ¼ 1; f 0ð1Þ ¼ 0; f 00ð1Þ ¼ 0: ð9Þ

where fw ¼ �vw
ffiffiffiffiffiffi
Rex

p

uw
is the suction/injection parameter,

fw [ 0 and fw\0 represent suction and injection

respectively.

The exact solution of Eq. (8) with boundary

conditions expressed in Eq. (9) following Chakrabati

and Gupta [19] is in the form

f ðgÞ ¼ 1� e�rg

r
þ fw; ð10Þ

where r is a real positive root of the cubic algebraic

equation

Rcfwr
3 þ ðRc þ 1Þr2 � fwr � 1þMn þ

1

Kp

� �
¼ 0

ð11Þ

The velocity profile can be obtained from the Eq. (10)

as

f 0ðgÞ ¼ e�rg ð12Þ

The shear stress at the wall is defined as

sw ¼ l
ou

oy

� �
y¼0

¼ lEx
ffiffiffiffiffiffiffiffi
E=m

p
:f 00ð0Þ ð13Þ

The non dimensional form of skin friction coefficient

at the wall is

CfR
1=2
ex

¼ �f 00ð0Þ ¼ r ð14Þ

4 Heat transfer analysis

4.1 Case I: Prescribed surface temperature (PST)

In prescribed surface temperature case, introducing

non-dimensional quantities hðgÞ ¼ T�T1
Tw�T1

; Pr ¼

m=a; Ec ¼ E2l2

ACp
; Rc ¼ Ek0

l ; Q ¼ q
EqCp

; R ¼ 16r�T3
1

3k1k
and

using Eq. (6), the Eq. (5) becomes

ð1þ RÞh00 þ Prfh
0 þ PrðQ� 2f 0Þh

¼ �EcPr ðf 00Þ2 þ Rcðf 0f 00 � ff 000Þ
�

þ Mn þ
1

Kp

� �
ðf 0Þ2

� ð15Þ

u ¼ uw ¼ Ex; v ¼ vw; T ¼ TwðxÞ ¼ T1 þ A
x

L

� �2

ðPST caseÞ;

hwðxÞ ¼ �k
oT

oy

� �
¼ B

x

L

� �2

ðPHF caseÞ;

C ¼ CwðxÞ ¼ C1 þ E0

x

L

� �2

; mw ¼ �D
oC

oy

� �
¼ E1x

2; at y ! 0

u ¼ 0;
ou

oy
¼ 0; T ! T1; C ! C1 as y ! 1

9>>>>>>>>>>=
>>>>>>>>>>;

ð6Þ
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with the boundary conditions

hð0Þ ¼ 1; hð1Þ ¼ 0 ð16Þ

Introducing the variable n ¼ � Pre
�rg

ð1þRÞr2 the Eq. (15)

transformed to

n
d2h

dn2
þ 1� PrS

ð1þ RÞr2 � n

� �
dh
dn

þ PrQ

ð1þ RÞr2nþ 2

� �
h

¼ �Ecð1þ RÞr4
Pr

1þ RcSþ
1

r2
Mn þ

1

Kp

� �� �
n

ð17Þ

with the boundary conditions

h n ¼ � Pr

ð1þ RÞr2

� �
¼ 1; hðn ¼ 0Þ ¼ 0 ð18Þ

where S ¼ 1þ r fw.Using confluent hypergeometric

function of first kind (Kummer’s function) we get,

hðnÞ ¼ 1þ
EcPrð1þ RcSþ 1

r2
Mn þ 1

Kp

� �
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5

n
�P�r

� �a
M a� 2; bþ 1; nð Þ

M a� 2; bþ 1;�P�
r

� �

�
EcPrð1þ RcSþ 1

r2
Mn þ 1

Kp

� �
ð1þ RÞ 4� ð2S� QÞP�

r

	 
 n
P�
r

� �2

ð19Þ

where

a ¼
P�
r Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�
r S

� �2�4P�
rQ

q
2

;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�
r S

� �2�4P�
rQ

q
;P�

r ¼
Pr

ð1þ RÞr2 ; S ¼ 1þ r fw

andMða1; a2; xÞ denotes the Kummer’s function and is

given by

Mða1; a2; xÞ ¼
X1
n¼0

a1ð Þn
a2ð Þn

xn

n!
; a2 6¼ 0;�1;�2. . .

