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Abstract Fully coupled flow-deformation analysis of

deformable multiphase porous media saturated by

several immiscible fluids has attracted the attention of

researchers in widely different fields of engineering.

This paper presents a new numerical tool to simulate the

complicated process of two-phase fluid flow through

deforming porous materials using a mesh-free tech-

nique, called element-free Galerkin (EFG)method. The

numerical treatment of the governing partial differential

equations involving the equilibrium and continuity

equations of pore fluids is based onGalerkin’s weighted

residual approach and employing the penalty method to

introduce the essential boundary conditions into the

weak forms. The resulting constrained Galerkin formu-

lation is discretized in space using the same EFG shape

functions for the displacements and pore fluid pressures

which are taken as the primary unknowns. Temporal

discretization is achieved by utilizing a fully implicit

scheme to guarantee no spurious oscillatory response.

The validity of the developed EFG code is assessed via

conducting a series of simulations. According to the

obtained numerical results, adopting the appropriate

values for the EFG numerical factors can warrant the

satisfactory application of the proposed mesh-free

model for coupledhydro-mechanical analysis of applied

engineering problems such as unsaturated soil consol-

idation and infiltration of contaminant into subsurface

soil layers.

Keywords Mesh-less � Element-free Galerkin

technique � Penalty method � Coupled multiphase

flow-deformation problem � Porous media

1 Introduction

Numerical modeling of the behavior of deformable

porous media interacting with the simultaneous flow

of immiscible pore fluids is of great interest in a wide

variety of engineering applications. These include:

unsaturated soil mechanics, petroleum industry, and

environmental studies. Dykes and embankments

which are built to protect the environment from the

elements of water represent some examples of such

multiphase porous systems in geotechnical engineer-

ing. In order to correctly predict the stability and the

overall behavior of these structures which are com-

posed of a deforming solid skeleton saturated by pore

water and pore air, it is necessary to model the coupled

hydro-mechanical behavior of partially saturated

porous media [1]. Another important application of

coupled stress-fluid flow analyses of multiphase

materials is in the simulation of compaction–subsi-

dence problems encountered in petroleum reservoir

engineering. Production of hydrocarbons (e.g. oil or
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gas) from underground reservoirs leads to an increase in

the effective stresses, and consequently to the defor-

mation of the producing formation. The reservoir

compaction may then be transferred to the ground

surface and becomes evident as subsidence. This

complex deformation behavior can have a considerable

influence on the reservoir performance by affecting

different aspects of oil and gas production, such as rock

permeability, well bore stability, and production rate.

On the other hand, land surface subsidence may affect

the operation of drilling and production equipments

which requires costly remedial measures [2–6]. The

phenomena of surface subsidence can also be induced

due to the extraction of water from groundwater

resources and may cause pipeline or structural damages

[6]. Subsurface water contamination by non-aqueous

phase liquids (NAPLs) which mainly arises from the

petroleum industries is a major issue in environmental

engineering. Unlike the surface water pollution, the

contamination of groundwater is difficult to detect and

control, and may persist for several decades. In order to

assess the migration of NAPL contaminants in the

subsurface systems andmonitor the associated clean-up

operations, it is required to simulate the simultaneous

movement of multiphase fluids through porous media

coupled with the deformation of the soil matrix [7, 8].

These types of coupled fluid flow-soil deformation

problems are mathematically described by a set of

partial differential equations including the force

equilibrium equation and the mass conservation law.

Because of the complexity and high non-linearity of

the governing equations, analytical solutions are non-

existent and numerical simulation is frequently used as

an effective tool for hydro-mechanical analysis of

deformable porous materials where several fluid

phases fill the pore spaces simultaneously. As a result,

a number of numerical models of multiphase immis-

cible flow in deforming porous media and fractured

reservoirs have been developed so far, mostly based on

finite element method (e.g. [1–3, 7–27]).

Mesh-less methods originated about 40 years ago

are relatively new numerical techniques for solving

problems in a broad range of application areas includ-

ing solid mechanics, heat conduction, fluid flow, and

geotechnical problems. These methods which do not

require any element for shape function construction are

used to establish a system of algebraic equations for the

entire problem domain only in terms of a set of scattered

nodes. To date, a number of mesh-less methods have

been proposed and have achieved remarkable progress

in recent years, examples of which are given in Table 1.

