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Abstract To gain a better understanding of the role

of haemodynamic forces during the development of

the cardiovascular system, a series of studies have

been reported recently that describe flow fields in the

vasculature of model systems. Such data sets, in

particular those reporting networks at multiple stages,

mark a transition in the focus from single blood vessels

to large parts of vascular networks. It becomes

possible to investigate the behaviour of a blood vessel

in the context of its surroundings, rather than as an

isolated entity. In this study, a framework is presented

that facilitates the analysis of such data sets. The blood

vessel data is represented as a graph, with each node

connected by a vessel segment with known properties.

Using this framework the pressure distribution and

other parameters of interest can then be estimated.

Two examples are given that make use of this scheme:

(1) a method to detect and reduce measurement errors

in the network and (2) a method that allows the testing

of various haemorheological models. For both exam-

ples a proof-of-principle result is shown.

Keywords Blood flow � Networks � Graph
representation

1 Introduction

The role of fluid mechanics in the development of

vascular networks has received considerable attention

in recent years. Haemodynamic forces, such as the

local wall shear stress, have been suggested as being

essential epigenetic factors during cardiovascular

development [7, 14, 19]. This has led to the vascular

remodelling paradigm, as shown schematically in

Fig. 1. The core idea here is that the flow through a

network leads to continuous changes in its structure, in

order to maximise a particular network function (e.g.

nutrient transport), while at the same time minimising

energy expenditure (e.g. due to viscous losses). This

continuous remodelling by flow is thought to be able to

convert an initially unstructured network (or ‘plexus’)

into an efficient branching network. This behaviour

has been observed, for instance, in mouse embryos

[16] and chicken embryos [13, 14], both common

model systems to study human cardiovascular devel-

opment. The advantage of these model systems is that

they are also accessible for mechanical or chemical

intervention, so that deviations from normal develop-

ment can be observed (e.g. to see the effects of ligating

a vessel).

While the requirement for flow for the proper

development of the cardiovascular system is undis-

puted, the precise role is still poorly understood [19].

The endothelial cells that line the vessel walls are well

known to respond to haemodynamic forces [4], but

how these local events can lead to global topological
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changes is still a mystery. This can be rephrased as:

how can a complex, efficient vascular network emerge

from simple, local rules? These local rules can

ostensibly be based only on information that is

available to the endothelial cells, e.g. wall shear

stress, pressure or concentration of a certain

component.

To better understand vascular remodelling, detailed

experimental data sets are required. Until a few years

ago, data was solely based on imaging, in order to

obtain the network topology. Occasionally, the studies

are supplemented with qualitative flow observations,

for instance using ink visualisation. In recent years,

however, rapid developments in non-invasive mea-

surement techniques have made it possible to obtain

simultaneous measurement of the shape and function-

ing of networks [10, 12, 25]. These studies provide

detailed flow information in a relatively large field-of-

view. An example of one of the capabilities of these

modern approaches is shown in Fig. 2, based on data

obtained by Kloosterman et al. [13]. In their approach,

which is based on in vivo microscopic particle image

velocimetry [20], a sequence of images is first

obtained using digital cameras that document the

motion of tracers (here erythrocytes). The local

displacement is subsequently estimated by cross-

correlation of small regions of the total image

sequence. The end result is a detailed velocity field,

with a resolution of approximately 10� 10 lm2 and a

total field of view of typically 3� 5 mm2. Here only

the time-averaged field is shown, but the pulsatile

nature can also be retrieved [20]. Note that implicitly,

it is assumed that these velocity fields represent the

center-plane of the more-or-less two-dimensional

extra-embryonic vitelline network; volumetric mea-

surements are also possible, by stacking different

measurement planes [18].

While these modern techniques provide an

unprecedented level of detail, they also present a

practical problem: how to analyse the vast amount of

two-, three- or four-dimensional data that is available,

especially if also many networks are obtained? A

successful approach has been to make use of network

models (in particular graphs, see Sect. 2), which

greatly simplifies the handling and interpretation of

the data. However, the majority of vascular graph

studies are based solely on image data (and thus

topology only). In the measurements such as shown in

Fig. 2, also flow information is available. In this paper,

the focus will be on how this additional information

can provide various exciting opportunities to study

haemodynamic phenomena. Two examples are given:

(1) correction of flow data based on conservation of

mass and (2) in vivo testing of haemorheological

models. The chicken embryo data provided by

Kloosterman et al. [13] will be used throughout this

study, but the approach can readily be applied to other

data sets.