ð20Þ

where að Þn denoting the Pochhammer symbol defined

in terms of the gamma function as

ðaÞn ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ n� 1Þ ¼ Cðaþ nÞ
CðaÞ

ð21Þ

The temperature profile in terms of g can be written as

hðgÞ ¼ 1þ
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5

e�arg M a� 2; bþ 1;�P�
r e

�rg
� �
M a� 2; bþ 1;�P�

r

� �

�
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 
 e�2rg

ð22Þ

The dimensionless wall temperature gradient is given

by

h0ð0Þ ¼ r 1þ
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5

� P�
r

a� 2

bþ 1

� �
M a� 1; bþ 2;�P�

r

� �
M a� 2; bþ 1;�P�

r

� �� a

" #

þ 2r
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5

ð23Þ

The local Nusselt number for PST case is

NuxRe
�1=2
x ¼ �h0ð0Þ ð24Þ

4.2 Case II: Prescribed heat flux (PHF)

In prescribed heat flux case, introducing the similarity

variable T � T1 ¼ Bx2

kL2

ffiffiffi
t
E

p
wðgÞ and using Eqs. (6),

(5) becomes

ð1þ RÞw00 þ Pr fw
0 þ Pr Q� 2f 0ð Þw

¼ �EcPr ðf 00Þ2 þ Rcf
00ðf 0f 00 � ff 000Þ

h

þ Mn þ
1

Kp

� �
f 0ð Þ2

� ð25Þ

with the boundary conditions

wð0Þ ¼ �1; wð1Þ ¼ 0 ð26Þ
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where Ec ¼
E2L2k

ffiffiffiffiffiffi
E=t

p
BCp

is the Eckert number and the

other parameters are as defined in the PST case.

Substituting n ¼ � Pre
�rg

ð1þRÞr2 in Eqs. (25) and (26) we

get respectively

n
d2w

dn2
þ 1� PrS

ð1þ RÞr2 � n

� �
dw
dn

þ PrQ

ð1þ RÞr2nþ 2

� �
w

¼ �Ecð1þ RÞr4
Pr

1þ RcSþ
1

r2
Mn þ

1

Kp

� �� �
n

ð27Þ

wðn ¼ 0Þ ¼ 0;

w0 n ¼ � Pr

ð1þ RÞr2

� �
¼ �ð1þ RÞr

Pr

ð28Þ

The exact solution of Eq. (27) subject to the boundary

conditions expressed in Eq. (28) can be written in

terms of confluent hypergeometric function in terms of

similarity variable g and is given by

The dimensionless wall temperature can be expressed

as

The local Nusselt number for the PHF case can be

written as

NuxR
�1=2
ex

¼ 1

wð0Þ ð31Þ

5 Mass transfer analysis

Introducing the similarity variable C � C1 ¼
E1x

2

D

ffiffiffi
t
E

p
/ðgÞ and using Eqs. (6) in (4),

/00 þ Scf/
0 � Scf

0/� ScKc/ ¼ 0 ð32Þ

with the boundary conditions

/0 ¼ �1 at g ¼ 0

/ ! 0 at g ! 1
ð33Þ

Again introducing a new variable n ¼ � Sc
r2
e�rg, the

Eq. (32) becomes

w ðgÞ ¼

1
r
þ 2

EcPr 1þRcSþ 1

r2
Mnþ 1

Kp

� �n o
ð1þRÞ 4�ð2S�QÞP�

rf g

2
4

3
5

2
4

3
5 � e�arg �M a� 2; bþ 1;�P�

r e
�rg

� �

aM a� 2; bþ 1;�P�
r

� �
� P�

r
a�2
bþ1

� �
M a� 1; bþ 2;�P�

r

� �

�
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5 � e�2rg ð29Þ

w ðgÞ ¼

1
r
þ 2

EcPr 1þRcSþ 1

r2
Mnþ 1

Kp

� �n o
ð1þRÞ 4�ð2S�QÞP�

rf g

2
4

3
5 �M a� 2; bþ 1;�P�

r

� �

a �M a� 2; bþ 1;�P�
r

� �
� P�

r
a�2
bþ1

� �
M a� 2; bþ 2;�P�

r

� � �
EcPr 1þ RcSþ 1

r2
Mn þ 1

Kp

� �n o
ð1þ RÞ 4� ð2S� QÞP�

r

	 