Among these methods, some have been successfully

employed to study the behavior of saturated porous

media (e.g. [40–45]), and two-phasefluidflowprocesses

through rigid porous materials (e.g. [46–48]). But very

few references are available in the literature regarding

the numerical investigation of the interaction between

multiphase flow and soil deformation by using mesh-

less methods: Modaressi and Aubert [49] presented a

mixed FE–element-free Galerkin (EFG) technique for

two-dimensional numerical simulation of deforming

multiphase porous media. In their work, displacements

of the porous-solid skeleton were modeled by the

standard FEM, whereas the wetting and non-wetting

pore fluid pressureswere discretized by the element-free

nodes. In other words, the resulting formulation was not

completely based onmesh-lessmethod.Moreover, they

utilized Lagrange multipliers to satisfy the essential

Table 1 Some mesh-free

methods developed so far
Method References

Smooth particle hydrodynamics (SPH) Lucy [28], Gingold and Monaghan [29]

Reproducing kernel particle method (RKPM) Liu et al. [30]

Element free Galerkin method (EFG) Belytschko et al. [31]

Partition of unity FEM (PUFEM) Babuska and Melenk [32]

Finite point method (FPM) Onate et al. [33]

Boundary node methods Mukherjee and Mukherjee [34]

Mesh-less local Petrov–Galerkin method (MLPG) Atluri and Zu [35]

Point interpolation method (PIM) Liu and Gu [36]

Boundary point interpolation methods Liu and Gu [37]

Least-squares collocation mesh-less (LSCM) method Zhang et al. [38]

Radial point interpolation method (RPIM) Wang and Liu [39]
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boundary conditions. Khoshghalb and Khalili [50, 51]

proposed a two-dimensional mesh-less algorithm for

fully coupled analysis of flow and deformation in

unsaturated poro-elastic media in which the spatial

discretization was performed using RPIM.

The very few endeavors for usingmesh-less methods

for simulating two-phase fluid flow processes in

deforming porous media motivated the authors of this

paper to develop an entirely EFG-based three-dimen-

sional code in order to evaluate the performance of this

famousmesh-freemethod in the analysis of the strongly

coupled hydro-mechanical behavior of deforming

porous materials while the penalty method has been

used to implement the essential boundary conditions.

This new study is part of an ongoing research that

employs EFG for simulating the propagation of fluid-

induced crack (called hydraulic fracture) in low-

permeable oil reservoirs.

In the following sections of the present paper, at first,

the partial differential equations governing the simul-

taneous movement of two immiscible fluids through

deforming porous media along with the additional

constitutive relations which take into account the

interaction between the various constituents of the

medium are presented. Then, the numerical discretiza-

tion of the model bymeans of EFGmesh-lessmethod is

discussed. In Sect. 3, the validity and capability of the

developed code are illustrated through solving a

number of example problems. Finally, some conclu-

sions are drawn.

2 Formulation

2.1 Governing equations

In general, the set of equations governing the behavior

of a deformable multiphase porous medium includes:

(1) the linear momentum balance equation for the

whole mixture, (2) the linear momentum balance

equation (or the generalized Darcy’s law) for each

fluid phase, and (3) the mass balance equation for each

phase of the medium. By combining the solid phase

mass conservation with that of each fluid phase the final

form of the continuity equations for the flow of pore

fluids is obtained. Assuming that the temperature

remains constant, the voids of the solid skeleton are

completely filled by the fluid components, and the inter-

phase mass transfer is negligible, the above mentioned

equations for a porous medium, where two viscous

fluids exist simultaneously, are expressed as [52]:

• The equilibrium equation:

rij;j þ q gi ¼ 0 ð1Þ

• The Darcy’s law:

n sp _upsi ¼ kij krp

lp
�pp;j þ qp gj
� �

p ¼ w; nw ð2Þ

• The continuity equation for the wetting fluid:

sw
a� n

Ks

sw þ osw

opc
pc

� �
þ n sw

Kw

� n
osw

opc

� �
opw

ot

þ sw
a� n

Ks

1� sw � osw

opc
pc

� �
þ n

osw

opc

� �
opnw

ot

þ a sw _ui; i þ
1

qw
qw n sw _uwsi
� �

; i
¼ 0 ð3Þ

• The continuity equation for the non-wetting fluid:

