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Abstract The mechanical response of multiphase

metallic materials is governed by the strain and stress

partitioning behavior among their phases, crystals, and

subgrains. Despite knowledge about the existence of

these complex and long-ranging interactions, the exper-

imental characterization of suchmaterials is often limited

to surface observations of microstructure evolution and

strain partitioning, i.e. ignoring the influence of the

underlying features. Hence, for the interpretation of the

observed surface behavior it is imperative to understand

how it might be influenced by the subsurface microstruc-

ture. In the present study, we therefore systematically

change the subsurface microstructure of synthetic dual-

phase polycrystals and investigate the altered response of

a 2D region of interest. The series of high-resolution

crystal plasticity simulations are conducted with a fast

and efficient spectral-based iterative scheme for calcu-

lating the mechanical response of complex crystalline

materials. To overcome the slow convergence of the

conventional spectral-based solver when dealing with

heterogeneous materials of large contrast in stiffness (or

strength), direct and mixed variational conditions for

mechanical equilibrium and strain compatibility have

been formulated such that they can be combined with a

general class of non-linear solution methods. The

different solution techniques have been implemented

into DAMASK, the Düsseldorf Advanced Material

Simulation Kit, and the ones showing the best perfor-

mance are used in this study. The results show that the

subsurface microstructure has a dominant influence on

theobserved stress and strainpartitioning.Additionally, it

can be seen that the zone of influence increases with

increasing heterogeneity of the microstructure.

Keywords Crystal plasticity � Dual-phase steel �
Spectral method � Voronoi tessellation � Stress and
strain partitioning

1 Introduction

Dual-phase (DP) steels are a prominent example of

metallic composite materials that gain their excellent
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mechanical properties from a complex interplay

among their phases, crystals, and subgrains [24]. DP

steels consists of mainly two phases, a softer ferritic

matrix with hard martensitic inclusions for simulta-

neous improvement of strength and ductility. Despite

their wide use in automotive applications and a large

number of works investigating the mechanical behav-

ior of DP steels, a full understanding of the local stress

and strain partitioning—that is responsible for their

excellent mechanical properties—is not yet achieved.

Current crystal plasticity (CP) based simulation

techniques, on the one hand, enable investigation of

strain and stress partitioning effects at the scale of

grains and subgrains taking the full 3D microstructure

into account [2]. On the other hand, even recent

simulation approaches that aim at comparing exper-

imental and simulated results [18, 22] are limited to

two dimensions due to experimental limitations. More

precisely, the acquisition of 3D strain maps via digital

volume correlation or of stress partitioning via X-ray

diffraction is associated with high efforts. Hence, even

though Landron et al. [7] presented a study on void

coalescence in 3D, most of the investigations on DP

micromechanics are still limited to surface measure-

ments of microstructural features and—with the help

of digital image correlation—strain partitioning.

In this study, we therefore investigate the effect of

subsurface features—that are difficult to obtain non-

destructively—on responses measured at the surface.

The pioneering work of Zeghadi et al. [28, 29] has

already outlined the importance of subsurface

microstructure. Here, we extend their investigations

to the case of a dual-phase microstructure. Moreover,

we try to quantify the size of the region of influence by

systematically evaluating the interactions of

microstructural features in relation to the distance to

the region of interest (ROI, usually being the surface).

In contrast to Ramazani et al. [17], who investigated

the correlation of predicted macroscopic stress–strain

relations between 2D and 3D simulations, the present

study focuses on local stress and strain partitioning in

DP steels.

The remainder of the paper is organized as follows.

In Sect. 2 the numerical solution method is outlined

and the constitutive description, geometrical setup,

and boundary conditions used in the simulations are

presented. Corresponding results are given and dis-

cussed in Sect. 3 with Sect. 4 providing a summary

along with perspectives for future applications.