2 Network approaches

Flow networks (or hydraulic circuits) occur in many

engineering applications, such as water supply net-

works, blood vessel networks and microfluidic

devices. Finding the complete, complex flow field in

such large scale networks—e.g. using computational

fluid dynamics—is generally impractical, but often

also unnecessary. To make the analysis of these

networks tractable, some important simplifications are

often made: the network is represented as a one-

dimensional system, consisting solely of nodes and

branches. Nodes only serve to distribute flow among

the connected branches and impose no resistance to

Fig. 1 The vascular

remodelling paradigm: an

initially unstructured

network remodels into a

hierarchical network due to

a continuous process of

remodelling, guided by

haemodynamic forces
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the flow. The branches, on the other hand, represent

the hydraulic resistances. These resistances are

lumped parameters describing all head losses for the

given branch geometry and flow conditions. For the

network, two rules can be formulated, analogous to

Kirchhoff’s laws for electric circuits: (1) mass is

conserved at each node, (2) the pressure drop along a

closed loop is zero. The analogy between electric and

hydraulic circuits also implies that similar analysis

tools are available to find the flow distribution. The

classic example is the method introduced by Hardy

Cross, which allows one to efficiently find the flow

distribution by hand, for particular pressure boundary

conditions [3].

Over the years, there have been many studies that

applied the network approach to the cardiovascular

system. One of the pioneering works is the publication

by Lipowsky et al. [15], who applied the network

approach to data obtained in the cat mesentery. For the

given network topology, they obtained the pressure

and flow distribution in the network. Notably, they

only reported statistics averaged over all segments of a

given diameter; in other words, they did not consider

the ‘context’ of a certain blood vessel.

A similar network approach has been used, among

others, to study the vasculature of the retina [5],

coronary blood flow of a pig [11], transport of oxygen

in arteriolar networks in a hamster cheek pouch [21],

and cerebral blood flow [23]. Pries et al. [22] included

microrheological effects, such as the Fåhræus-Lindq-

vist effect (i.e. to account for the variation of viscosity

with vessel diameter). Van den Wijngaard et al. [26]

extended the method to three dimensions to study the

coronary circulation. Apart from these applications

based on existing physiological data, the network

approach has also been used in more theoretical

studies, for instance to study the emergence of patterns

in initially hexagonal blood vessel networks [6].

Similarly, by including mass transport and vessel

compliance, Boas et al. [2] were able to show dynamic

behaviour in a relatively simple model.

Note that virtually all applications of network

analysis, the strategy was the same: for a given

network layout (either from imaging data or pre-

scribed, e.g. as a hexagonal lattice) the authors find the

pressure and flow rate distribution. From the latter,

derived quantities (local velocity, wall shear stress)

can be obtained. Pressure and flow are found

Fig. 2 An example of a state-of-the-art measurement of the

flow in vascular networks. (Left) Raw brightfield image data

series. (Middle) Mean velocity field obtained by particle image

velocimetry analysis. (Right) Detail of the velocity field. The

maximum velocity at the centerline in the bottom of the network

is approximately 1 mm/s
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simultaneously using the common assumptions and

solution method (see next subsection). However, in

many of the new experiments the flow data is actually

available, see e.g. Fig. 2. This means that less

assumptions have to be made when finding the

pressure. Furthermore, the additional information

allows one to test particular hypotheses regarding

haemorheology (see Sect. 3). Interestingly, the sem-

inal paper by Lipowsky et al. [15] already hinted at

this: they observed fairly large discrepancies when

comparing the predicted pressure drops with the

values obtained experimentally. In some regions,

pressure drops were up to six times greater than

expected. They suggested that the non-Newtonian

behaviour of blood was the main reason for the

discrepancy. With the combined availability of both

topology and flow, these issues can be investigated at

last.

2.1 Graph representation

The most convenient method to describe networks is

in the form of a graph. Several previous studies

already explain clearly how this concept can be

applied [6, 11, 23], so only a brief description is given

here; the focus is on the differences in the solution

methods if also flow information is available through

experiments.

2.2 A simple example network

To introduce the nomenclature and tools for graphs,

we here describe a very simple (vascular) network, as

shown schematically in Fig. 3. The network contains a

number of nodes (also referred to as vertices),

connected by branches (also referred to as edges).

The nodes and branches are identified by an index,

i ¼ 1. . .n and j ¼ 1. . .m, respectively; in this simple

example n ¼ 5 and m ¼ 6. The pressure is defined at

each node,1 denoted as an element of vector Pi.

To described the topology of the network, i.e.

which nodes are connected by which branches, several

options exist. The most straightforward is the use of a

connectivity matrix, Cij. This (n� m) matrix contains

elements cij, with i the node and j the branch. If a

particular node i is not connected to a particular branch

j, the value of the element cij is zero. When the

direction of the flow (i.e. into or out of nodes) is

known, the element values are either -1 or 1. By

convention, a negative value denotes that flow leaves

the node. Such a connectivity matrix then describes a

so-called directed graph for a given flow network [11].