1� swð Þ a� n

Ks

sw þ osw

opc
pc

� �
þ n

osw

opc

� �
opw

ot

þ 1� swð Þ a� n

Ks

1� sw � osw

opc
pc

� ��

� n
osw

opc
þ n 1� swð Þ

Knw

�
opnw

ot

þ a 1� swð Þ _ui; i þ
1

qnw
qnw n snw _unwsi

� �
; i
¼ 0

ð4Þ

In these equations, rij is the total stress tensor, q is

the density of multiphase system defined as

q = (1 - n)qs ? n(swqw ? snwqnw), n is the porosity

of soil mass, qs is the solid phase density, subscripts

w and nw represent wetting and non-wetting fluids,

respectively, sp is the saturation degree of fluid phase

p, qp denotes the density of fluid phases, gi is the

gravity acceleration vector, _upsi is the relative velocity

vector between fluid phase p and solid phase, kij is the

intrinsic permeability tensor, krp is the relative

permeability coefficient of fluid phase p, lp and pp
are the dynamic viscosity and pressure of pore fluids,

respectively, a is Biot’s parameter, pc is the capillary

pressure, t is time, _ui is the solid phase velocity vector,
and Ks, Kw, and Knw are the bulk modulus of solid

grains, wetting and non-wetting fluids, respectively.

For hydro-mechanical analysis of multiphase sys-

tems, these highly non-linear equations should be
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complemented by some auxiliary functions known as

the constitutive relationships.

2.2 Constitutive equations

In a three-phase porous medium whose pores are filled

up partly with wetting fluid and partly with non-

wetting fluid, the sum of degrees of saturation is equal

to one and the pore fluid pressures are related to each

other through the capillary pressure:

sw þ snw ¼ 1 ð5Þ

pc ¼ pnw � pw ð6Þ

When the capillary pressure is computed, the wetting

phase saturation degree can be evaluated readily via a

function obtained from the laboratory tests:

sw ¼ 1� snw ¼ swðpcÞ ð7Þ

The relative permeabilities of wetting and non-

wetting pore fluids are dimensionless parameters with

a value between 0 and 1. These permeability coeffi-

cients are relevant to the corresponding saturation

degrees by means of the empirical relationships:

krp ¼ krpðspÞ p ¼ w; nw ð8Þ

The deformation of the soil skeleton is mainly

controlled by the effective stress defined as:

r00ij ¼ rij þ a p dij ð9Þ

where r00ij is the effective stress tensor, dij is the

Kronecker delta, and p is the average pore pressure

exerted by the surrounding fluid phases on the solid

grains:

p ¼ sw pw þ snw pnw ð10Þ

It should be noted that the effective stress relation-

ship (9) is based on the tension-positive convention in

the solid phase while the compression-positive in the

fluid phases.

The constitutive law of the solid phase which is

relating the effective stress tensor to the total strain

tensor can be written in the following general incre-

mental form:

dr00ij ¼ DTijkl dekl ð11Þ

where DTijkl is the fourth-order tangential stiffness

tensor of material, and dekl is the total strain increment

tensor.

2.3 Initial and boundary conditions

Considering the displacement of the soil skeleton (ui)

and the pressure of the wetting and non-wetting fluids

(pw, pnw) as the primary variables (unknowns) of the

problem, the required initial and boundary conditions

for solving the governing equation system can be stated

as follows:

• Initial conditions:

ui ¼ u0i ; pp ¼ p0p at t ¼ 0 and on X ð12Þ

• Dirichlet boundary conditions:

ui ¼ �ui on Cu

pp ¼ �pp on Cpp p ¼ w; nw
ð13Þ

• Neumann boundary conditions:

rij nj ¼ �ti on Cr

kij krp

lp
�pp; j þ qp gj
� 	

ni ¼ �qp on Cqp p¼ w; nw

ð14Þ

where X represents the problem domain with the

boundary C, ni is the unit outward vector normal to the

boundary, and �ui, �ti, �pp and �qp are the prescribed values
of displacement, traction, pore pressure, and flux

respectively on the different parts of the boundary with

the following conditions:

