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Abstract Slip flow is essential for micro-fluidics.

Due to its difficulty, there are few reports on the slip

flow in a curved duct. This paper introduces a new,

highly efficient, semi-analytic Ritz method to treat slip

flow in a general curved duct. The method is then

applied to the curved elliptic duct which includes the

important curved circular duct. Surface slip of a

curved duct not only promotes the flow rate, but also

shifts the maximum velocity towards the outer

boundary and the minimum velocity towards the inner

boundary.
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1 Introduction

Slip flow has become prevalent in micro-fluidics

which has numerous applications in MEMS, biotech-

nology, micro-assay, medical diagnosis, drug delivery

etc. See e.g. Nguyen and Wereley [1]. There are many

reports on slip flow in straight ducts, but curved ducts

are necessary for mixing or redirecting the flow.

Previous literature for slip flow in a curved duct

include the analytic series solution for the curved

rectangular duct of Wang [2], who also gave the

solution for a curved channel. The stability of the flow

was determined by Avramenko and Kuznetsov [3].

The slip flow in a curved circular tube was studied by

Wang [4] using a small perturbation from the straight

tube solution.

There is no information on slip flow through a

curved ducts other than the above sources. In this

paper we shall first develop a powerful Ritz method to

to treat slip flow in curved ducts of arbitrary cross

section. Then the method will be applied to the curved

elliptic duct, which includes the important curved

circular duct as a special case.

For rarefied gases, the basic partial slip condition is

[1]

Du wallj ¼ 2� r
r

kf
ou

on
wallj ð1Þ

Here u is the tangential velocity, r� 1 is the accom-

modation coefficient which depends on the surface

material and roughness, kf is the mean free path and

n is the unit normal. On the other hand, for liquid flow

the boundary condition is

Du wallj ¼ Ls
ou

on
wallj ð2Þ

where Ls is the slip length, or the distance into the wall

where the velocity is extrapolated to zero. The slip

length depends on the amount and distribution of the

low viscosity fluid trapped in the micro grooves of the
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wall.For both gas or liquid slip flows, the partial slip

conditions may be described by the generic Navier’s

condition. Normalize lengths by a characteristic length

L, Eqs. (1, 2) can be written as

Du wallj ¼ k
ou

on
wallj ð3Þ

where k is the important non-dimensional slip factor,

assumed to be constant for the range of our study.

k ¼ Kn
Dh

L

ð2� rÞ
r

for gases ð4Þ

k ¼ Ls

L
for liquids ð5Þ

Here Kn is the Knudsen number kf =Dh, where Dh is

the hydraulic diameter. The no slip boundary condi-

tion is recovered when k ¼ 0. For rarefied gases, k is

of the order of 10�3 to 10�1. For superhydrophobic

microchannels, k could be as large as 10 [5].

For ducts of micron sizes, the Reynolds number is

of the order of 10�3 � 10�5 and thus the nonlinear

convection terms are negligible. There are two con-

sequences of such low Reynolds number Stokes flow.

Firstly, the entrance length is of the order of one

diameter [6], and the velocity and pressure gradient in

the curved tube are independent of axial distance.

Secondly, the secondary flow due to centrifugal force

is of the order of the Reynolds number, and thus

negligible.

2 Formulation

Consider fully developed flow in a long curved duct of

constant cross section with a characteristic width of

2L. The curved centerline has a radius of cL. Normal-

ize the longitudinal velocity by GL2=l where G is the

pressure gradient along the centerline and l is the

viscosity of the fluid. The Stokes equation in cylin-

drical coordinates ðr; h; zÞ reduces to

o2t
or2

þ 1

r

ot
or

� t
r2

þ o2t
oz2

¼ � c

r
ð6Þ

where tðr; zÞ is the azimuthal velocity in the h
direction, and r is the normalized radial distance from

the symmetry axis shown in Fig. 1.

Note that for curved ducts Eq. (3) should be

replaced by

Dt wall þ ksnh ¼ 0j ð7Þ

where snh is the shear stress normalized byGL and n~ is

the unit outward normal to the boundary. Let nr; nz be

the direction cosines in the r, z directions respectively.