2 Simulation setup

2.1 Numerical solution strategy

Micromechanical simulation of dual-phase (ferrite

and martensite) grain aggregates demands a method-

ology that is numerically efficient, i.e., fast and

capable of high spatial resolution, and can cope with

large variations in material properties, i.e., large

property contrast. Moulinec and Suquet [15] presented

a spectral method approach for the solution of periodic

mechanical boundary value problems in the context of

elastic composites. Since stress equilibrium is calcu-

lated in FOURIER space, the use of fast FOURIER

transforms (FFT) allows for a very time- and mem-

ory-efficient iterative solution algorithm. Moreover,

since its ansatz functions are trigonometric polynomi-

als defined over the whole domain, its solution quality

commonly exceeds the finite element method (FEM)

using piecewise-defined low-order polynomials.

The application of this methodology to the case of

viscoplastic polycrystals was pioneered by Lebensohn

[8] and applied in numerous studies, e.g., [9, 11, 12,

21]. For more heterogenous materials, however, the

slow convergence of the original fixpoint iterative

method when facing a large contrast in the local

stiffness is prohibitive [13]. Several approaches have

been proposed to overcome this limitation. Eyre and

Milton [4] and Monchiet and Bonnet [14] introduced

accelerated schemes for materials with large property

contrasts. For the case of infinite property contrasts,

Michel et al. [13] suggested a method based on

augmented LAGRANGIANS. Improved convergence

compared to the original approach has also been

demonstrated through the use of advanced solution

methods [1, 30] in lieu of fixpoint iteration.

Eisenlohr et al. [3] generalized the spectral

methodology to use arbitrary constitutive material

descriptions within a finite-strain framework follow-

ing the work of Lahellec et al. [6]. In addition, we

recently introduced direct and mixed variational

formulations within the same finite-strain CP frame-

work and benchmarked them using various non-linear

solution methods [20]. In the present study, the

Düsseldorf Advanced Material Simulation Kit

(DAMASK, http://damask.mpie.de/) and its associ-

ated spectral solver are employed with the direct

variational formulation (analogous to the ‘‘basic

scheme’’ [6]) being selected for all simulations except
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for the 2D simulations, for which one version of the

mixed variational formulation (analogous to the ‘‘po-

larization scheme’’ [14]) is selected—both in combi-

nation with GMRES [16] as solution algorithm (see

[20] for details).

2.2 Constitutive model

At each material point, the deformation gradient FðxÞ
is multiplicatively decomposed into elastic and plastic

components as F ¼ FeFp. An anisotropic elastic

stiffness C relates the elastic deformation gradient Fe
to the second PIOLA–KIRCHHOFF stress by

S ¼ C ðFe
TFe � IÞ=2. The plastic velocity gradient

Lp ¼ _FpFp�1 is implicitly driven by S by virtue of the

chosen plasticity model, which in the present study is

an adoption of the phenomenological description of

Hutchinson [5] for body-centered cubic crystals (for

details see [19]). The microstructure is parameterized

in terms of a slip resistance ga on each of the twelve

h111if110g and h111if112g slip systems, which are

indexed by a ¼ 1; . . .; 24. These resistances evolve

asymptotically from g0 towards g1 with shear cb

(b ¼ 1; . . .; 24) according to the relationship

_ga ¼ _gb h0 1� gb=gb1
�
�

�
�
a
sgn 1� gb=gb1

� �

hab ð1Þ

with parameters h0 and a. The interaction between

different slip systems is captured by the hardening

matrix hab. Given a set of current slip resistances,

shear on each system occurs at a rate

_ca ¼ _c0
sa

ga

�
�
�
�

�
�
�
�

n

sgn sað Þ ð2Þ

with _c0 as reference shear rate, s
a ¼ S � ðsa � naÞ, and

n the stress exponent. The superposition of shear on all

slip systems in turn determines the plastic velocity

gradient

Lp ¼ _ca sa � na; ð3Þ

where sa and na are unit vectors along the slip

direction and slip plane normal, respectively.