Cu [ Cr ¼ C and Cu \ Cr ¼ £

Cpp [ Cqp ¼ C and Cpp \ Cqp ¼ £
ð15Þ

2.4 Numerical discretization

2.4.1 Discretization in space

As mentioned previously, in this study EFG mesh-less

method is employed for discretization of the spatial

domain. In EFGmethod, shape functions are constructed

using MLS1 approximation and comprised of two

components: (1) a weight function which is nonzero

over a small area around a node called the influence

domain of that node, and (2) a basis function which is

usually a polynomial. The shape functions obtained by

MLS procedure do not possess the Kronecker delta

function property. This causes the imposition of essential

boundary conditions in EFG method to be more

1 Moving least square.
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complicated than that in FEM. To overcome this

difficulty, several techniques have been developed

among which Lagrange multipliers and penalty methods

are often used to introduce the essential boundary con-

ditions in theweak form.Unlike theLagrangemultipliers

method, the equation system produced by the penalty

technique (which is adopted here) has the same dimen-

sion as that created in FE, and the modified stiffness

matrix is still positive definite, banded, and symmetric.

Therefore, the Lagrange multipliers method needs much

more computational effort and resources in solving the

equation system. The problemwith the penaltymethod is

choosing a proper penalty factor that can be used

universally for all types of problems [53]. This issue for

fully coupled hydro-mechanical problems in multiphase

porous media is investigated later, in Sect. 3.

For spatial discretization of the governing partial

differential equations, first it is essential that their integral

forms be established. This is accomplished by applying

the weighted residual method and Galerkin technique

and employing the penalty method to enforce the

essential boundary conditions (13). So, after introducing

Eqs. (9) and (14) into the equilibrium Eq. (1), and

substituting Eqs. (2) and (14) into the pore fluid conti-

nuity Eqs. (3) and (4), the constrained Galerkin weak

formulation of the above problem is derived as follows:
Z

X

dðLuÞTr00ij dX�
Z

X

duT qgi dX�
Z

Cr

duT �ti dC

�
Z

X

dðLuÞTadi j swpw þ 1� swð Þpnwð Þ dX

þ d
Z

Cu

1


2 u� �uð ÞTapu u� �uð Þ dC ¼ 0 ð16Þ

Z

X

dpTw sw
a�n
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swþ
osw

opc
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� �
þnsw
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�n
osw

opc

� �
opw

ot
dX

þ
Z

X

dpTw sw
a�n

Ks

1�sw�
osw

opc
pc

� �
þn

osw

opc

� �
opnw

ot
dX

þ
Z

X

dpTwasw
oeii
ot

dX�
Z

X

dðLppwÞT

kij krw

lw
�pw;jþqwgj
� 	� �

dXþ
Z

Cqw

dpTw �qwdC

þd
Z

Cpw

1


2 pw� �pwð ÞTappw pw� �pwð ÞdC¼0 ð17Þ

Z

X

dpTnw 1� swð Þa�n

Ks

swþ
osw

opc
pc

� �
þn

osw

opc

� �
opw

ot
dX

þ
Z

X

dpTnw 1� swð Þa�n

Ks

1� sw�
osw

opc
pc

� ��

�n
osw

opc
þn 1� swð Þ

Knw

�
opnw

ot
dX

þ
Z

X

dpTnwa 1� swð Þoeii
ot

dX

�
Z

X

dðLppnwÞT
kij krnw

lnw
�pnw;jþqnwgj
� 	

� �
dX

þ
Z

Cqnw

dpTnw �qnwdCþd
Z

Cpnw

1


2 pnw� �pnwð ÞTappnw

pnw� �pnwð ÞdC¼ 0 ð18Þ

where du, dpw, and dpnw are test functions, apu, appw ,
and appnw are penalty factors for the weak forms of

equilibrium and continuity equations, respectively, eii is
the volumetric strain of the solid skeleton, and L and LP
stand for the spatial differential operator for the

displacement and pore pressure variables, respectively.

