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Abstract This paper presents a novel 4 degree-of-

freedom Schönflies-motion parallel manipulator,

which is an upgraded design of a 3 degree-of-freedom

planar parallel manipulator. The manipulator consists

of three identical RRPaR (R: a revolute joint, Pa: a

planar parallelogram) and one RRRRR subchain.

The three actuated joints, the first revolute joints, of

RRPaR subchains are designed to have a common

rotation axis, and the actuated joint (the second R

joint) axis of the RRRRR subchain is perpendicular

to the common rotation axis. This architecture

contributes large rotationally-symmetric workspace

and unlimited rotational capability of the end-effector.

The fundamental demerit of typical parallel manipu-

lators, limited workspace, is completely removed. In

this paper, the loop-closure equations are derived. The

inverse and forward kinematics and singularity anal-

ysis are discussed. An algebraic derivation of the

dextrous workspace is presented.
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1 Introduction

To fulfill pick-and-place applications, the manipula-

tors are required to undergo the Schönflies motion, a

motion of three-translational and one-rotational

degree of freedom. The Delta robot [1] and the

Quattro robot [2, 3] families are the successful

Schönflies-motion parallel manipulators in industry,

which are able to perform such motion at high speed

(more than 10 m/s) and high acceleration (10 g, g: the

gravitational acceleration).

Most parallel manipulators (including the Delta

robot and the Quattro robot), however, suffer from

drawbacks of a large footprint, a limited workspace

and, particularly, low rotation capability. In order to

avoid the drawbacks, several 3–5 degree-of-freedom

(DoF) parallel mechanisms whose actuated arms have

a common axis of rotation were proposed [4–6]. Some

of 4-DoF manipulator variants use redundant actuation

to overcome singularities [7]. In the mechanisms,

high-DoF joints (e.g., universal joints or ball joints)

are used at both ends of passive links. Those manip-

ulators’ workspaces and kinematic properties are

rotationally symmetric [7] due to the common axis

of rotational actuation. Because of the complicated

structures, some manipulators have limited end-

effector rotation capability. Specially designed ampli-

fication systems are proposed at the end-effector to

increase the rotation range, which further complicates

the mechanism. SCARA-Tau manipulator is the

typical mechanism, which is investigated in detail to

improve the performance [8–11].

The literatures [12, 13] have presented a class of

actuated arms common-axis (or co-axis in short)

parallel manipulators whose each subchain is RRR
(R: revolute joint) kinematic chain. These parallel

manipulators are planar 3-DoF manipulators. The

manipulator (shown in Fig. 1), named the V3 robot,

has three RRR subchains, which are respectively

arranged in three parallel planes to avoid collision.

With an innovative design of the end-effector, it

possesses unlimited rotation capability. In [14], the

kinematics and workspace have been briefly analyzed.

The optimal design exhibits greatly improved perfor-

mance in workspace and velocities for pick-and-place

motion. Since the V3 robot is a 3-DoF planar

manipulator, however, it is short of a vertical trans-

lation to the plane to fulfill the 4-DoF Schönflies

motion. One approach to the problem is to serially add

an air cylinder or other translation compensating

system on the end-effector to provide the vertical

motion. The resulting manipulator thus becomes a

hybrid mechanism. Another approach is to introduce a

fourth subchain to provide the vertical translation and,

in the meantime, to keep the manipulator fully

parallel-kinematics. Since the subchains of V3 robot

are comparable to cantilever beam structures, their

bending deformation may be significant due to heavy

load. In this paper, an upgraded design is proposed and

analyzed so that the new robot mechanism possesses

4-DoF Schönflies motion capability with single DoF

joints.

This paper is organized as follows. In sect. 2, the

upgraded design manipulator is introduced. The

geometric model, inverse and forward kinematics,

workspace and singularity are derived and analyzed in

Sects. 3, 4 and 5. Finally, conclusions are drawn in

Sect. 6.

2 The upgraded design: the T4 robot

The V3 robot is a parallel manipulator capable of

planar 2T1R motion. It is topologically a 3-RRR
parallel mechanism, whose motion type is exactly the

same as that of each subchain. According to mecha-

nism synthesis theory in [15], if we would like to

design a fully parallel mechanism to undergo the

Schönflies motion, the generated motion by its

subchain should contain the Schönflies motion. That

is, the subchains undergo 4-DoF Schönflies motion at

least. By investigating subchains of the V3 robot, it is

found that it lacks a vertical translation for Schönflies

motion. For parallel manipulators with co-axis actu-

ated joints, the advantages are large rotationally-

symmetric workspace and small footprint. Especially,

V3 has an end-effector that links to subchains withFig. 1 The V3 robot: a 3D model; b Side view
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passive revolute joints, so that the end-effector

possesses unlimited rotation capability. In design of

the Schönflies-motion parallel mechanism, those

advantages must be retained. That is, revolute joints

are still used to link the base and the end-effector. A

feasible scheme could be to add a 1-DoF joint that can

offer a vertical translation motion between the first and

the last revolute joints. In [16], the authors presented

representative serial subchains generating the Schön-

flies motion. From those serial subchains, it is clear

that this added joint can be P (prismatic joint), H
(helical joint) or Pa (plane-hinged parallelogram). In