2
4

3
5 ð30Þ
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n
d2/

dn2
þ 1�Sc

r2
r2�Mn�

1

Kp

� �� �
�n

� �
d/
dn

þ 2� Kc

r2n

� �
/¼ 0

ð34Þ

The corresponding boundary conditions are

/ðn ¼ 0Þ ¼ 0;/0 n ¼ � Sc

r2

� �
¼ � r

Sc
ð35Þ

The exact solution of Eq. (34) subject to the boundary

condition expressed in Eq. (35) is given by

where S1 ¼ Sc
r2

r2 � M2 þ 1
Kp

� �h i
and S2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ 4Kc

r2

q
.

The dimensionless wall concentration gradient is

given by

Fig. 1 a Velocity profiles (second grade fluid) for

Mn ¼ 0:5; Rc ¼ 1. b Velocity profiles for Mn ¼ 1; fw ¼ 0

Fig. 2 a Temperature profiles for Pr ¼ 3;Mn ¼ 1; Ec ¼
0:1;R ¼ 1;Q ¼ 0; fw ¼ 0 (PST case). b Temperature profiles

for Pr ¼ 3;Mn ¼ 1; Ec ¼ 0:1;R ¼ 1;Q ¼ 0; fw ¼ 0 (PHF

case)

/ðgÞ ¼
e�

S1þS2
2ð Þ rgM S1þS2�4

2
; 1þ S1; � Sc

r2
: e�rg

� �
rðS1þS2Þ

2
:M S1þS2�4

2
; 1þ S1; � Sc

r2

� �
� Sc

r

S1þS2�2Þ
2 ð1þS1Þ

� �
M S1þS2�2

2
; 2þ S1; � Sc

r2

� �h i ð36Þ
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The local Sherwood number can be expressed as

ShxRe
�1=2
x ¼ �/0ð0Þ ð38Þ

6 Results and discussion

In the course of discussion the following aspects are

highlighted.

1. Effect of permeability of the medium on flow

characteristics.

2. Effect of diffusion species as well as first order

chemical reaction

3. Relative response of two viscoelastic models to

velocity and temperature distribution in the pres-

ence of uniform porous matrix.

4. Presenting the generality of the present study by

discussing the previous result as particular case.

It is important to note that Rc [ 0, Rc\0 and Rc ¼
0 represent second grade,WaltersB0 and viscous fluids
respectively.

Fig. 3 a Temperature profiles for Pr ¼ 1;Mn ¼ 1; Rc ¼
1;R ¼ 0;Q ¼ 0; fw ¼ 0 (PST case). b Temperature profiles

for Pr ¼ 3;Mn ¼ 1; Ec ¼ 0:1;Rc ¼ 1;R ¼ 0; Q ¼ 0; fw ¼ 0

(PHF case)

Fig. 4 a Temperature profiles for Pr ¼ 3;Mn ¼ 1; Ec ¼
0:1;Rc ¼ 0:5;Q ¼ 0; fw ¼ 0 (PST case). b Temperature pro-

files for Pr ¼ 3;Mn ¼ 1; Ec ¼ 0:1;Q ¼ 0; fw ¼ 0 (PHF case)

/0ð0Þ ¼
�r S1þS2

2

� �
M S1þS2�4

2
; 1þ S1; � Sc

r2
: e�rg

� �
þM S1þS2�2

2
; 2þ S1; � Sc

r2
: e�rg

� �
rðS1þS2Þ

2
:M S1þS2�4

2
; 1þ S1; � Sc

r2

� �
� Sc

r

S1þS2�2Þ
2 ð1þS1Þ

� �
M S1þS2�2

2
; 2þ S1; � Sc

r2

� �h i ð37Þ
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Figure 1a shows the velocity distribution of second