2.3 Constitutive parameters

The parameters specifying the mechanical behavior of

ferrite and martensite are the same ones used by Tasan

et al. [23] for a joint experimental–numerical analysis

of stress and strain partitioning in DP steels (see

Table 1). Since the use of realistic phase parameters is

a crucial point in CPmodelling, we briefly recapitulate

the phase properties determination procedure in the

following:

An inverse optimization strategy based on match-

ing simulated and measured indentation topographies

[26, 27] is applied to the case of body-centered cubic

crystal structure of ferrite to determine its parameters

for the CP model. The procedure iteratively fits initial

and final shear resistance of the h111if110g and

h111if112g slip system families such that the pile-up

topography resulting from load-controlled nanoinden-

tation using a sphero-conical diamond tip in four large

and differently oriented grains is correctly predicted

by CPFEM simulations. The optimization relies on a

NELDER–MEAD algorithm with the objective function

considering differences in pile-up topographies and

load–displacement curves between CPFEM simula-

tion and experimental data. Employing the DAMASK

framework allows to use exactly the same constitutive

model for both, the parameter identification with the

commercial FEM solver MSC.MARC as well as for

subsequent simulation of the DP microstructures with

the fast and efficient spectral solver.

Table 1 Material parameters, based on [25] and adjusted to

actual phase properties. Initial and saturation slip resistance

values for ferrite are determined by an inverse simulation

procedure and for martensite by fitting to stress–strain curve

and hardness ratio

Property Value Unit

Ferrite Martensite

C11 233.3 417.4 GPa

C12 135.5 242.4 GPa

C44 118.0 211.1 GPa

g0; f110g 95 406 MPa

g1; f110g 222 873 MPa

g0; f112g 97 457 MPa

g1; f112g 412 971 MPa

h0 1 563 GPa

hab 1 1

_c0 1 1 10�3=s

n 20 20

a 2.0 2.0
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The indentation procedure is not applicable to the

martensitic phase due to resolution limitations of the

experimental setup. Therefore, constitutive parameter

values fitted to the macroscopic, i.e. polycrystal,

stress–strain curve of a purely martensitic steel are

selected. Out of these parameters, the initial and final

shear resistance are further adjusted to match the ratio

between ferrite and martensite flow stress identified

from nanoindentation experiments in both phases of

the material at hand.

2.4 Microstructures

Three periodic, artificial grain structures, each filling a

unit cube, are created by a standard VORONOI tessel-

lation approach based on 400 randomly1 placed seed

points each. These structures, referred to as ‘‘A’’, ‘‘B’’,

and ‘‘C’’, are discretized by a regular voxel grid with

each of the 100� 100� 100 grid points being asso-

ciated to its nearest (periodically repeated) seed point

such that a space partitioning of 400 ‘‘grains’’ results.

All grid points of one grain are designated the same

phase (ferritic or martensitic) with initially homoge-

neous and randomly chosen lattice orientation. For

each of the three microstructures, a number fraction

nmart ¼ 0:1, 0.2, and 0.4 of the grains are randomly

selected as martensitic, resulting in martensite volume

fractions of 0.0924–0.1123, 0.1841–0.2056, and

0.3883–0.4062, respectively. The resulting nine initial

microstructures colored according to the inverse pole

figure (IPF) along the normal direction are given in

Fig. 1.

2.4.1 Grain orientation variation

To investigate how the kinematic response at a surface

is influenced by the subsurface grain structure, 27

variants of the initial 9 microstructures are created by

randomly altering the lattice orientation of grains that

belong to VORONOI seed points within a slice of

thickness t ¼ 0:2 centered at the plane Dz ¼ 0:3, 0.5,

or 0.7 below the surface (being at z ¼ 1). No values

Dz\0:3 are considered, since the VORONOI seed of

grains observable at z ¼ 1 (i.e. the ROI at the surface)

might be located in the affected volume and, hence,

their lattice orientation would be changed.

A ‘‘buffer zone’’ of height 0.2 (corresponding to 20

additional voxel layers along z) and elastic-isotropic

behavior with C11 ¼ 20:0GPa and C12 ¼ 13:3GPa is

added in between periodic repetitions of the

microstructure (see Fig. 2 top). Introduction of this

buffer zone results in boundary conditions that are

reminiscent of free surfaces above and below the

polycrystalline structure, similar to a thick free-

standing film.

2.4.2 Grain shape variation

In the same spirit as for the grain orientation variation,

27 variants of the initial 9 microstructures are created

by randomly altering the position of VORONOI seed

points within a slice of thickness t ¼ 0:2 centered at

the plane Dz ¼ 0:3, 0.5, or 0.7 below the surface

(z ¼ 1). A change in seed point position is limited to a

distance of the equivalent average grain diameter.2 As

a consequence of altered seed positions, the

nmart Microstructure
A B C

0.1

0.2

0.4

Fig. 1 Periodic microstructures A, B, and C (left to right)

discretized by 1003 points and containing a total of 400 grains.