Fig. 2a, the serial chain RRPR can generate motion

if the prismatic join axis does not perpendicular to the

revolute joint axis. The serial chain RRPaR (Fig. 2b)

generates the Schönflies motion with the planar

parallelogram not parallel to the original motion

plane. In order to keep the large rotationally-symmet-

ric workspace and the unlimited rotation capability of

the end-effector, the first and the last revolute joints

should be remained. Since P and H joints are usually

taken as actuated ones, they will not be chosen to

compose the subchain. Therefore, the RRPaR topol-

ogy is used for serial subchains of the new Schönflies-

motion parallel mechanism, whose plane-hinged par-

allelogram is vertical to the motion plane of the V3

robot, which is composed of three RRR subchains.

The new manipulator should consist of four

subchains since it is desirable to have a single actuator

in each subchain. However, a fully parallel mechanism

consisting of four identical RRPaR subchains with a

common axis of first rotation joints will lead to

uncontrollable translation of the plane-hinged paral-

lelograms due to gravity. Therefore, four identical

RRPaR subchains described above seem infeasible

to produce the Schönflies motion.

An immediate idea is to introduce a different

subchain to constrain the Pa shape changing. This

subchain may be a simple lifting mechanism similar to

a crane, which provides vertical translation and makes

the parallelograms controllable. We propose a sub-

chain composed of five serially linked revolute joints,

which is presented in the dashed zone in Fig. 3. In this

subchain, the first revolute joint is passive with its axis

identical to the common axis. The second R joint is

actuated and perpendicular to the common axis. In [4–

6], similar subchains are used, but not identical. The

plane-hinged parallelograms constrain the end-effec-

tor vertically, so the rotation axis of the end-effector is

vertical to the ground. Therefore, the last link l in the

lifting subchain has fixed orientation.

Therefore, we obtain a novel 4-DoF Schönflies-

motion parallel manipulator consisting of three

RRPaR subchains and one RRRRR subchain, as

shown in Fig. 4. Since the actuated axis in the

RRRRR subchain and the common actuated axis

in the three RRPaR subchains are perpendicular and

form the shape ‘‘T’’, the manipulator is thus named the

T4 robot, where the Fig. 4 denotes its degrees of

freedom. The T4 robot retains not only advantages of

the V3 robot, but also provides a fourth vertical

translation. The lifting subchain greatly reduces the

bending effect of the three RRPaR subchains since

they are cantilever beam structures.

Here, the motion type of the T4 robot is verified

using the method in [15], whose notation convention is

borrowed. The end-effector tangent space of the T4

robot configuration space can be spanned by the twists

of the rigid body. And the end-effector tangent space is

the intersection of that of each subchain. The notations

and coordinate system of this robot are defined in

Fig. 5. First, define x ¼ ð1; 0; 0ÞT ; y ¼ ð0; 1; 0ÞT and

z ¼ ð0; 0; 1ÞT . At the home configuration e, the

RRPaR subchain’s tangent space is

(a) (b)

Fig. 2 Example subchains: a RRPR; b RRPaR Fig. 3 The lifting subchain design
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TeCi ¼ span
0

z

� �
;

x

0

� �
;

y

0

� �
;

z

0

� �� �
; i ¼ 1; 2; 3:

Since these three subchains layouts are the same, it

is easy to know that the motions intersection of these

three subchains can be obtained as

\3

i¼1

TeCi ¼ span
0

z

" #
;

x

0

" #
;

y

0

" #
;

z

0

" #( )
:

Define a fixed body frameA4 � X0Y 0Z 0 on the lifting

subchain, where the Y 0 axis is coincident with the

actuated axis, the þX0 axis passes through the point

D4. The tangent space of configuration space of the

lifting subchain in this coordinate frame is

TeC4 ¼ span
0

z

" #(
;

0

y

" #
;

A4B4�y

y

" #
;

A4C4�y

y

" #
;

A4D4�z

z

" #)

¼ span
0

z

" #(
;

0

y

" #
;

A4B4�y

0

" #
;

B4C4�y

0

" #
;

A4D4�z

0

" #)
:

Suppose

A4B4 ¼ axþ bz;B4C4 ¼ cxþ dz;B4D4 ¼ exþ f z,

and a; . . .; f are constants. Thus,

TeC4 ¼ span
0

y

" #
;