grade fluid for suction (fw [ 0), injection (fw\0) and

impermeable plate (fw ¼ 0) in the presence (Kp ¼ 0:5)

and absence (Kp ¼ 100) of porous matrix. The profiles

Kp ¼ 100; Mn ¼ 0:5; Rc ¼ 1 coincides with Fig. 1b

of Chen [18] and hence our result finds a good

agreement. The porous medium (Kp ¼ 0:5) reduces

the primary velocity at all points due to resistive force

offered by the porous medium which results in

thinning of boundary layer. Further, it is interesting

to note that the suction at the plate reduces the

velocity. Thus, it is concluded that combined effect of

suction and porous matrix favorable to thinning of

boundary layer which favors the stability of the flow.

Figure 1b exhibits the velocity profiles for Walters

B0 (Rc = -0.2), viscous (Rc ¼ 0) and second grade

flow (Rc = 0.2). It is observed that velocity attains low

value in case of visco-elasticity (Walters B0 model), in

the presence of porous medium. Viscoelastic flows are

prone to instabilities due to non-linearity in the

constitutive equations. Instability are mainly driven

by the fluid normal stresses (elasticity) or by the nature

of the boundary conditions. Therefore, elastic property

of Walters flow model in conjunction with the

permeability of the porous medium reduces the

boundary layer thickness and hence reduces the

instability.

Figures 2a, b display the temperature distribution in

case of PST and PHF cases respectively without

suction/injection. The effects of the permeability of

the medium and elasticity of the fluid subject to

Fig. 5 a Temperature profiles for Pr ¼ 3;Mn ¼ 1; Ec ¼
0:1;Rc ¼ 0:5;R ¼ 0; fw ¼ 0:5 (PST case). b Temperature

profiles for Pr ¼ 3;Mn ¼ 1; Ec ¼ 0:1;Rc ¼ 0:5;R ¼ 0; fw ¼
0:5 (PHF case)

Fig. 6 Concentration profiles

Table 1 Skin friction coefficients

Mn Kp Rc sðfw ¼ 0Þ sðfw ¼ 1Þ

1 100 -0.5 -2.00499 1.002852

1 0.5 -0.5 -2.82843 1.445428

0.5 100 -0.5 -1.73781 0.847162

0.5 0.5 -0.5 -2.64575 1.351683

1 100 0.5 -1.15758 1.004

1 0.5 0.5 -1.63299 2

0.5 100 0.5 -1.00333 0.802458

0.5 0.5 0.5 -1.52753 1.65662

1 100 1.0 -1.0025 1.005013

1 0.5 1.0 -1.41421 -1.26953

0.5 100 1.0 -0.86891 0.774667

0.5 0.5 1.0 -1.32288 -1.21124
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present study on temperature distribution are opposite

to that of viscous dissipation that is the temperature

increases at all points and this is further contributed by

Walters B0 model. Both the cases of PST and PHF

display the same effect.

Figures 3a, b illustrate the effects of Eckert number

in case of second grade fluid in the absence of suction/

injection and thermal radiation in both PST and PHF

cases. The energy dissipation of the flow configuration

is measured by Eckert number. It is seen that an

increase in Ec increases the temperature and hence

increases the thermal boundary layer thickness. This

leads to reduction of the rate of heat transfer from the

plate surface. This reduction is further decreased due

to presence of porous medium. Therefore, the pres-

ence of porous medium acts as an insulator to the plate

surface. This result is in good agreement with the

result of Chen [18].

Figure 4a, b delineate the effect of radiation

parameter in case of second grade fluid. It is observed

that an increase in thermal radiation parameter (R)

increases the temperature of the fluid layer and the

processes get accelerated due to the presence of the

porous matrix. The increase in temperature with an

increase in radiation parameter causes a reduction in

temperature gradient of the wall in PST case. Thus, it

is concluded that thermal radiation is to reduce in

order to make the cooling process faster.

Figure 5a, b exhibit the effect of the internal heat

generation/absorption parameter (Q) on the tempera-

ture distribution hðgÞ (PST) and wðgÞ (PHF) in case of
second grade fluid. This shows that an increase in heat

source strength (Q[ 0) increases the temperature.

This is due to generation of the heat in thermal

boundary layer which causes the temperature to rise.