If the flow direction is not yet known, the undirected

connectivity matrix only contains ones and zeroes; the

direction of the flow will then appear later on in the

analysis (e.g in the sign of the flow rate through a

particular branch). For the simple model network, the

directed connectivity (Cd
ij) matrix is given as:

Cd
ij ¼

�1 0 0 0 0 0

1 �1 0 �1 0 0

0 1 �1 0 �1 0

0 0 1 1 0 �1

0 0 0 0 1 1

0
BBBBBB@

1
CCCCCCA

ð1Þ

Note that the connectivity matrix is generally

sparse, as nodes are usually only connected to three

of the possibly many branches. This sparsity is an

important characteristic for the practical solution

implementation when large networks are considered.

The flow rate in each branch will be denoted by the

(1� m) column vector Qj. For our simple example

network, it has the following elements:

Qj ¼ Q1 Q2 Q3 Q4 Q5 Q6ð ÞT ð2Þ

As blood is an incompressible fluid, there can be no

accumulation of mass (or volume) at each node. The

sum of all flow rates entering and leaving a node must

Fig. 3 A simple network, used to illustrate the nomenclature of

graphs

1 The pressure variation along a branch with constant diameter

is simply a linear interpolation between the two connected nodes

if the flow is assumed to be fully-developed.
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thus be zero. To facilitate bookkeeping, we can define

the source vector Si, with dimension (n� 1) as

Si ¼ Cd
ijQj. For our example:

Si ¼

�Q1

Q1 � Q2 � Q4

Q2 � Q3 � Q5

Q3 þ Q4 � Q6

Q5 þ Q6

0
BBBBBB@

1
CCCCCCA

ð3Þ

For nodes i that are not at the edge of a network Si
should be zero to ensure conservation of mass, e.g. for

node 2 in Fig. 3: S2 ¼ Q1 � Q2 � Q4 ¼ 0.

The flow Qj will be the result of a pressure

difference between the two connected nodes, DPj.

Again, we can use the connectivity matrix to find an

expression for this pressure difference from the

pressure at the nodes:

DPj ¼ ðCd
ijÞ

T
Pi ð4Þ

As example, DP2 ¼ P3 � P2 in the simple example

network. Note that the hypothesis that flow is a

consequence of a difference in pressure, i.e. a gradient

of a potential, ensures that Kirchhoff’s second rule (in

our analogy: no pressure drop in a closed loop) is

satisfied.

To link the flow rates in the branches with the

pressure in the nodes, a model has to be constructed

that describes the resistance for each branch. This

resistance will likely be a function of the length and

diameter of the branch, the flow rate and the rheology.

In Sect. 2.5 a more detailed discussion is given; here it

is assumed that the resistance of a branch (Rj) can be

calculated based on Poiseuille’s law:

Rj ¼
128

p

ljLj
D4

j

ð5Þ

For the pressure drop due to a given flow, we thus

have:

DPj ¼ Rj � Qj ð6Þ

Note that here Hadamard (element-wise) multipli-

cation is implied, so all three terms are vectors of the

same size. From Eqs. 4 and 6, we have:

ðCd
ijÞ

T
Pi ¼ Rj � Qj ð7Þ

To find the pressure at each node for a given

network with known flow rates (and thus also

resistances), we can solve this system of linear

equations for Pi. As Cd
ij is generally not square, a

solution cannot be found using its inverse. For the

general case, the Moore–Penrose pseudo-inverse can

be used. The presence of measurement errors requires

the use of an optimisation process (e.g. using least

squares) to find an estimate P̂i for the generally

overdetermined system of equations. Numerical solu-

tion of the system of equations, as well as all data

processing, is performed in MATLAB (R2013b, The

Mathworks) in this study.

If the flow rates are not known, as is the case for

most of the previous studies reported in Sect. 2, a

solution can still be found due to the fact that

conservation of mass needs to hold, Si ¼ Cd
ijQj ¼ 0.

This equation can be combined with Eq. 7 to find both

P and Q, see e.g. Kassab et al. [11].

2.3 Boundary conditions

Equation 7 represents the system of linear equations

that describe the pressure differences between the

nodes. Unless at least one reference pressure is known

at a given node, all pressure will be relative to an

unknown reference pressure. If known, this reference

pressure can easily be prescribed by appending the

value to the right-hand side vector and adding a row to

the connectivity matrix with a single non-zero element

at the appropriate node.

When pressure and flow need to be found simul-

taneously, missing or invalid branches will signifi-

cantly alter the end result. However, here the flow rates

are available from the experimental data. Therefore

such invalid (or missing) segments are simply ignored

(or absent) in the solution procedure. For instance, in

Fig. 3 any segment, apart from j ¼ 1, can be removed

and the network will remain connected and the

pressure distribution can be determined correctly.

This also means that ‘dead ends’ - at the edge of the

network or elsewhere—do not require special treat-

ment. Naturally, when more information is available

in the overdetermined system, the effects of measure-

ment uncertainties will be reduced.

2.4 Building the network

For simple data sets containing only a few connected

blood vessels, the graph is best constructed manually.
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Naturally, this is no longer feasible in larger data sets.