0

z

" #
;

az�bx

0

" #
;

cz�dx

0

" #
;

�ey

0

" #( )

¼ span
0

y

" #
;

0

z

" #
;

x

0

" #
;

y

0

" #
;

z

0

" #( )
:

After coordinate frames transformations, in the

inertial frame, we know that the motions of the lifting

subchain are 3-DoF translation and 2-DoF rotation

where one rotation axis is Z axis and the other is

parallel to the moving actuated axis. We obtain the

tangent space of the motion of the T4 robot by taking

intersection of tangent spaces of motions of all

subchains,

\4

i¼1

TeCi ¼ span
0

z

" #
;

x

0

" #
;

y

0

" #
;

z

0

" #( )
;

which is exactly the tangent space of Schönflies

motion. Clearly, the rotation motion about the moving

axis vanishes. By the theory in [15], thus, the T4 robot

has 4-DoF Schönflies motion capability.

3 Kinematic analysis

3.1 Geometry description

Figure 5 shows a CAD implementation of the T4

robot. An inertial coordinate frame O� XYZ is

attached, with the lowest subchain A1B1C1D1 in the

Fig. 4 The T4 robot: 3D illustration

Fig. 5 Notations and coordinate system
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XOY plane and the origin O being coincident with

point A1, the first actuated revolute joint. At home

configuration, suppose the plane-hinged parallelo-

grams are rectangles (not changing shape), and the þX

axis passes through the point D1. The joint variables

and geometric parameters are defined in Figs. 5, 6 and

7 and Table 1. The workspace of the manipulator is

described by the coordinate of point D1 and the

orientation angle / of the end-effector.

To analyze kinematics of a parallel mechanism, the

first step is to obtain its loop-closure equations. It is

straightforward to obtain the position relation for the

first subchain.

x ¼ l11 cos h1 þ ðl12 cos b1 þ l13Þ cosðh1 � c1Þ
y ¼ l11 sin h1 þ ðl12 cos b1 þ l13Þ sinðh1 � c1Þ
z ¼ l12 sin b1

8><
>:

ð1Þ

The loop-closure equations for subchains 2–4 are

readily obtained as follows.

x2 ¼ l21 cos h2 þ ðl22 cos b2 þ l23Þ cosðh2 þ c2Þ
y2 ¼ l21 sin h2 þ ðl22 cos b2 þ l23Þ sinðh2 þ c2Þ
z2 ¼ zþ h2 ¼ l22 sin b2 þ h2

8><
>:

ð2Þ

x3 ¼ l31 cos h3 þ ðl32 cos b3 þ l33Þ cosðh3 � c3Þ
y3 ¼ l31 sin h3 þ ðl32 cos b3 þ l33Þ sinðh3 � c3Þ
z3 ¼ zþ h2 þ h3 ¼ l32 sin b3 þ h2 þ h3

8><
>:

ð3Þ

x4 ¼ x3

y4 ¼ y3

z4 ¼ z3 þ h4

8><
>: ð4Þ

The coordinate ðx2; y2Þ and ðx3; y3Þ can be com-

puted from the coordinate of (x, y), and the orientation

of bars H1H2 (and H3H4), angle /, as follows.

x2

y2

" #
¼

x

y

" #
þ

cos/ � sin/

sin/ cos/

" #
b1

0

" #
ð5Þ

x3

y3

" #
¼

x

y

" #
þ

cos/ � sin/

sin/ cos/

" #
b1 � b2

0

" #

ð6Þ

3.2 Inverse kinematics

The actuated joint angles hi can be computed from the

projection length of BiDi in the XOY plane for

i ¼ 1; . . .; 3, with given the Cartesian coordinate of

the end-effector (x, y, z;/Þ. First, for the three

suchains with plane-hinged parallelograms, it can be

derived from Eqs. (1)–(3) by simple manipulations.

xi � li1 cos hið Þ2 þ yi � li1 sin hið Þ2 � L2
i ¼ 0 ð7Þ

for i ¼ 1; 2; 3, where x1 ¼ x and y1 ¼ y; Li ¼
li2 cos bi þ li3, where bi can be determined according

to Fig. 7b given the coordinate z. This leads to three

equations of cos hi and sin hi as follows. The only

unknown is hi of the ith equation.