As stated by Lewis and Schrefler [52], time

differentiation is a possible way to incorporate the

non-linear behavior [the general incremental constitu-

tive model (11)] computationally into the equilibrium

equation. As a result, Eq. (16) can be rewritten as:
Z

X

dðLuÞT DT i j k l

oek l
ot

dX�
Z

X

duT
o qgið Þ
ot

dX

�
Z

Cr

duT
o �tið Þ
ot

dC�
Z

X

dðLuÞTadi j
o

ot
sw pwð

þ 1� swð ÞpnwÞdXþ
Z

Cu

duT apu
o

ot
u� �uð ÞdC¼ 0

ð19Þ

To transform the resulting variational formulation

into thematrix form,EFG shape functions are utilized to

approximate the basic variables including the displace-

ment and pore fluid pressures at any time and point:

uh ¼
uhx

uhy

uhz

8
><

>:

9
>=

>;
¼
Xn0

I

uI 0 0

0 uI 0

0 0 uI

2

64

3

75

uxI

uyI

uzI

8
><

>:

9
>=

>;
¼
Xn0

I

UI uI

ð20Þ
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php ¼
Xn0

I

uI pp I p ¼ w; nw ð21Þ

where uh is the approximated displacement, pp
h is the

approximated pore pressure of fluid phase p, uI is the
displacement of the Ith node, ppI is the p-fluid pore

pressure at the Ith node, n
0
is the number of nodes in

the neighborhood of the point of interest (Gauss point),

and /I is the EFG shape function of the Ith node

constructed by the MLS approximation procedure. In

this article, a linear basis and the cubic spline weight

function [53] are employed for the creation of MLS

shape functions.

In the matrix form, differential operators L and LP
are expressed as follows:

L ¼
o=ox 0 0 o=oy 0 o=oz
0 o=oy 0 o=ox o=oz 0

0 0 o=oz 0 o=oy o=ox

2

4

3

5

T

ð22Þ

LP ¼ o=ox o=oy o=oz½ �T ð23Þ

Therefore, using Eqs. (20) and (23), the spatial

derivative of approximated fields (i.e. Luh and Lppp
h)

can be written as:

Luh ¼
Xn0

I

uI; x 0 0

0 uI; y 0

0 0 uI; z

uI; y uI; x 0

0 uI; z uI; y

uI; z 0 uI; x

2

6666664

3

7777775

ux I
uy I
uz I

8
<

:

9
=

;
¼

Xn0

I

BI uI

ð24Þ

Lpp
h
p ¼

Xn0

I

uI; x

uI; y

uI; z

2

4

3

5 pp I ¼
Xn0

I

Bp I pp I ð25Þ

eii ¼
Xn0

I

uI; x uI; y uI; z

� � ux I
uy I
uz I

8
<

:

9
=

;
¼

Xn0

I

BT
p I uI

ð26Þ

It should be mentioned that during numerical

discretization of Eq. (19), apu is a diagonal matrix of

penalty factors, whereas appw and appnw in Eqs. (17)

and (18) are scalar quantities.

By inserting Eqs. (20)–(26) into the weak forms

(17), (18) and (19), and after performing some

algebraic calculations, eventually the matrix formula-

tion of the governing non-linear partial differential

equations is obtained:

CIIþCa
u

� 	
_U�C12

_Pw�C13
_Pnw¼o=ot FuþFa

u

� 	

C21
_UþC22

_PwþC23
_Pnwþ K22þKa

pw

� �
Pw¼Fpw þFa

pw

C31
_UþC32

_PwþC33
_Pnwþ K33þKa

pnw

� �
Pnw¼Fpnw þFa

pnw

ð27Þ

where superscript (�) denotes the temporal derivative.

Each term in Eq. (27) is a matrix or vector which

has been assembled using the nodal matrices or

vectors. These nodal matrices and vectors are pre-

sented in ‘‘Appendix’’. To compute these matrices and

vectors, a numerical integration technique should be

employed. Here, the Gauss quadrature scheme with a

background mesh coincident with the nodal arrange-

ment is adopted, as in each domain cell, 3 9 3 9 3

integration points, and in each boundary cell, 4 9 4

quadrature points are used.