Fully automated image data segmentation to obtain a

graph representation has been described in myriad

previous studies [9, 23, 26]. Note that again these

methods are generally based only image data (c.f. the

left hand image in Fig. 2). However, the velocity data

(such as the right hand figure in Fig. 2) can facilitate

the detection of vessel segments. A detailed example

of this approach is given in Kloosterman et al. [13];

here only the key points are summarised in the

following paragraph.

In Fig. 4, an example is given of segmentation

based on velocity field data. In the top left figure, the

input is shown: a time-averaged velocity vector field

typically containing hundreds blood vessel segments.

The figure on the top right shows a detailed view of the

vector field, with the velocity magnitude shown as

grey-scale background. As a first step in the process-

ing, a mask is created by thresholding the velocity

magnitude, using a threshold value comparable to the

measurement error. This mask is a binary matrix with

the same size and resolution as the velocity field; all

image processing steps use this resolution. This mask

is shown as the outline in the bottom figures. The so-

called skeleton of this mask is constructed, shown as

the colour-coded line segments in the bottom left

figure. At locations where the skeleton/centerline

bifurcates a node is defined, here denoted by an open

circle. Nodes and the segments in between nodes are

then numbered (the colour coding in the bottom right

represents the segment index). The result of these steps

is a collection of nodes and segments. An extensive set

of these collections for various embryos at different

developmental stages is available in the aforemen-

tioned paper [13]. This data will serve as the starting

point for the further processing in this study.

The relationship between the (arbitrarily-num-

bered) segments and nodes are captured in the

connectivity matrix. For each node, the segments are

found that connect to this branching point (note the

three non-zero entries around each node in the colour-

coded skeleton image shown in the background of the

bottom right of Fig. 4). As the velocity field is also

available, we can directly constructed the directed

connectivity matrix, Cd
ij. To find the flow direction, the

velocity along a few points on the skeleton is evaluated

in the original vector field: if this flow is on average

toward the node, the value cij is 1; flow away from the

node results in a value of �1. This process is repeated

for all nodes to construct the connectivity matrix. A

graphical representation of a small part is shown in

Fig. 5. Note that here the cij values have been

multiplied with the flow rate through the branch, Qj

(see later). Red denotes positive flow, i.e. toward a

node, while blue denotes flow away from a node. The

sum of each row in this matrix should be zero, see e.g.

the elements indicated by the rectangle that represent

the situation of node 35: branch 39 enters the node,

while branch 63 and 64 leave it. End-points can also be

defined, these are nodes that are only connected to a

single branch. Identification of these end-nodes is

important if particular boundary conditions are

specified.

While this automated processing is fairly robust,

occasionally ‘gaps’ in the network can occur. This can

be due to data drop out (vessels may not appear

continuous in the source data) or by erroneous

assignment of nodes (e.g. two closely placed nodes,

instead of the correct single node at a bifurcation).

This may lead to two unconnected graphs, which

corresponds to an underdetermined system for Eq. 7.

This can easily be fixed manually after visual inspec-

tion of the graph representation.

2.5 The hydraulic resistance

With the connectivity matrix described above, one

half of the graph is available. The other half entails

assigning a hydraulic resistance to each of the vessel

segments or branches. As stated earlier, this resistance

is a lumped parameter describing the total pressure

drop in the fluid going from one node to another. The

exact value will be dependent on the geometry (of the

branch, but also the junctions at its ends), the

conditions of the flow and the rheology of the fluid.

In Eqs. 5 and 6, the pressure drop is estimated

based on Poiseuille’s law. This may seem like an

overly simplified approach. However, it turns out that

the flow condition in the vasculature under investiga-

tion satisfies the criteria for Poiseuille flow. The

velocity rarely exceeds 0.5 mm/s and vessels are

generally smaller than 0.2 mm [13]. With an approx-

imate kinematic viscosity of 2–3 mm2=s, the

Reynolds number (Re � UD=m) is much smaller than

unity in all branches. This indicates that viscous forces

will dominate over inertial terms. This implies that
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Fig. 4 Reduction of the vector field to a graph representation;

the right hand figure shows a close-up of a section of the total

field-of-view. The vectors in the bottom right denote the general

flow direction with respect to a single node: blue denotes

‘away’, red denotes ‘toward’). (Color figure online)
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many inertia-related phenomena (e.g. due to pulsatile

flow, vessel curvature or entrance effects) are negli-

gible. For a detailed discussion, including the appro-

priate dimensionless numbers, one is referred to [19].

As an illustration, we here evaluate the additional

energy dissipation due to entrance effects, which are

expected to be the most prominent additional losses in

the present case. The losses occur due to the fact that a

flow requires some distance after a geometry change to

approach the fully-developed parabolic profile.