(a) (b)

Fig. 6 The T4 robot: a An xy projection; b An xz projection

(a) (b)

Fig. 7 a The end-effector crank design; b The plane-hinged

parallelogram
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x2
i þ y2

i � 2li1xi cos hi � 2li1yi sin hi þ l2i1 � L2
i ¼ 0

ð8Þ

Let ti ¼ tanðhi=2Þ and by the universal substitution

for trigonometric functions, the equations above

become quadratic with respect to ti,

Dit
2
i þ Eiti þ Fi ¼ 0; i ¼ 1; 2; 3 ð9Þ

where

Di ¼ x2
i þ y2

i þ l2i1 � L2
i þ 2li1xi;

Ei ¼ � 4li1yi;

Fi ¼ x2
i þ y2

i þ l2i1 � L2
i � 2li1xi:

For the RRRRR lifting subchain, its rotation axis

of the actuated joint is not fixed. The length of the

projection in the XOY plane is R4 (Ri
2 ¼ xi

2 þ yi
2). So,

using the height of the top point, the geometrical

equation can be derived.

h1 þ l41 sinh4 ¼ z4 þ l242 � ðR4 � l41 cosh4 � l43Þ2
h i0:5

ð10Þ

This leads to an equation with respect to h4 as

follows.

H2 þ ðR4 � l43Þ2 � 2l41ðR4 � l43Þ cos h4

þ 2Hl41 sin h4 þ l241 � l242 ¼ 0
ð11Þ

where H ¼ h1 � ðzþ h2 þ h3 þ h4Þ. Similarly, let

t4 ¼ tanðh4=2Þ, we have

D4t
2
4 þ E4t4 þ F4 ¼ 0; ð12Þ

where

D4 ¼ H2 þ ðR4 � l43Þ2 þ l241 � l242 þ 2l41ðR4 � l43Þ;
E4 ¼ 4Hl41;

F4 ¼ H2 þ ðR4 � l43Þ2 þ l241 � l242 � 2l41ðR4 � l43Þ:

The coordinate ðxi; yi; ziÞ; i ¼ 1; . . .; 4, can be com-

puted from ðx; y; z;/Þ. The coefficients Di;Ei;

Fi; i ¼ 1; . . .; 4, are functions of Cartesian coordinate

ðx; y; z;/Þ and link lengths. Readily ti; i ¼ 1; . . .; 4 can

be solved from the Eqs. (9) and (12) and hi can thus be

obtained by hi ¼ 2 arctan ti.

Clearly, there are at most sixteen inverse kinematic

solutions for a single ðx; y; z;/Þ. They correspond to

sixteen different assembly modes. Once the mecha-

nism is assembled, one branch of solutions is chosen.

In usual applications, the mechanism always operates

in the chosen mode since a transfer from one mode to

another will lead to an occurrence of singularity,

which may cause unexpected damages. It is not

desirable in practice.

3.3 Forward kinematics

The forward kinematics problem is to find pose of the

end-effector given a set of actuated joint angles. For

the T4 robot, it is to find the Cartesian coordinate

ðx; y; z;/Þ, given actuated joint angles hi; i ¼ 1; . . .; 4.

Table 1 Nomenclature Notations Meaning

OXYZ The inertial coordinate frame

lij Length of the jth link in the ith subchain

x; y; zð Þ Cartesian coordinate of point D1

xi; yi; zið Þ Cartesian coordinate of point Di

/ The included angle from þX direction

to the vector H1H2

hi The 1st joint angle variable of the ith subchain

ci The 2nd joint angle variable of the ith subchain

bi The planar parallelogram shape angle variable

of the ith subchain

b1 The length of the first bar H1H2 in the crank

b2 The length of the first bar H3H4 in the crank

h1 The height of the base

hi; i ¼ 2; 3; 4 The height between Di and Di�1
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From (8), for i ¼ 1, we can obtain a quadratic

equation relating (x, y, z) and h1.

x2 þ y2 � 2l11x cos h1 � 2l11y1 sin h1 þ l211 � L2
1 ¼ 0:

ð13Þ

While for i ¼ 2; 3, the following equations present

the relationship between ðx; y; z;/Þ and hi.

x2 þ y2 þ 2ðb1 cos/� l21 cos h2Þx
þ 2ðb1 sin/� l21 sin h2Þy� 2b1l21 cosð/� h2Þ
þ b2

1 þ l221 � L2
2 ¼ 0

ð14Þ

x2 þ y2 þ 2ððb1 � b2Þ cos/� l31 cos h2Þx
þ 2ððb1 � b2Þ sin/� l31 sin h2Þy
� 2ðb1 � b2Þl21 cosð/� h2Þ þ ðb1 � b2Þ2

þ l231 � L2
3 ¼ 0

ð15Þ

where Li is functions of z. Subtracting Eq. (13) from

(14) and (15), two linear algebraic equations with

respect to x and y are obtained.

P1xþ Q1yþ S1 ¼ 0 ð16Þ

P2xþ Q2yþ S2 ¼ 0 ð17Þ

where Pi;Qi; Si; i ¼ 1; 2, are functions of z;/ and

hi; i ¼ 1; 2; 3 and link lengths as follows.