In similar manner the heat sink causes the temperature

Table 2 Comparison of

Nusselt numbers to Liu [20]

for a second-grade fluid for

Rc = 1.0, Ec = 0.2, R = 0

and fw = 0

Mn Kp Q Pr PST case PHF case

Liu [20] Present case Liu [20] Present case

0.0 100 -0.1 1 1.37488 1.372608 0.742096 0.7435

100 -0.1 10 4.59962 4.591724 0.276367 0.277832

0.5 -0.1 1 1.032946 0.975079

0.5 -0.1 10 3.249158 0.536112

100 0 1 1.337265 1.331574 0.764213 0.765383

100 0 10 4.48696 4.478859 0.284146 0.28568

0.5 0 1 0.974733 1.019901

0.5 0 10 3.103711 0.55611

100 0.1 1 1.29111 1.288637 0.788006 0.789645

100 0.1 10 4.37115 4.362827 0.292579 0.294189

0.5 0.1 1 0.906795 1.077075

0.5 0.1 10 2.952014 0.578134

1.0 100 -0.1 1 1.18298 1.181325 0.876313 0.868455

100 -0.1 10 3.87868 3.87202 0.412923 0.414209

0.5 -0.1 1 0.906259 1.073528

0.5 -0.1 10 2.676623 0.65084

100 0 1 1.13333 1.131589 0.9 0.901256

100 0 10 3.74805 3.741224 0.427117 0.428464

0.5 0 1 0.839487 1.132026

0.5 0 10 2.518129 0.67632

100 0.1 1 1.0792 1.077335 0.938308 0.939725

100 0.1 10 3.61261 3.605617 0.442665 0.444078

0.5 0.1 1 0.75274 1.216857

0.5 0.1 10 2.352002 0.704501
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absorption resulting in decrease in temperature. The

result holds good for both PST and PHF. The role of

porous matrix is to accelerate/decelerate the process in

case of source/sink respectively.

Figure 6 exhibits the concentration profiles for

various values of the parameters characterizing the

concentration distribution. It is observed that chemical

reaction parameter reduces the concentration distri-

bution at all points irrespective of the presence or

absence of porous matrix. From the curves V and X it

is seen that the presence of porous matrix enhances the

concentration level at all points of the flow domain in

the presence of chemical reaction. Now, it is further

seen that the effect of magnetic field is to increase the

concentration (Curve II, M = 2, Curve VIII, M = 0)

but further increase in M has no significant effect on

concentration field in the absence of porous matrix

whereas in the presence of porous matrix (Curves IV

and IX) an increase in magnetic field reduces the

concentration level. Moreover, heavier species (high

value of Sc) contributes to the reduction in the level of

concentration in the absence of porous matrix (Curve

II and III).

From Table 1 it is noticed that an increasing

magnetic parameter enhances the skin friction and it

is further increased due to the presence of porous

matrix. However, elasticity effect increases the skin

friction. Thus, it is concluded that higher value of

elastic elements is favorable in enhancing the skin

friction in both impermeable (fw ¼ 0) and permeable

(fw 6¼ 0) surfaces.

Tables 2 and 3 show the comparison of temperature

gradients for second grade and second order fluids in

PST and PHF cases respectively. On comparison it is

Table 3 Comparison of Nusselt numbers to Datti et al. [21] for Walters’ liquid B0