Then

ot
on

¼ n~ � rt ¼ nr
ot
or

þ nz
ot
oz

ð8Þ

On the other hand, in cylindrical coordinates

srh ¼
ot
or

� t
r
; szh ¼

ot
oz

ð9Þ

and using Eq. (8)

snh ¼ nrsrh þ nzsrz ¼
ot
on

� nr

r
t ð10Þ

Thus if the boundary is stationary, the appropriate

Navier slip boundary condition in cylindrical coordi-

nates is

tþ k
ot
on

� nr

r
t

� �
¼ 0 ð11Þ

For given boundary described by Hðr; zÞ ¼ 0 the

radial direction cosine is

nr ¼ 1þ oH=oz

oH=or

� �2
" #�1=2

ð12Þ

Equations (6, 11) are to be solved.

3 The Ritz method

The Ritz method for Stokes no-slip flow in a curved

duct was established by Wang [7]. The problem is

much more involved for slip flow due to Navier’s

boundary conditions. The derivation is as follows.

Fig. 1 The curved elliptic duct. The dash-dot line is the

symmetry line of the curved duct. All lengths have been

normalized by half lateral width of the duct cross section
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Theorem Let X be the cross sectional domain of the

duct and P be its perimeter and k 6¼ 0. Construct the

functional

J ¼
ZZ

r
ot
or

� �2

þ t2

r
þ r

ot
oz

� �2

�2ct

" #
dX

þ
I

r

k
� nr

� �
t2dP ð13Þ

Then the extremum of J leads to Eqs. (6, 11) where

there are no restrictions on t inside X and also on the

boundary P.

Proof Taking the variation of Eq. (13) we find [8]

dJ ¼
ZZ

2r
ot
or

dðdtÞdzþ
ZZ

2t
r
dtdrdz

þ
ZZ

2r
ot
oz

dðdtÞdr�
ZZ

2cdtdrdz

þ
I

r

k
� nr

� �
2tdtdP¼ 0

ð14Þ

Integration by parts give

�2
RR o

or
r
ot
or

� �
þ o

oz
r
ot
oz

� �
� t

r
þ c

� �
dtdrdz

þ2
H

r
ot
on

þ r

k
� nr

� �
t

� �
dtdP ¼ 0

ð15Þ

Now if t is arbitrary inside X and also on the

boundary P, the brackets in Eq. (15) must be zero,

which is exactly Eqs. (6) and (11).

Next we construct a Ritz method which is a semi-

numerical method to minimize J. Let

t ¼
X1
i¼1

aiui ð16Þ

where fuig is a set of Ritz functions which span the

domain. Substitute Eq. (16) into (13). The necessary

condition for extremum is

oJ

oai
¼ 0 ð17Þ

After some work, algebraic equations are obtained

XN
j¼1

Aij þ
Cij

k
� Dij

� �
cj ¼ cBi; i ¼ 1 toN ð18Þ

where the series have been truncated to N terms and

Aij ¼
ZZ

r
oui

or

ouj

or
þ oui

oz

ouj

oz

� �
þ 1

r
uiuj

� �
drdz;

Bi ¼
ZZ

uidrdz

Cij ¼
I

ruiujdP; Dij ¼
I

nruiujdP ð19Þ

Equation (18) is inverted for the N unknowns cj. Let

the area of the cross section be A. The average velocity

is the sum

V ¼ 1

A

ZZ
tdrdz ¼ 1

A

XN
1

ciBi ð20Þ

The average velocity is used to quantify the flow,

since the Poiseuille number or friction factor-

Reynolds number product are inappropriate indices

for curved ducts.

4 The curved elliptic duct

The Ritz method in the previous section can be applied

to curved ducts of any constant cross section. To

illustrate, we apply the method to the curved elliptic

duct. Let

r ¼ cþ x ð21Þ

and the boundary be described by

Hðx; zÞ ¼ 1� x2 � ðz=bÞ2 ¼ 0 ð22Þ

The length of the major axis is 2 and that of the minor

axis is 2b, or b is the aspect ratio. The area is pb
and

nr ¼
sgnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðoH=ozÞ2=ðoH=oxÞ2
q ¼ sgnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðz=xÞ2=b4
q

ð23Þ

Due to symmetry in z, the Ritz functions are chosen to

be

fuig ¼ f1;x;x2; z2;x3;xz2;x4;x2z2; z4;x5;x3z2;xz4 � � �g
ð24Þ

The number of terms N retained can be 1, 2, 4, 6, 9, 12,

etc., including the highest homogeneous powers. For a

given b and c, Eq. (19) are integrated and Eq. (18)
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solved. Table 1 shows some typical convergence

rates. We see that N = 12 is adequate for a four- digit

accuracy.