P1 ¼ 2ðb1 cos/� l21 cosh2 þ l11 cosh1Þ;
Q1 ¼ 2ðb1 sin/� l21 sinh2 þ l11 sinh1Þ;
S1 ¼�2b1l21 cosð/� h2Þ þ b2

1 þ l221 � L2
2 � l211 þ L2

1;

P2 ¼ 2ððb1 � b2Þ cos/� l31 cosh3 þ l11 cosh1Þ;
Q2 ¼ 2ððb1 � b2Þ sin/� l31 sinh2 þ l11 sinh1Þ;
S2 ¼�2ðb1 � b2Þl31 cosð/� h3Þ þ ðb1 � b2Þ2 þ l231 � L2

3

� l211 þ L2
1:

Readily x and y can be solved from (16) and (17)

when P1Q2 � P2Q1 6¼ 0.

x ¼ Q1S2 � Q2S1

P1Q2 � P2Q1

ð18Þ

y ¼ P1S2 � P2S1

P1Q2 � P2Q1

ð19Þ

Clearly x, y are expressed as functions of ðz;/Þ.

Substituting (18) and (19) into (13) and (11), we can

get two equations with respect to z and /. After

eliminating z, there is a high order equation of cos/
and sin/. Using the universal substitution for trigono-

metric functions again, we obtain a solution of /.

Then, z, x and y can be solved in order.

4 Dextrous workspace

The limited rotation capability is a major drawback of

traditional parallel manipulators. The T4 robot retains

the property of full 360� rotation of the V3 robot. In

this section, the dextrous workspace, or the position

workspace with full 360� rotation, is discussed for

pick-and-place operations.

The T4 robot consists of 3 RRPaR subchains and

one RRRRR subchain. The three R joints in the

RRPaR subchain contribute a planar motion. By

introducing a Pa joint (and the lifting subchain), the

T4 robot is able to undergo planar motion in different

operation plane depending on coordinate z. Therefore,

it is applicable to analyze the dextrous workspace of

the T4 robot by analyzing the dextrous workspace in

different operation plane using the procedure in [14].

The inner radius r0d and the outer radius R0
d of the

dexterous workspace torus generated by the three

RRPaR subchains can be obtained as follows:

r0d ¼ maxfjl11 �L1j; jl21 �L2j þ b1; jl31 �L3j þ jb1 � b2jg;
R0
d ¼ minfl11 þL1; l21 þL2 � b1; l31 þL3 � jb1 � b2jg:

The whole workspace is the intersection of all

subchains’ workspaces. Let us derive the workspace of

the lifting subchain. If inverse kinematic Eq. (12) has

real solution, the corresponding configuration must be

in the workspace. For a quadratic algebraic equation,

the existence of real solutions is equivalent to that the

following inequality holds.

D4 ¼ E2
4 � 4D4F4 � 0: ð20Þ

Applying D4;E4 and F4 in (12) to the inequality

(20), it becomes

H2 þ ðR4 � l43Þ2 � l241 � l242

h i2

� 4l241l
2
42: ð21Þ

The inequality (21) can be further reduced to
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ðl41 � l42Þ2 � H2 �ðR4 � l43Þ2 �ðl41 þ l42Þ2 � H2:

ð22Þ

In practical design, since the base radius is nonzero,

R4 � l43. The radius range of the lifting subchain

workspace can be derived in a reasonable operation

plane:

Case 1: jl41 � l42j �H,

ðl41 � l42Þ2 � H2
h i0:5

þl43 �R4

� ðl41 þ l42Þ2 � H2
h i0:5

þl43:

Case 2: jl41 � l42j\H and l41 þ l42 �H,

l43 �R4 � ðl41 þ l42Þ2 � H2
h i0:5

þl43:

Case 3: l41 þ l42\H, no solution.

Notice R3 ¼ R4, so the relationship between

manipulator workspace radius R (R2 ¼ x2 þ y2) and

R4 can be determined like in [14]:

min
/2 �p;p½ �

R2
4 ¼ R� b1 � b2j jð Þ2;

when cos /� cð Þ ¼ �sgn b1 � b2ð Þ;
ð23Þ

max
/2 �p;p½ �

R2
4 ¼ Rþ b1 � b2j jð Þ2;

when cos /� cð Þ ¼ sgn b1 � b2ð Þ;
ð24Þ

where cos c ¼ x=R; sin c ¼ y=R and sgnð�Þ is the sign

function defined as follows.

sgn xð Þ ¼

1; x[ 0

0; x ¼ 0

�1; x\0

8>><
>>:

Therefore, we determine the inner radius rd and the

outer radius Rd of the manipulator dexterous work-

space torus in a designated operation plane (fixed z) as

follows:

rd ¼ maxfr0d;minR4 þ jb1 � b2jg;
Rd ¼ minfR0

d;maxR4 � jb1 � b2jg:

The minimal and maximal values of R4 are

dependent on the cases discussed above. It is easy to

see that the whole manipulator workspace is made up

of a series of torus with a common axis, like an

ellipsoid with a vertical hole in the center. Let us

investigate an example design with the following

kinematic parameters, li1 ¼ 0:3; li2 ¼ 0:5; li3 ¼ 0:05;

i ¼ 1; . . .; 3; l41 ¼ 0:5; l42 ¼ 0:5; l43 ¼ 0:05; b1 ¼
0:03; b2 ¼ 0:075; h1 ¼ 0:8; h2 ¼ 0:15; h3 ¼ 0:15;

h4 ¼ 0:05, all in m. Figure 8 shows the dexterous

workspace projections.