Black color indicates martensite grains with number fraction of

nmart ¼ 0:1, 0.2, and 0.4 (top to bottom). Color map at lower

right encodes crystal orientation parallel to z (IPF) used in this

study

1 Ensuring that at least one voxel is assigned to each seed point

when discretizing on a 643 voxel grid.
2 400 ðdeq=2Þ3 4p=3 ¼ 13
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tessellation results in differently shaped grains in the

vicinity of the affected plane (see Fig. 2 bottom).

Values Dz\0:3 are excluded as the geometry of the

grain structure observable at the ROI might be

changed by altering the seed point coordinates close

to this (surface) plane. Again, to mimic the effect of a

free surface at the ROI, a ‘‘buffer zone’’ consisting of

the same soft material is added in between periodic

repetitions of the microstructure (see Fig. 2), resulting

in ‘‘thick film’’ behavior.

2.4.3 Grain columnarity variation

To establish the distance up to which the deformation

behavior of a ROI is influenced by grain interactions

within a bulk polycrystal, the height of the periodic

grain structure introduced in Sect. 2.4 is progressively

reduced to h ¼ 0:9; 0:8; . . .; 0:33 in a symmetric fash-

ion around the plane z ¼ 0:5. The VORONOI tessellation

of the periodically repeated volume includes only seed

points with �h=2\z� 0:5� þ h=2. As the number

of unique grains decreases with height reduction, the

neighborhood around the central x–y plane is gradu-

ally altered and turns progressively more columnar.4

Additionally, the limiting case of repeating only the

ROI layer (h ¼ 0:01, i.e. assuming fully columnar

grains as a consequence of the periodic boundary

conditions) is investigated. Figure 3 presents exem-

plary microstructures of various heights for all three

structures with martensite grain fraction nmart ¼ 0:2

(corresponding to the center row in Fig. 1). Here, no

buffer zone is interspersed, since bulk polycrystal

properties are targeted.

2.5 Loading

The volume elements (VEs) were subjected to loading

in x-direction, i.e. the ROI is deformed in-plane,

commensurate with the surface of a tensile deforma-

tion sample. For the grain orientation variation and

grain shape variation a constant true strain rate of

Lxx ¼ 10�3 s�1 and Lyy ¼ �10�3 s�1 was applied.

Since the soft layer mimics a free surface, no stress

boundary conditions are given and the remaining

components ofF remain constant. After a loading time

of 46 s, the final deformation gradient prescribing

plane strain is

Δz Microstructure
A B C

0.7

0.5

0.3

grain orientation change

grain shape change

0.3

0.5

0.7

Fig. 2 Localized variation of grain orientation (top) and shape

(bottom). Grains whose VORONOI seed points fall within a layer

of thickness t ¼ 0:2 centered Dz below the surface have altered

lattice orientation (top) or shape and position (bottom) relative to

the unaltered structure (indicated as transparent above and dark

gray below altered layer). Translucent gray volume corresponds

to a ‘‘buffer zone’’ of negligible stiffness mimicking a free

surface. For IPF legend see Fig. 1

3 h\0:3 resulted in changes of the grain structure slice at z ¼
0:5 and was therefore not considered.
4 Columnarity is defined as the fraction of points along z that

share the same orientation as the points on the central x–y plane.
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F ¼
1:047 0 0

0 0:955 0

0 0 1

2

6
4

3

7
5:

For the grain columnarity variation, a constant engi-

neering strain rate of _Fxx ¼ 10�3s�1 was applied. The

deformation gradient in y- and z-direction was

adjusted such that the average PIOLA–KIRCHHOFF stress

in these directions vanished. This plane-stress bound-

ary condition was applied for 82 s, resulting in a final

deformation gradient

F ¼
1:082� �
0� �
0 0 �

2

6
4

3

7
5;

where asterisks ‘‘*’’ indicate components for which

the corresponding components of P are enforced to be

zero.