Pr Rc Mn Kp Q R PST case PHF case

Datti et al. [21] Present case Datti et al. [21] Present case

1 0 0 100 0 0 1.3333 1.331932 0.750789

1 0 0 100 -0.1 0 1.377796 0.7251 0.725797

1 0 0 0.5 0 0 1.126898 0.887391

1 0 0 0.5 -0.1 0 1.199394 0.833755

1 0 1 100 0 0 1.2158 1.214771 0.823201

1 0 1 100 -0.1 0 1.274028 0.7843 0.784912

1 0 1 0.5 0 0 1.055361 0.947543

1 0 1 0.5 -0.1 0 1.140395 0.876889

1 -0.1 0.1 100 -0.1 0 1.3521 1.350924 0.7395 0.740234

1 -0.1 0.1 100 0 0 1.3035 1.302129 0.7671 0.767973

1 -0.1 0.1 100 0.1 0 1.2496 1.247923 0.8002 0.801332

1 -0.1 0.1 0.5 -0.1 0 1.17154 0.853577

1 -0.1 0.1 0.5 0 0 1.093343 0.914626

1 -0.1 0.1 0.5 0.1 0 0.971376 1.026597

1 -0.1 0.1 100 -0.1 1 0.8812 0.874755 1.1348 1.143177

1 -0.1 0.1 0.5 -0.1 1 0.722385 1.384303

2 -0.1 0.1 100 -0.1 0 2.021 2.027636 0.4928 0.493185

2 -0.1 0.1 0.5 -0.1 0 1.17154 0.853577

3 -0.1 0.1 100 -0.1 0 2.5326 2.546397 0.3926 0.392712

3 -0.1 0.1 0.5 -0.1 0 2.357059 0.424257

Table 4 Sherwood number

Mn Kp Sc Kc Sh

3 100 0.6 0 1.331674

3 100 0.6 1 -1.90499

3 0.5 0.6 1 -2.35153

4 100 0.6 1 -2.14054

3 100 0.78 1 -1.90499

3 100 0.6 2 -1.93499
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observed that the results accomplished by Liu [20] and

Datti et al. [21] well agree with the present study. From

Table 2, it is seen that the absence of porous matrix

and magnetic parameter with higher Prandtl value

cause the Nusselt number to increase irrespective of

source/sink in PST whereas, the reverse effect is

attained in PHF. It is also seen that in the presence of

porous matrix, the reverse trend appears in both PST

and PHF. It is interesting to mention that in the

presence of magnetic parameter with higher Prandtl

value, the Nusselt number decreases in PST and

increases in PHF in presence/absence of porous matrix

and source/sink. Thus, it is concluded that for second

grade fluid, the characteristics of Nusselt number are

achieved in the permeable surface (fw ¼ 0) without

thermal radiation (R ¼ 0). From Table 3 it is observed

that absence of porous matrix with high Pr enhances

the Nusselt number in PST and reduces in PHF and the

reverse effect is attained in the presence of the porous

matrix but increasing value of magnetic parameter,

presence/absence of source/sink parameter and ther-

mal radiation parameter lead to the reverse effects in

both PST and PHF. Therefore, the rate of heat transfer

is influenced by the presence of porous matrix,

magnetic parameter and thermal radiation parameter

causes instability in the rate of heat transfer

phenomena.

Table 4 enlists the numerical values of the rate of

mass transfer at the plate. It is interesting to observe

that absence of chemical reaction contributes to

positive value whereas presence of it gives rise to

negative values. It is noticed that an increase in

magnetic parameter ðMnÞ, porosity parameter ðKpÞ
and Schmidt parameter ðScÞ (that is for heavier

species) enhances the Sherwood number whereas

increase in chemical reaction parameter decreases the

Sherwood number.

7 Conclusion

1. Porous matrix acting as an insulator to the vertical

surface prevents energy loss due to free convec-

tion which in turn enhances the velocity.

2. Presence of porous matrix and elasticity of the

fluid overcomes the resistive force of magnetic

field and hence the velocity increases due to the

presence of both.

3. Presence of elasticity also leads to increase the

temperature at all points irrespective of presence/

absence of porous matrix.

4. The slow rate of thermal diffusion in presence of

magnetic field and porous matrix causes thinning

of thermal boundary layer thickness.

5. The variation in temperature is more sensitive on

account of heat flux.

6. Presence of chemical reaction as well as porous

matrix with moderate values of magnetic param-

eter in case of heavier species reduces the

concentration level.

7. Higher value of magnetic field in conjunction with

porous matrix reduce the concentration level.

8. Presence of elastic element favors in reducing the

skin friction in both permeable and impermeable

surfaces.

9. Presence of magnetic parameter causes to

decrease the Nusselt number in PST case and

increase the same in PHF case

10. Presence of porous matrix and magnetic param-

eter influences the rate of heat transfer.

11. Porous matrix enhances the rate of mass transfer

whereas increase in chemical reaction has no

impact on the absence of porous matrix.
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