5 Singularity analysis

Since the three RRPaR subchains have the same

Schönflies motion type as the T4 robot, there is no

chance that the parallel mechanism obtains additional

DoFs at some specific configurations. Therefore, the

T4 robot has no constraint singularity [17].

Due to different topologies of the lifting subchain

and the three RRPaR subchains, they are separately

treated to achieve the velocity equation of the robot.

For the three RRPaR subchains, ODi �OBi

¼ BiDi. Differentiating the equation, it leads to the

velocity relationship of the ith (i ¼ 1; 2; 3) subchain.

VDi
� VBi

¼

_Li cos hi � sgnðiÞ � cið Þ
_Li sin hi � sgnðiÞ � cið Þ

_z

2
664

3
775

þ _hi � sgnðiÞ � _ci
� �

z� BiDi

ð25Þ

where VDi
and VBi

are respectively the velocity of

point Di and Bi with respect to the inertial coordinate

frame, z ¼ ð0; 0; 1ÞT . Here, sgnðiÞ ¼ 1, when i ¼ 1; 3;

sgnðiÞ ¼ �1, when i ¼ 2.

Suppose that the translational velocity and the

rotational velocity of end-effector are v ¼ ½ _x; _y; _z�T

and w ¼ ½0; 0; _/�T , respectively. That is, the point D1

has the translational velocity v. _hi is the ith actuated

velocity vector and _ci is the ith passive velocity vector.

We can compute the velocities of Bi and Di; i ¼ 1; 2; 3

as follows:

VBi
¼ _hi � AiBi ð26Þ

VD1
¼ v ¼ vþ w� u1

VD2
¼ vþ w�H1H2 ¼ vþ w� u2

VD3
¼ vþ w� ðH1H2 þH3H4Þ ¼ vþ w� u3

8><
>:

ð27Þ

where u1 ¼ 0; u2 ¼ H1H2 and u3 ¼ H1H2 þH3H4.

By (25), we have
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vþw�ui� _hi�AiBi ¼

_Li cos hi� sgnðiÞ � cið Þ
_Li sin hi� sgnðiÞ � cið Þ

_z

2
664

3
775

þ _hi� sgnðiÞ � _ci
� �

�BiDi:

ð28Þ

Taking inner product to both sides by BiDi, we

obtain

BiDi
Tvþ ðli3z=ðl2i2 � z2Þ0:5Þ _zþ ðui � BiDiÞTw

¼ ðAiBi � BiDiÞT _hi:
ð29Þ

The velocity Eq. (29) can be expressed in the

following matrix form

J#x
_X ¼ J

#
h

_H ð30Þ

where

J#x ¼
B1D1

T þ Jx1
zT ðu1 � B1D1ÞTz

B2D2
T þ Jx2

zT ðu2 � B2D2ÞTz
B3D3

T þ Jx3
zT ðu3 � B3D3ÞTz

2
64

3
75;

J
#
h ¼

Jh1
0 0 0

0 Jh2
0 0

0 0 Jh3
0

2
64

3
75;

and _X ¼ ð _x; _y; _z; _/ÞT is the velocity vector of the end-

effector in Cartesian space, _H ¼ ð _h1; _h2; _h3; _h4ÞT is the

velocity vector of the actuated joint variables in the

joint space, and Jxi ¼ li3z= l2i2 � z2
� 	0:5

; Jhi ¼ AiBi�ð
BiDiÞTz; i ¼ 1; 2; 3; z ¼ ð0; 0; 1ÞT .

While the Eq. (28) is multiplied by AiDi, we have

AiDi
Tvþ ððli1 cosðcÞ þ li3Þz=ðl2i2 � z2Þ0:5Þ _z

þ ðui � AiDiÞTw
¼ �sgnðiÞðBiDi � AiDiÞT _ci:

ð31Þ

The velocity Eq. (31) can be expressed in the

following matrix form

K# _X ¼ T# _C ð32Þ

where

K# ¼
A1D1

T þ K1z
T ðu1 � A1D1ÞTz

A2D2
T þ K2z

T ðu2 � A2D2ÞTz
A3D3

T þ K3z
T ðu3 � A3D3ÞTz

2
64

3
75;

T# ¼
T1 0 0 0

0 T2 0 0

0 0 T3 0

2
64

3
75;

Ki ¼ðli1 cosðcÞ þ li3Þz= l2i2 � z2
� 	0:5

;

Ti ¼� sgnðiÞðBiDi � AiDiÞTz; i ¼ 1; 2; 3;

and _C ¼ ð _c1; _c2; _c3; _c4Þ
T

is the velocity vector of the

passive joint variables in the joint space.