Having established the convergence of the method,

we compare our results with existing literature. First

consider the slip flow in a straight elliptic duct.

Table 2 shows a comparison with Wang [9] who used

eigenfunction expansion and collocation. The differ-

ence is \0.1 %. Other sources include Spiga and

Vocale [10] who used finite elements, and Duan and

Muzychka [11] found an exact series solution in

elliptic coordinates, but only three analytic terms are

obtained. Table 3 shows a comparison of the average

velocity. The results of Refs [10, 11]., which are in

terms of Knudsen number and accommodation coef-

ficient, are condensed into a single slip factor through

Eq. (4). We used c = 1000 to approach the straight

duct.

Another comparison is the slip flow in a curved

circular duct, which was studied by Wang [4] by

perturbing the flow through a circular tube about the

small curvature. His analytic result, for zero Reynolds

number, is

V ¼ 1

8
1þ 4kþ 1

c2
1þ 7k� 288k2

48ð1þ kÞ

� �
þ Oðc�4Þ

� �

ð25Þ

Table 4 shows a comparison. The perturbation

solution Eq. (25) deviates for low c (high centerline

curvature) or large slip.

5 Results and discussions

Figure 2 shows the constant velocity lines of a curved

circular duct. We see that at low slip, the location of

the maximum velocity is off centered, closer to the

symmetry line of the curved duct (the dash-dot line of

Fig. 1). The is also true for no-slip flow in a curved

rectangular duct [7]. At high slip, the maximum

velocity moved away from the symmetry line. The

phenomenon persists for curved elliptic ducts. Fig-

ure 3 is a 1:2 elliptic duct with major axis perpendic-

ular to the symmetry line. Figure 4 shows the elliptic

duct with major axis parallel to the symmetry line.

Table 1 Convergence for

the average velocity V

Empty entries signify the

value has converged

N 4 6 9 12 16

k ¼ 0:0001, c = b = 2 0.1872 0.1959 0.1966 0.1967 0.1967

k ¼ 0:1, c = b = 2 0.2500 0.2580 0.2586 0.2586

k ¼ 2, c = b = 2 1.1700 1.1751 1.1755 1.1755

k ¼ 0:0001, c = 10, b = 0.25 0.01472 0.01475 0.01475

k ¼ 2, c = 10, b = 0.25 0.3860 0.3861 0.3861

Table 2 Comparison of the average velocity for slip flow in a

1:2 (b = 0.5) straight elliptic duct

Present Ref. [9]

k ¼ 0:1 0.08354 0.08354

k ¼ 1 0.3785 0.3786

k ¼ 2 0.7035 0.7033

k ¼ 5 1.677 1.676

Table 3 Comparison of the average velocity for slip flow in a

1:2 straight elliptic duct

Present Ref. [10] Ref. [11]

k ¼ 0:01297 0.05438 0.05435 0.05456

k ¼ 0:12971 0.09343 0.09340 0.09473

b = 0.5, P = 4.8442, A = 1.5706, Dh = 1.2971, k ¼ KnDh,

r = 1

Table 4 Comparison of slip flow in a curved circular duct

(b = 1)

c = 2 c = 10 c = 1000

k ¼ 0:1 0.1738 0.1750 0.1750

0.1743* 0.1750* 0.1750*

k ¼ 1 0.5416 0.6214 0.6250

0.5339* 0.6214* 0.6250*

k ¼ 5 2.0199 2.5943 2.6250

1.8477* 2.5939* 2.6250*

Values from Ref. [4] or Eq. (25) are denoted by asterisks
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Tables 5, 6, 7 and 8 give our results for slip flow in

curved elliptic ducts. Aside from average velocity, we

also tabulated the maximum velocity and its location

(negative means closer to the symmetry line than the

centroid) and the minimum velocity, which is located

on the surface either closest or furthest from the

symmetry line.

Form Tables 5, 6, 7 and 8 we can conclude the

following. If slip (represented by the slip factork) and/
or the aspect ratio b increase, the average velocity,

together with the maximum and minimum velocities,

all increase. The interaction of the radius curvature of the

duct centerline c and boundary slip is interesting. The

average velocity decreases with increased c for small k
but the opposite is true for large k. This means, for the

same centerline length, cross sectional geometry and

pressure difference, the flow rate is larger for a straight

duct than a curved duct if the slip factor is large. But

the flow rate is larger for a curved duct than a straight

duct if the slip factor is small. Also, the location of the

maximum velocity moves towards the far boundary

when slip is increased. The velocity and the shear

stress on the boundary are not constant for slip flow in

a curved duct, as seen from Figs. 2, 3 and 4.