2.6 Mesh convergence and comparison to finite

element methodology

We investigate the grid sensitivity by comparing

microstructure B (with nmart ¼ 0:2) variants with 323

and 643 voxel resolution while keeping loading and

material parameters as outlined above. The results

presented in Fig. 4 (top) show no substantial differ-

ence in strain partitioning above 323 from which we

conclude that the resolution chosen in this study is

sufficiently high to exclude mesh dependency.

Secondly, to confirm that the introduction of a

softer ‘‘buffer layer’’ is equivalent to boundary

conditions of a free surface, a comparison to simula-

tion results using the FEM5with linear shape functions

is performed. For the FEM simulations, a free surface

with a normal along the z-direction and periodic

boundary conditions in x- and y-direction are

employed. As already observed by Eisenlohr et al.

[3], the strain partitioning in the FEM solutions (Fig. 4

bottom) lacks fidelity but nevertheless they closely

match the corresponding results of the spectral method

simulations in a qualitative and quantitative way. In

agreement with, for instance, Lebensohn et al. [10], we

conclude that the chosen approach is valid for the

present investigation.

3 Results and discussion

In the following, the partitioning of equivalent VON

MISES strain (evM) and stress (rvM) resulting from

variation of grain shape, orientation, and columnarity

h Microstructure
A B C

1.00

0.80

0.50

0.30

0.01

0
grain count 4000

A
B
C

1

h

0

1

10.1 columnarity

h
A
B
C

Fig. 3 Variation of grain columnarity at the central x–y plane

(ROI, indicated by the light gray slice and corresponding to the

structure for h ¼ 0:01) through symmetrical reduction of height

h of the initial microstructures. Since volume elements are fully

periodic, the number of unique grains in each structure

decreases and consequently the columnarity increases with

reduction of the repetition period h along z. Variants with

nmart ¼ 0:2, indicated by black color, are shown as examples.

For IPF legend see Fig. 1

5 MSC.MARC version 2014.1.
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are given. For the analysis, the absolute difference Dp
is defined asDp :¼ p� pref for p 2 rvM; evM where the

reference value pref is the one obtained from the

unaltered microstructure. A (logarithmic) relative

change is introduced as ln 1þ Dp=pref
� �

, which is

advantageous due to its symmetric behavior for large

relative differences Dp=pref .
For all three simulation studies, ROI maps of

reference values and relative changes in equivalent

VON MISES strain and stress are presented. Addition-

ally, surface data is counted among all three

microstructures (totalling 3� 100� 100 voxels) and

plotted for each phase (ferrite and martensite) in two

different ‘‘heat map’’ (probability density) styles. The

first heat map pair correlates absolute differences

between equivalent stress and strain. The second pair

plots the relative changes in strain as function of the

distance dPhaseBoundary to the nearest phase boundary (in

voxels measured in the undeformed configuration). In

both types of charts, the logarithmic gray scale ranges

from none to all of the material points of each phase

falling into the respective property combination bin.

3.1 Grain orientation variation

The partitioning of stress and strain within ferrite and

martensite can easily be recognized in Fig. 5 due to the

markedly different behavior of both phases. This

partitioning is noticeably altered when the subsurface

microstructure is modified at a distance of Dz ¼ 0:3

Mesh or Grid size
323 643 1003

S
p
e
c
tr

a
l
M

e
th

o
d

F
E
M

εrefvM 8× 10−4 8× 10−1

Fig. 4 erefvM of microstructure B at z ¼ 1 (surface) for nmart ¼ 0:2
calculated with different resolutions and solvers

Δz Martensite fraction nmart
0.1 0.2 0.4

εrefvM 8× 10−4 8× 10−1

ln 1 + vM
εref −1.0 +1.0

0.3

vM

0.5

0.7

σ

σ

ref
vM / GPa 0.2 4.0

ln 1 + vM
σref −0.6Δ

εΔ

+0.6

0.3

0.5

0.7

Fig. 5 erefvM (top) and rrefvM (bottom) of microstructure A at z ¼ 1

and the sequence of relative strain and stress changes resulting

from grain orientation variation at Dz ¼ 0:3, 0.5, 0.7 with

nmart ¼ 0:1, 0.2, 0.4
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below the surface, but no significant influence can be

seen for modifications of the VE that occur further

(Dz ¼ 0:5, and 0.7) below the observed surface.