Expressed as fraction of the Poiseuille pressure drop,

the additional loss can be estimated using the dissi-

pation ratio Zentry [17]:

Zentry � 0:33
D

L
Re

� �1=2

ð8Þ

The diameter over length ratio of the vessel, D / L,

is generally smaller than unity. The average Reynolds

number in the network as shown in Fig. 4 is of order

0.01. Therefore, the additional pressure drop is thus

only a small fraction of the Poiseuille pressure drop, so

we can safely ignore entrance effects here. For other

applications, in particular in larger vessels with higher

Reynolds numbers, they can be incorporated using a

correction based on Eq. 8.

Implicitly, it has been assumed that the rheology of

blood can be captured by a single parameter: the

viscosity (l). While human blood is known to exhibit

shear-thinning behaviour, it should be stressed that the

current data set is obtained in a chicken model system.

Avian blood, in particular in the embryonic stage, is

very close to a Newtonian fluid [1, 19]. In Sect. 3.2,

the possibilities of having a different value of the

viscosity for each branch is explored.

Based on these considerations, it can be concluded that

Poiseuille’s law is here indeed appropriate to capture the

pressure drop in a vessel branch. Furthermore, the average

velocity field data contains sufficient information to

model each branch. The relevant parameters for Poi-

seuille’s law—diameter, flow rate, length—are extracted

branch by branch: the velocity profile is described using a

parabolic fit to the data, perpendicular to the branch

skeleton. This is repeated along the downstream direction

and the results are averaged to find a robust estimate of the

diameterDj and mean velocity Vj;mean for each branch.
2

The flow rate is then calculated from these two

parameters (Qj ¼ p
4
D2

j � Vj;mean). Lastly, the vessel

length along the skeleton (or centerline), Lj is stored,

which is approximately 10% longer than the Euclidian

distance between the end points [13]. This procedure

provides all terms required in Eqs. 5 and 6 for each

branch, so that the pressure distribution in the network

can be found from Eq. 7; note that the latter system of

equations is linear due to the use of Poiseuille’s law, as

pointed out by Pries et al.[22].

3 Two application examples

To illustrate the capabilities of the tools introduced in

the first part of this manuscript, two examples are

given here. They both focus on utilizing the additional

information that is available, i.e. flow data instead of

just imaging/topology.

3.1 Iterative correction of divergence

Experiments such as shown in Figs. 2 or 4 inevitably

contain measurement noise. More specifically, the

velocity data will contain an error. This error will

Fig. 5 A graphical representation of the connectivity matrix of

the vessel network shown in Fig. 4. Some elements of the matrix

Cd
ij � Qj are shown, with the colour-coding signifying flow into or

out of the node (red and blue, respectively). (Color figure online)

2 Using the fitted velocity profile to determine the wall

locations—and thus diameter—was found to be more reliable

than directly measuring the vessel width in the original images,

in particular for low-contrast image regions (see Fig. 1 in

Kloosterman et al. [13]). Earlier work furthermore showed that

diameter variations due to pulsatile flow are negligible in this

model system [20].
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propagate through the data processing steps, so that the

graph network as shown in the bottom half of Fig. 4

will contain errors in the values for Qj and Dj (which

are both derived from a fit to the velocity profile).

Errors in the connectivity, as described in the end of

Sect. 2.4, are assumed to be absent.

The network approach can assist in identifying and

correcting the errors in the branch properties. This is

particularly useful because for this type of in vivo

measurements it is unfeasible to perform reference or

control measurements [18]. The main idea behind the

identification and correction process is the evaluation

of the mass balance at each node. As defined in

Sect. 2, Si should be zero for all nodes that are not end

nodes.

The error at individual nodes can be visualised, as

shown in the left hand side of Fig. 6. In this figure, the

discs show the absolute value of the sink term at each

node, i.e. a larger disc denotes that more fluid is

unaccounted for. The total amount of fluid unac-

counted for in the entire network shown in Fig. 6,

RjSij, is 14:4� 10�3 mm3=s, with the largest sink

being 7:6� 10�4 mm3=s (the node in the centre, near

x = 1.6 mm, y= 2.8 mm). To put these errors in

perspective, the total flow through the network,RQj, is

0:14 mm3=s—only an order of magnitude larger. The

flow rate averaged over all branches is

4:9� 10�4 mm3=s. Visual inspection of the data near

the largest sink showed that the cause was a branch

with a considerable velocity, yet a relatively small

diameter; the automated processing underestimated

the flow rate in this particular branch. The analysis can

be done more refined, e.g. by looking at the relative

local flow balance, ðQout � QinÞ=Qin. Furthermore,

these errors can also be evaluated for different branch

diameter groups, to further study the underlying

causes of the errors. The ability to exclude branches

that are very likely erroneous will improve statistical

analysis in physiological studies.

In the previous paragraph nodes were evaluated

individually to assess the accuracy of the flow in the

branch. However, in the present data set and frame-

work it is possible to evaluate nodes and branches in

their context, rather than as isolated entities. To

highlight this, an iterative scheme is here proposed to

reduce the measurement errors in the flow rates.