For the lifting subchain, according to the geometry

we have

B4D4k k2¼ l242 � ðR4 � l41 cos h4 � l43Þ2

þ ðR4 � l41 cos h4Þ2:

Again, differentiating the equation results in the

lifting subchain velocity relationship.

ðVD4
� VB4

ÞT � B4D4 ¼ Mðx4 _xþ y4 _yþ ðb1 � b2Þ
� ðy4 cos/� x4 sin/Þ _/Þ
þ l41l43 sin h4

_h4

ð33Þ

where M ¼ l43=R4. Since VD4
¼ VD3

, it can be further

deduced as

B4D4
Tv�Mðx4 _xþ y4 _yÞ þ ðu3 � B4D4ÞTw

�Mððb1 � b2Þðy4 cos/� x4 sin/Þ _/Þ
¼ ðA4B4 � B4D4ÞT _h4 þ l41l43 sin h4

_h4:

ð34Þ

The velocity Eq. (34) also can be expressed in a

matrix form:

J	x
_X ¼ J	h

_H ð35Þ

where

J	x ¼ B4D4
T �C4D4

T ðu3�B4D4ÞTzþb

 �

;

J	h ¼ 0 0 0 ðA4B4�B4D4ÞTðy4x�x4yÞ=R4þc

 �

;

andC4D4 ¼ Mðx4; y4; 0ÞT ; b ¼ �Mðb1 � b2Þðy4 cos/

�x4 sin/Þ; c ¼ l41l43 sin h4; x ¼ ð1; 0; 0ÞT ; y ¼ ð0; 1;

0ÞT .
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Use the geometric relationship of R4 and the

z coordinate of the point D4,

R4 ¼ l41 cos h4 þ l42 cosðh4 � c4Þ þ l43;

z4 ¼ h1 þ l41 sin h4 þ l42 sinðh4 � c4Þ:

Differentiating these equations leads to the velocity

relationship as follows,

ðx4 _xþ y4 _yþðb1 � b2Þðy4 cos/� x4 sin/Þ _/Þ=R4 ¼
�ðl41 sinh4 þ l42 sinðh4 � c4ÞÞ _h4 þ l42 sinðh4 � c4Þ _c4;

_z¼ ðl41 cosh4 þ l42 cosðh4 � c4ÞÞ _h4

� l42 cosðh4 � c4Þ _c4:

Using equations above to eliminate _h4, the velocity

relationship between the end-effector and passive joint

can be expressed in a matrix form:

K	 _X ¼ T	 _C ð36Þ

where

K	 ¼ dC4D
T
4 � ezT �b=l43


 �
;

T	 ¼ 0 0 0 � l41l42 sin c4½ �;

and d ¼ ðl41 cos h4 þ l42 cosðh4 � c4ÞÞ=l43; e ¼ l41 sin

h4 þ l42 sinðh4 � c4Þ.
Finally, the total manipulator velocity equation can

be described as follows.

Jx _X ¼ Jh _H K _X ¼ T _C ð37Þ

where

Jx ¼
J#x

J	x

" #
; Jh ¼

J
#
h

J	h

" #
;

K ¼
K#

K	

" #
; T ¼

T#

T	

" #
:

The forward instantaneous kinematic problem

(FIKP) is solvable for a given configuration if there

exist JF and PF , satisfying _X ¼ JF _H and _C ¼ PF
_H,

where JF ¼ J�1
x Jh;PF ¼ T�1KJ�1

x Jh. The inverse

instantaneous kinematic problem (IIKP) is solvable

for a given configuration if there exist JI and PI ,

satisfying _H ¼ JI _X and _C ¼ PI
_X, where JI ¼ J�1

h Jx

and PI ¼ T�1K. Based on these four matrices

JF;PF; JI and PI , there are six types of singularities

to be discussed [18].