6 Conclusions

Despite the importance of slip flow in curved ducts,

research on this topic is scarce. This paper presents a

powerful semi-analytic Ritz method to treat slip flow in

arbitrary curved ducts. Themethod is versatile, accurate

and efficient as evidenced in Tables 2, 3 and 4.

The method is applied to the slip flow in a curved

elliptic duct. Our results would be very useful in the

design of such curved micro-ducts. Tables are given

(instead of graphs) and level lines are shown (instead

of 3D plots) so that our results can be utilized in

(a) (b)

Fig. 2 Constant velocity lines for a curved circular duct, b = 1,

c = 2. a k ¼ 0.001 from inside, t = 0.25, 0.225, 0.2, 0.175,

0.15, 0.125, 0.1, 0.075, 0.05, 0.025. b k ¼ 2 from inside,

t = 1.039, 1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65. The symmetry

line (dash-dot line in Fig. 1) is on the left

(a)

(b)

Fig. 3 Constant velocity lines for a curved elliptic duct,

b = 0.5, c = 2. a k ¼ 0.01 from inside, t = 0.1, 0.08, 0.06,

0.04, 0.02. b k ¼ 2 from inside, t = 0.65, 0.625, 0.6, 0.575,

0.55, 0.525, 0.5, 0.475, 0.45, 0.425

(a) (b)

Fig. 4 Constant velocity lines for a curved elliptic duct, b = 2,

c = 4. a k ¼ 0.01 from inside, t = 0.4, 0.35, 0.3, 0.25, 0.2,

0.15, 0.1, 0.05. b k ¼ 2 from inside, t = 1.6, 1.5, 1.4, 1.3, 1.2
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Table 5 Results for slip flow in curved elliptic ducts, c = 2

knb 0.25 0.5 0.75 1 1.5 2

0.01 0.01737 0.05487 0.09570 0.1305 0.1773 0.2031

0.034 0.108 0.189 0.258 0.350 0.400

(-0.269) (-0.235) (-0.214) (-0.202) (-0.190) (-0.184)

0.0005 (1) 0.0015 (1) 0.0026 (1) 0.0036 (1) 0.0051 (1) 0.0058 (1)

0.1 0.03555 0.08525 0.1337 0.1738 0.2280 0.2586

0.056 0.142 0.228 0.301 0.401 0.450

(-0.316) (-0.264) (-0.240) (-0.226) (-0.212) (-0.206)

0.0065 (1) 0.0170 (1) 0.0282 (1) 0.0380 (1) 0.0518 (1) 0.0598 (1)

1 0.1951 0.3461 0.4587 0.5416 0.6492 0.7119

0.228 0.403 0.542 0.651 0.801 0.895

(-0.286) (-0.176) (-0.120) (-0.093) (-0.073) (-0.064)

0.131 (1) 0.246 (-1) 0.323 (-1) 0.382 (-1) 0.465 (-1) 0.517 (-1)

2 0.3535 0.6074 0.7886 0.9179 1.0815 1.1755

0.384 0.665 0.880 1.041 1.253 1.384

(-0.116) (0.160) (0.285) (0.329) (0.352) (0.358)

0.253 (-1) 0.408 (-1) 0.521 (-1) 0.606 (-1) 0.721 (-1) 0.794 (-1)

Listed in each box is the average velocity, the maximum velocity (and its x location in parentheses) and the minimum velocity (and

its x location in parentheses)

Table 6 Results for slip flow in curved elliptic ducts, c = 3

knb 0.25 0.5 0.75 1 1.5 2

0.01 0.01697 0.05402 0.09493 0.1303 0.1784 0.2053

0.033 0.106 0.186 0.256 0.351 0.404

(-0.170) (-0.150) (-0.137) (-0.130) (-0.123) (-0.119)

0.0005 (1) 0.0016 (1) 0.0029 (1) 0.0040 (1) 0.0056 (1) 0.0065 (1)

0.1 0.03480 0.08431 0.1334 0.1746 0.2312 0.2638

0.053 0.138 0.226 0.301 0.406 0.467

(-0.202) (-0.169) (-0.155) (-0.147) (-0.139) (-0.135)

0.0072 (1) 0.0186 (1) 0.0308 (1) 0.0415 (1) 0.0567 (1) 0.0657 (1)