Fig. 6 Network flow consistency before and after iterative

correction. The discs mark the node locations, with the size

representing the magnitude of the sink terms. The line segments

represent the branches; colour-coding represents the change in

flow rate as a result of the correction scheme (blue higher after

iteration; red lower after iteration. The line segment thickness

represents the local flow rate. The original network data is shown

a grey-scale background for reference. (Color figure online)
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To illustrate the scheme, consider branch 2 in the

simple network shown in Fig. 3. This branch is

connected to two nodes (2 and 3). At each node

conservation of mass holds, so we can write:

0 ¼ Q1 � Q2 � Q4 ¼ Q2 � Q3 � Q5 ð9Þ

We can find an alternative value for Q2 by finding

the flow rate that would perfectly satisfy conservation

of mass at the two nodes:

Q2;new ¼ ðQ1 � Q4 þ Q3 þ Q5Þ=2 ð10Þ

We can choose to either completely replace the old

value with the new estimate or use some sort of

overrelaxation approach to update its value incremen-

tally (e.g. Qj ! kQj;new þ ð1� kÞQj). This procedure

is referred to as Successive Overrelaxation [24]. An

alternative visual explanation of the approach can also

be found using a real connectivity matrix, as shown in

Fig. 5. The values along the rows within the rectangle

should add up to zero. We can re-evaluate the second

value (branch 63), but this will also mean that another

row is affected, as this same branch also occurs there,

with an opposite sign (as indicated by the vertical

dashed line).

To process an entire network, the following algo-

rithm can be used:

1. Randomise order of list of branch indices, j ¼ 1. . .m

2. Select a branch j

3. Find the two nodes that are connected to this branch

4. Find the flow rate that satisfies conservation of mass at

both nodes

5. Update the flow rate, Qj ! Qj;new

6. Repeat from step 2 until all branches have been updated

7. Repeat from step 1 until the sum of sinks RjSij is converged

The main motivation behind the scheme is that the

random error in the four branches cancel out to some

extent compared to the error in the original flow rate.

In a way, it can be interpreted as a smoothing process,

but it will only smooth information that is non-

physical, i.e. divergence in the flow field. Care must be

taken when there are exceptionally large values (e.g.

flow rates that are orders of magnitude too high). Such

overestimates will be redistributed over the network,

increasing the overall flow rates.

To demonstrate the effectiveness, the network

shown in the left-hand side of Fig. 6 was processed

using the proposed iterative correction scheme. The

result is shown on the right-hand side of the same

figure. The discs at each node again show the

magnitude of the sink term. As can be seen in the

figures, the sinks are greatly reduced. The colour-

coding of the branches indicate the change in each

branch: blue denotes an increase in flow, red denotes a

decrease, and white branches are not changed at all.

The thickness of each branch indicates the flow rate in

both cases. Various tests using different starting

branches and relaxation values (k) appeared to con-

verge to the same solution. The results shown here

were obtained for k ¼ 0:5 and 200 iterations. Com-

putational efforts were minimal (less than a minute on

a desktop PC) even for a naive implementation of the

algorithm. For more complex networks and models,

i.e. non-Poiseuille resistance terms or coupled flow /

mass-transfer models it will be useful to optimise the

numerical solution procedure [24]. It cannot be

expected that iteration will always converge to the

‘true’ solution, so visual inspection is recommended.

Changes to this particular network were relatively

minor, with only a handful of branches required

significant flow correction.

To quantify the improvement, the total sum of the

magnitude of the sink term is shown in Fig. 7, together

with the results for an alternative data set. The dashed

line represents the data set shown in Fig. 6, while the

other data set was taken in the same embryo and

region, but at a different stage during development.

The total sink term, RjSij, reduces from 0.0144 to

0.0021 mm3=s, a reduction of 85 %. For the other data

set a similar decrease is observed. Note that compar-

ison of the absolute values of the two cases is difficult,

because not only the imaging conditions—and thus

measurement error—are different, but also the number

and type of blood vessels in the field of view.

The iterative scheme proposed shows a great

improvement in the network in terms of satisfying

the conservation of mass principle, so it is expected

that the corrected networks better represent the real

situation. Naturally, this proposed scheme is the most

simple approach possible and several refinements can

be introduced. For instance, additional restrictions can

be imposed, e.g. if a reference value for a particular

branch is known or to ensure that the total flow through
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the network may not change. Alternatively, one can

only correct branches that are ‘suspicious’, i.e.

branches that have two nodes with significantly strong

sink terms.

As a final note on this scheme, it must be mentioned

that the values ofQj have been corrected. These values

were determined from the velocity field, via a mean

velocity and diameter in each branch. The updated

values for Qj can in turn be used to correct Vj;mean or

Dj if needed, for instance if wall shear stresses are

studied.Which of the two should be corrected depends

on the specifics of the method by which the data is

obtained and processed.