5.1 Redundant input type singularity

This kind of singularity occurs when the matrix JI does

not exist. It implies detðJhÞ ¼ 0. In such a configura-

tion, there exist a non-zero input, _H 6¼ 0, and a vector

of passive joint velocities, _C, which satisfy the

velocity equation for a zero-output, _X ¼ 0. It always

happens when one of the subchains reaches the

boundary of its workspace. Its condition is equivalent

to that at least one of the diagonal elements in Jh is

zero. For J
#
h due to RRPaR subchains, if

AiBi==BiDi; i ¼ 1; 2 or 3, the matrix will be rank

deficient. This case only appears at z ¼ 0, i.e., the

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(m)

z(
m
)

(b)

Fig. 8 a Dexterous workspace in XOY plane; b Dexterous

workspace in XOZ plane
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parallelograms are in the shape of rectangles. When

the planar parallelograms are not rectangular, as long

as AiBi and BiDi are coplanar vertically, the singular-

ity will also occur (Fig. 9a). The singularity condition

for the lifting subchain is not only A4B4==B4D4, but

also sin h4 ¼ 0. Figure 9b shows a configuration of the

lifting subchain where points A4;B4;D4 are colinear.

In this case, when h ¼ 0 or 180�, a redundant input

type singularity occurs at the lifting subchain.

5.2 Redundant output type singularity

When the determinant of Jx vanishes, the matrix JF
does not exist. It means this configuration is a

singularity of redundant output type. In such a

configuration, there exists a non-zero output, _X 6¼ 0,

and a vector of passive joint velocities, _C, even for a

zero-input, _H ¼ 0.

From the matrix J#x , the singularities may occur

with full 360� rotation of the end-effector. By

observing J#x , when ui and BiDi are coplanar vertically

(parallel to the z axis), the fourth element of the ith row

is zero. The first three elements make up a vector,

which isBiDi plus a z-direction vector, renamed vector

BiD
0
i. If HiHj and B3D3 are vertically coplanar, and

B1D
0

1==B3D
0

3 (or HiHj and B2D2 are vertically

coplanar, and B2D2
0
==B3D

0
3), this type of singularity

occurs. A particular case is B1D
0

1==B2D2
0
==B3D

0

3.

For J	x , the first three elements make up the vector

B4C4. It will be parallel to BiDi when the ithRRPaR
subchain reaches the boundary of its workspace. The

fourth element will be zero when ui and B4D4 are

vertically coplanar. Mathematically, when ui and

B4D4 are vertically coplanar and BiDi==B4C4==z,

the configuration is at the redundant output type

singularity.

5.3 Impossible input type singularity

A configuration is a singularity of impossible input

type if there exists a vector _H for which the velocity

equation cannot be satisfied for any combination of _X

and _C. It means neither of the matrices JI and PI exists.

Both Jh and T are rank deficient. Similarly, when BiDi

and AiDi; i ¼ 1; 2 or 3, are colinear or vertically

coplanar, or A4B4 and B4C4 are colinear, det Tð Þ ¼ 0,

there is a redundant input type singularity, which is

also an impossible input type singularity.

5.4 Impossible output type singularity

A configuration is a singularity of impossible output

type if there exists a vector _X for which the velocity

equation cannot be satisfied for any combination of _H

and _C. When both Jx and T are rank deficient, the

matrices JI and PI do not exist. one example of such

singularity is when A4B4 and B4C4 are colinear, and

B1D
0

1==B2D2
0
==B3D

0

3.

5.5 Increased instantaneous mobility type

singularity

The increased instantaneous mobility type singularity

occurs when both Jx and Jh are rank deficient. This

type of singularity is a combination of the two

aforementioned types (Sects. 5.1 and 5.2) of singular-

ity. It depends not only on configurations but also on

the geometric parameters such as link length and size

of base and end-effector. An example of this kind

singularity occurs when A1B1==B1D1==B3D3==u3.

5.6 Redundant passive motion type singularity

A configuration is a singularity of redundant passive

passive motion type if there exists a non-zero passive

(a)

(b)

Fig. 9 a A RRPaR subchain in singular configuration; b A

configuration of the lifting subchain: A4;B4;D4 are colinear
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joint velocity vector, _C 6¼ 0, which satisfies the

velocity equation for a zero input and a zero output.

Such a configuration is singular, since both the FIKP

and the IIKP are insolvable, when neither of the

matrices PF and PI exists. Its condition is also that

both Jx and T are rank deficient. So, these singularities

of this new parallel manipulator is the same as the

impossible output type singularities.

6 Conclusion

In this paper, a novel 4-DoF Schönflies motion parallel

manipulator, the T4 robot, is proposed. It is a 4-DoF

version of the V3 robot, a planar parallel manipulator.

It retains large workspace and unlimited rotation

capability of the end-effector. Due to the introduction

of the lifting subchain, aRRRRR serial chain, the T4

robot becomes a fully parallel manipulator able of

translation along the common axis, which is more

suitable for general pick-and-place operations. Fur-

ther, it is shown in the paper that the kinematics of this

manipulator have closed-form solutions. The work-

space can be computed analytically by an algebraic

derivation.
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7. Isaksson M, Brogårdh T, Nahavandi S (2012) Parallel

manipulators with a rotation-symmetric arm system. J Mech

Des 134:114503
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