The combined surface data of all three variants,

given in Fig. 6, confirms above observations: Substan-

tial alterations of stress or strain are found when grain

orientations change within a narrow subsurface region,

i.e., at Dz ¼ 0:3. For distances Dz� 0:5, almost no

influence on the ROI can be observed. Hence, with an

average grain size diameter deq 	 0:17, the zone of

influence is confined to up to three subsurface grains,

which is slightly larger than the lower-bound value of

two grains reported by Zeghadi et al. [28] for the case

of single phase polycrystals, and seems not to depend

on the volume fraction of hard phase. Additionally, the

dependence of relative changes in strain on the

distance to a phase boundary (Fig. 7) reveals that

volumes close to a boundary are generally more

strongly affected by the grain orientation variation

than locations in the phase center since the observed

Δz Martensite fraction nmart

Fig. 6 Correlation between DrvM and DevM in ferrite (top) and

martensite (bottom) resulting from grain orientation variation at

Dz ¼ 0:3, 0.5, 0.7 with nmart ¼ 0:1, 0.2, 0.4

Δz Martensite fraction nmart

Fig. 7 Correlation between relative strain change and distance

to a phase boundary for ferrite (top) and martensite (bottom)

resulting from grain orientation variation at Dz ¼ 0:3, 0.5, 0.7
with nmart ¼ 0:1, 0.2, 0.4
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spread increases with decreasing dPhaseBoundary. This

spreading is not a strong function of nmart, except for

the geometric effect that the probability for larger

dPhaseBoundary increases (decreases) for martensite (fer-

rite) with increasing nmart. In comparison to the spread

observed for the softer ferritic phase, the spread in the

harder martensitic phase is notably narrower (compare

Fig. 7 top to bottom).

3.2 Grain shape variation

Stress and strain for microstructure C at the free

surface (z ¼ 1:0) are mapped in Fig. 8. The influence

of a microstructural modification at a distance of Dz ¼
0:3 to the surface is—as expected—the strongest

among the cases investigated. Similar to the grain

orientation variation, relative changes in strain are

larger than those in stress. In contrast to the response

observed for grain orientation variation, these changes

are not largely independent of martensite content but

grow with increasing nmart (compare Fig. 6 with 9).

Overall, the magnitude of changes is larger than those

observed for grain orientation variation (compare

Fig. 5 with 8 or Fig. 7 with 10).

By comparing results between the grain orientation

variation and the grain shape variation, three obser-

vations can be made:

1. The effect of the grain shape variation is stronger

than that of the grain orientation variation at the

same distance Dz to the ROI.

2. The zone affected by a grain shape variation is

larger than that affected by a grain orientation

variation.

3. The depth of the affected zone when varying the

grain shape notably depends on the martensite

volume fraction—in contrast to only a minor

influence when varying the grain orientation

(Fig. 7, bottom). A higher martensite volume frac-

tion correlates with a more pronounced effect on the

stress and strain partitioning for a given distance.

3.3 Grain columnarity variation

Since the results of the grain columnarity variation are

obtained with a different load case and especially at a

higher strain level, a much wider range of stress and

strain deviation from the reference case (h ¼ 1) is

Δz Martensite fraction nmart
0.1 0.2 0.4

εrefvM 8× 10−4 8× 10−1

ln 1 + vM
εref −1.0 +1.0

0.3

0.5

0.7

σref
vM / GPa 0.2 4.0

ln 1 + vM
σref −0.6 +0.6

0.3

0.5

0.7

εΔ

σΔ

Fig. 8 erefvM (top) and rrefvM (bottom) of microstructure C at z ¼ 1

and the sequence of relative strain and stress changes resulting

from grain shape variation atDz ¼ 0:3, 0.5, 0.7 with nmart ¼ 0:1,
0.2, 0.4
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observed as shown for microstructure B at z ¼ 0:5 in