1 0.1998 0.3639 0.4906 0.5861 0.7134 0.7898

0.230 0.422 0.579 0.704 0.881 0.996

(-0.199) (-0.127) (-0.091) (-0.074) (-0.063) (-0.058)

0.137 (1) 0.270 (-1) 0.366 (-1) 0.441 (-1) 0.549 (-1) 0.619 (-1)

2 0.3721 0.6582 0.8693 1.0240 1.2252 1.3445

0.403 0.717 0.960 1.146 1.400 1.563

(-0.091) (0.079) (0.154) (0.181) (0.194) (0.197)

0.286 (-1) 0.494 (-1) 0.649 (-1) 0.768 (-1) 0.934 (-1) 1.042 (-1)

Listed in each box is the average velocity, the maximum velocity (and its x location in parentheses) and the minimum velocity (and

its x location in parentheses)
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Table 7 Results for slip flow in curved elliptic ducts, c = 5

knb 0.25 0.5 0.75 1 1.5 2

0.01 0.01678 0.05360 0.09453 0.1301 0.1789 0.2062

0.032 0.104 0.185 0.256 0.352 0.406

(-0.100) (-0.088) (-0.081) (-0.077) (-0.073) (-0.071)

0.0006 (1) 0.0018 (1) 0.0031 (1) 0.0044 (1) 0.0061 (1) 0.0070 (1)

0.1 0.03444 0.08382 0.1331 0.1749 0.2327 0.2661

0.052 0.137 0.224 0.300 0.408 0.471

(-0.119) (-0.100) (-0.092) (-0.087) (-0.083) (-0.081)

0.0078 (1) 0.0020 (1) 0.0331 (1) 0.0446 (1) 0.0610 (1) 0.0706 (1)

1 0.2020 0.3732 0.5077 0.6106 0.7498 0.8346

0.231 0.432 0.599 0.733 0.927 1.055

(-0.121) (-0.079) (-0.058) (-0.048) (-0.042) (-0.040)

0.142 (1) 0.282 (-1) 0.389(-1) 0.474 (-1) 0.597 (-1) 0.679 (-1)

2 0.3819 0.6867 0.9161 1.0867 1.3124 1.4487

0.414 0.747 1.008 1.210 1.493 1.678

(-0.059) (0.040) (0.082) (0.098) (0.105) (0.105)

0.305 (-1) 0.550 (-1) 0.737 (-1) 0.881 (-1) 1.083 (-1) 1.218 (-1)

Listed in each box is the average velocity, the maximum velocity (and its x location in parentheses) and the minimum velocity (and

its x location in parentheses)

Table 8 Results for slip flow in curved elliptic ducts, c = 10

knb 0.25 0.5 0.75 1 1.5 2

0.01 0.01671 0.05343 0.09436 0.1300 0.1791 0.2066

0.032 0.104 0.185 0.255 0.352 0.407

(-0.049) (-0.044) (-0.040) (-0.038) (-0.036) (-0.035)

0.0006 (1) 0.0019 (1) 0.0034 (1) 0.0047 (1) 0.0065 (1) 0.0075 (1)

0.1 0.03430 0.08361 0.1330 0.1750 0.2332 0.2670

0.052 0.136 0.224 0.300 0.408 0.472

(-0.059) (-0.050) (-0.046) (-0.087) (-0.041) (-0.081)

0.0084 (1) 0.0214 (1) 0.0351 (1) 0.0435 (1) 0.0644 (1) 0.0402 (1)

1 0.2029 0.3772 0.5152 0.6214 0.7659 0.8546

0.232 0.436 0.607 0.746 0.947 1.080

(-0.061) (-0.040) (-0.030) (-0.025) (-0.022) (-0.021)

0.144 (1) 0.288 (-1) 0.400 (-1) 0.490 (-1) 0.622 (-1) 0.709 (-1)

2 0.3861 0.6993 0.9371 1.1152 1.3526 1.4972

0.418 0.760 1.030 1.240 1.534 1.732

(-0.030) (0.019) (0.039) (0.047) (0.050) (0.050)

0.315 (-1) 0.583 (-1) 0.790 (-1) 0.949 (-1) 1.174 (-1) 1.324 (-1)

Listed in each box is the average velocity, the maximum velocity (and its x location in parentheses) and the minimum velocity (and

its x location in parentheses)
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practice and also facilitate comparison with future

reports on this important research
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