3.2 Haemorheological model testing

The previous example was based on Kirchhoff’s first

law, here implying conservation of mass at nodes. The

second application example to demonstrate the unique

capabilities of network flow data is based on Kirch-

hoff’s second law. Using Eq. 7 the pressure distribu-

tion in a network can be found (see also e.g. Fig. 9,

discussed in more detail later on). This has been

reported before in earlier studies, using topology data

only. However, as in this case the flow rates are

already available, they do not have to be approximated

in the solution procedure too. This means that one

layer of uncertainty is removed in the resulting

pressure field. Furthermore, the availability of flow

rates provides additional opportunities, as discussed

below.

In Sect. 2.5, it was assumed that the viscosity was

constant throughout the network. However, it has long

been established that the effective viscosity in a branch

can be highly variable. The underlying causes aremostly

related to the spatial distribution of erythrocytes. Their

volume fraction (and thus the viscosity) varies per

branch—the Fåhræus effect [22, 23]. Furthermore, the

presence of a cell-free layer reduces the effective

viscosity, in particular in smaller branches, the Fåh-

ræus–Lindqvist effect. Various models have been pro-

posed that incorporate theseeffects, but there is a scarcity

of data to properly validate them. Furthermore, it is

expected that there is a wide variation between species

and even during development [19], so it is not clear if

haemorheological models can be used across species. In

the following, amethod is described thatmay not be able

to be used to determine rheological behaviour from

scratch, but it can help in comparing various models.

To illustrate the approach, we once more consider

the simple network shown in Fig. 3. Node 2 and 4 are

connected by two routes: via branch 4 and via

branches 2 and 3. The pressure difference between

the two nodes, P2 � P4, must be path-independent.

Using Poiseuille’s law, the pressure difference can be

expressed as follows:

P2 � P4 ¼
128

p
l4L4
D4

4

Q4 ¼
128

p
l2L2
D4

2

Q2 þ
128

p
l3L3
D4

3

Q3

ð11Þ

The resistances of branch 2 and 3 could be added as

they are resistances placed in series. As stated, the

pressure difference between both routes should be

identical. The difference can therefore be used as

penalty function:

DP0 ¼ 128

p
l4L4
D4

4

Q4 �
l2L2
D4

2

Q2 �
l3L3
D4

3

Q3

� �
ð12Þ

As Lj, Dj and Qj are all known, this leaves only the

viscosity in each branch unknown. Even in the

hypothetical case where DP0 is exactly zero (no

measurement noise), the absolute value of the viscos-

ity cannot be established from Eq. 12. To do this, a

known pressure drop is required as additional infor-

mation. However, it is possible to test various

haemorheological models this way. By substituting a

particular model, lj ¼ f ðDjÞ, the penalty function

(Eq. 12) can be evaluated. The function with the

minimum penalty function will best describe the

Fig. 7 The total sum of the sink terms,RjSij, during the iteration
process for two different data sets
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rheology. As stated, the absolute value cannot be

determined, but only the relative dependency on D.

To utilise the entire network (instead of the single

penalty function shown in Eq. 12), the following

approach is proposed: The pressure at each node is first

estimated from Eq. 7. The values Rj are obtained using

the known values of Lj, Qj, Dj and the viscosity lj
using the model under investigation. P̂i is estimated

using the pseudo-inverse method and by specifying a

reference pressure at one node.

The difference between the prediction based on the

‘Poiseuille’ estimate and the approximation P̂ repre-

sents the performance of the rheological model:

DP0 ¼ ðCd
ijÞ

T
P̂i � Rj � Qj ð13Þ

The penalty term DP0 has here been redefined to

denote the difference between the prediction ‘a priori’

based on Poiseuille’s law for a particular branch and

the result of the matrix inversion approximation for

that same branch. Note that the estimated values for

the pressure (P̂) are now used in the first term of the

right-hand side. To quantify the total discrepancy, the

standard deviation of all values of DP0 is calculated.
This value is normalised using the mean pressure drop.

This normalised error will be denoted E.

To demonstrate the use of this approach, two

rheological models are compared: (1) a constant

viscosity and (2) a model incorporating the Fåh-

ræus–Lindqvist effect. For the latter we make use of

the model given by Pries et al. [22], who provide a fit

based on a large number of experiments:

lj ¼ 3:2þ 220e�1:3Dj � 2:44eð�0:06D0:645
j Þ

h i
=1000;

ð14Þ

with D in lm. Both models are shown in Fig. 8. In this

figure, the dashed line represent the constant viscosity

model (here l = 3.2 mPa s is chosen). The model by

Pries et al. approaches the same value for large D. For

smaller values of D, there is a minimum in the

viscosity around 7 lm; for smaller values the viscosity

increases dramatically, as here the blood vessel

diameter becomes smaller than the typical size of an

erythrocyte. Also shown is a histogram of the branch

diameters (based on a total of 271 branches and a bin

size of 20 lm). The dots indicate the value of the

viscosity for each branch. As can be seen, for the

diameters under consideration in this network the

viscosity varies by nearly 20 %, with all branches

larger than the minimum-viscosity diameter.