Fig. 11. This deviation is progressively increasing

with increasing columnarity and results in the

strongest heterogeneity of strain and stress for

h ¼ 0:01. The stress pattern appears to be rather

random while strain accumulates in deformation

bands such that no obvious correlation between high

relative changes in strain and stress is observable. The

strain localization grows with increasing columnarity

as well as increasing martensite content and results in

clearly visible distortions (in particular for nmart ¼ 0:4

and h ¼ 0:01). The amplification of strain partitioning

towards the columnar microstructure renders this

simplification especially unsuitable for predicting

phenomena that strongly depend on local quantities,

e.g. damage. An interesting observation can be made

in Fig. 12 for the relative strain change of martensite

(bottom). The hard phase within a strictly columnar

two-phase structure shows a systematic trend of

generally increased strains at low volume fraction to

generally decreased strains at high volume fraction

Δz Martensite fraction nmart

Fig. 9 Correlation between DrvM and DevM in ferrite (top) and

martensite (bottom) resulting from grain shape variation at

Dz ¼ 0:3, 0.5, 0.7 with nmart ¼ 0:1, 0.2, 0.4

Δz Martensite fraction nmart

Fig. 10 Correlation between relative strain change and distance

to a phase boundary for ferrite (top) and martensite (bottom)

resulting from grain shape variation at Dz ¼ 0:3, 0.5, 0.7 with

nmart ¼ 0:1, 0.2, 0.4
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0.1 0.2 0.4

εrefvM 8× 10−4 8× 10−1

ln 1 + vM
εref −2.5 +2.5

0.01

vM

0.3

0.6

σref
vM 8× 10−4 8× 10−1

ln 1 + vM
σref −2.5 +2.5

0.01

0.3

0.6

εΔ

σΔ

Fig. 11 erefvM (top) and rrefvM (bottom) of microstructure B at z ¼ 1

and the sequence of relative strain and stress changes resulting

from grain columnarity variation at h ¼ 0:01, 0.3, and 0.6 with

nmart ¼ 0:1, 0.2, 0.4

h Martensite fraction nmart

Fig. 12 Correlation between relative strain change and distance

to a phase boundary for ferrite (top) and martensite (bottom)

resulting from grain columnarity variation at h ¼ 0:01, 0.3, 0.5,
and 0.7 with nmart ¼ 0:1, 0.2, and 0.4
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relative to the same volume fractions loaded in a 3D

equiaxed configuration (DevM [ 0 at nmart ¼ 0:1 and

DevM\0 at nmart ¼ 0:4 for h ¼ 0:01). A possible

explanation could be that isolated martensite grains in

a soft ferrite matrix need to strain only very little in a

3D configuration, since their lower deformation

accommodation can be compensated in the immedi-

ately surrounding ferrite matrix. This capability for

compensation by the matrix is substantially curtailed

in a columnar structure since phase variability along

the third dimension is lost. The opposite response seen

for high volume fractions of martensite could be

related to the hard phase in a 2D structure having

higher effective contiguities than the same volume

fraction distributed in a 3D equiaxed structure. As a

consequence, the increased probability for the devel-

opment of load-carrying force chains among marten-

site grains will result in a stiffer response in columnar

cases, i.e. DevM\0.

4 Conclusion and outlook

The presented study underlines—in accordance with

the findings of Zeghadi et al. [28, 29]—the relevance

of subsurface microstructural features on the stress and

strain partitioning observed on a surface. For the

equiaxed grain structures investigated in this work,

structural changes farther than about 3 average grain

sizes away from a region of interest (ROI), for instance

the surface, can be considered of negligible impor-

tance for the stress and strain partitioning in the ROI.

This interaction distance is systematically increasing

with increasing volume fraction of hard phase (here

martensite in a ferritic matrix). Local fields of stress

and strain are more sensitive to the phase distribution

of neighboring grains than to their crystallographic

orientation. This indicates that, especially for complex

microstructures, surface observations are hard to

interpret at the scale of individual grains when the

underlying microstructure (particularly the phase

distribution) is not known.

The assumption of a columnar grain structure

introduces a strong simplification that results in an

amplification of the stress and strain partitioning,

particularly in the case of composite materials con-

sisting of hard and soft phases. Therefore, predictions

of strongly localized effects, such as damage, based on

2D simulations of heterogeneous microstructures can

be highly misleading.
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