In Fig. 9 the resulting pressure distribution is

shown for the vascular network. The reference pres-

sure was set to zero at the node in the main branch that

enters the field of view (P0 ¼ 0). For this particular

case the diameter-dependent rheology model by Pries

et al. was used. The total pressure drop over the field-

of-view is approximately 3 Pa; for reference, the mean

gauge pressure in a vitelline artery, i.e. the largest

branch in this type of vasculature, at this stage (HH14,

around 50 h of development) is 50 Pa [8]. Only a small

fraction of the total available driving pressure is thus

dissipated in the modelled network.

The normalised error E is 0.461 for the constant

viscosity case, while it is 0.408 for the more complex

model - a decrease of 12 %. Note that this decrease is

not due to the slightly lower mean viscosity, as this is

taken into account by the normalisation with the mean

pressure drop. The lower value for the diameter-

dependent model suggests that it better describes the

true situation. This very simple comparison is by no

means presented as a serious haemorheological study,

it just serves to illustrate the procedure.

4 Concluding remarks

In this manuscript analysis tools are presented for the

data that has become available with the latest

Fig. 8 The two haemorheological models: (1) constant

viscosity and (2) diameter-dependent viscosity as described by

Pries et al. [22]. Also shown, in the bottom part, is a histogram

of the branch diameters, based on a total of 271 vessel segments
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generation of measurement modalities, in particular

the ones that present both topology and flow informa-

tion. The tool set, based on graph representation, opens

up unique opportunities, as blood vessels can not only

be studied as separate entities, but in their context. An

important feature is the significant reduction in data,

from large velocity fields to a compact representation

using matrices. This reduction, together with straight-

forward matrix manipulations, facilitates the study of

the haemodynamics in large networks. Two concrete

examples are presented that make use of these unique

features: (1) the identification and correction of

measurement errors to ensure conservation of mass

and (2) the ability to test various haemorheological

models via the pressure field. For both examples a

proof-of-princple result is shown using data obtained

in a chicken embryo model system; it can readily be

applied to other data sets.

4.1 Limitations and outlook

Apart from presenting the opportunities, it is also

relevant to evaluate the limitations of the network

approach. These may arise from the imperfections in

the input data, but also from the assumptions that were

made in the model formulation. For the former, it is

obvious that the experimental data will not always

perfectly reflect reality. There will be random mea-

surement noise in the velocity fields and thus also in

the derived branch parameters. In particular the

uncertainty in the vessel diameter will have a major

impact on e.g. the pressure distribution, as the pressure

drop is proportional to the diameter to the fourth

power. Furthermore, there can be systematic errors

due to three-dimensionality of the network or differ-

ences in orientation between the measurement plane

and the center-plane of the network. The will give rise

to unphysical results: for instance, the flow rate in a

branch may change along the downstream distance or

the flow balance at each node may no longer be zero. If

this is the case, the measurements and model need to

be extended to three dimensions.

For the microrheological testing procedure

described in this manuscript, a major limitation is

the fact that it is a ‘trial-and-error’ approach. It cannot

be used to determine rheological behaviour, but only

to evaluate the (relative) performance of existing

models. This is due to the lack of reference pressure

drop measurements. The small scale, intrusive nature

and relative low pressure drops make such measure-

ments far from trivial.

The simplicity of the network description is the

result of a series of assumptions about the flow in the

vasculature. If the present case, it has been argued that

Poiseuille’s law is valid. In many other cases this will

no longer be the case. For instance, in capillaries the

behaviour of individual formed elements must be

taken into account and the fluid is no longer a

homogeneous medium. As another example, the

assumption that entrance effects are negligible will

not be valid for networks with higher Reynolds

numbers. The same holds for networks observed

during very early stages, where it can be difficult to

identify distinct individual branches [14]. A porous

media approach might be a better alternative here.

Fortunately, most of these limitations can readily be

addressed by an appropriate extension of the model,

e.g. by incorporating entrance effects using Eq. 8, by

Fig. 9 Pressure distribution in the network, using the diameter-

dependent haemorheological model. The pressures are relative

to the reference pressure P0 ¼ 0 specified at the bottom of the

network
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incorporating local hematocrit variation in the capil-

laries [22] or formulating the approach for three-

dimensional structures [26].

The network method presented here can further be

extended, for instance to look at mass transfer or

transit times in the network. Future work will first

focus on the systematic analysis of the large experi-

mental data sets that are available [13], in particular to

see whether rules can be formulated that decide the

fate of particular vessels. This will hopefully shed

light on the intricate processes that guide the flow-

induced modifications in a network during cardiovas-

cular development.
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