The above discretized equations in space form a

coupled system of ordinary differential equations

which has to be integrated in time.

2.4.2 Discretization in time

The time discretization of Eq. (27) is carried out by

employing the finite difference technique. Based on

the generalized trapezoidal method, also known as the

generalized midpoint rule, the field variables and their

temporal derivative in the time interval of [tn, tn?1] can

be approximated as [52]:

xnþh ¼ 1� hð Þ xn þ h xnþ1;

dx=dtð Þnþh¼ xnþ1 � xnð Þ=Dt ð28Þ

where Dt is the time step length, and h is a parameter

that can vary from zero (fully explicit scheme) to 1.0

(fully implicit scheme). The approximation is uncon-

ditionally stable when h C 0.5, but for any value of

h = 1 the numerical solution can exhibit a spurious

rippling effect [41].

Applying this standard time-integration technique

to (27) and adopting fully implicit scheme give the

final system of discrete equations for the fully coupled

hydro-mechanical analysis of three-phase porous

media consisting of solid grains and two pore fluids:
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Since the elements of the coefficient matrices in this

algebraic equation system are dependent on the main

unknowns, an iterative process should be utilized to

linearize the problem and obtain the final solution

within each time step. To do so, a solution scheme of

the fixed-point type [52] is used in this study to solve

the system of Eq. (29).

Based on the aforementioned formulation and using

Fortran platform, a three-dimensional numerical code

is developed and used to simulate a number of

examples representative of the wide range of problems

that can be solved by this program.

3 Numerical examples

In this section, the capability of the developed 3D EFG

program in modeling different scenarios of two-phase

flow through deforming porous media is investigated

via solving a number of examples and comparing the

results with the experimental or numerical solutions.

The first example is considered to demonstrate the

efficiency of the code for simulating the special case of

two-phase fluid flow in rigid porous media. Then, the

validity of the formulation and the corresponding

computer program in modeling the simultaneous flow

of two immiscible fluids through deforming soil

matrixes is examined by simulating Liakopoulos

experiment [54] and a few numerical problems.

In these numerical simulations, the main numerical

parameters affecting the accuracy of the calculations

are penalty factors and nodal influence domain size.

Oliaei et al. [43] after conducting a sensitivity analysis

have suggested some guidelines for selection of these

parameters to guarantee the accuracy of EFG solution

in hydro-mechanical analysis of saturated porous

media. According to the obtained results in this

reference, the values of 109 9 K/cw and 1.5 have been

introduced as the optimal values for the penalty factor

of continuity equation and the scale factor of influence

domain, respectively, where K is the permeability

tensor and cw is the unit weight of water. Using these

findings, and considering the more general form of flow

equations employed in this study that leads to discrete

Eqs. (27), (41) and (48), the parameters of appw ¼
109 � k=lw and appnw ¼ 109 � k=lnw are adopted here

for the penalty factors of wetting and non-wetting fluid

phases, respectively. In addition in two-phase flow

problems, in order to minimize the numerical oscil-

lations induced near the moving shock front due to the

infiltration of one fluid phase into a porous medium

which is initially at high saturation degree by another

fluid phase, a smaller value for the scale factor equal to

1.1 is utilized to calculate the influence domain radius.

The selection of other numerical factors is performed

based on the values listed in Table 2. In this table, h is

the characteristic size of the nodal distance, and Cv is

the consolidation coefficient.

Therefore, Table 2 can be used as a basis to

improve the computational accuracy and assure the

stability of numerical results in solution of soil

deformation-multiphase flow coupled problems with

EFG method and penalty technique.

Finally, it should be mentioned that in the devel-

oped EFG code, modeling of the transition from one-

phase flow conditions to two-phase flow conditions is

carried out in a similar way to [16] by assigning a very

small but finite value as the lower limit to the relative

permeability of fluid phases.

C11 þ Ca
u �C12 �C13

C21 C22 þ Dt K22 þ Ka
pw

� �
C23

C31 C32 C33 þ Dt K33 þ Ka
pnw

� �

2

6664

3

7775

nþ1

U
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Pnw

8
><

>:

9
>=

>;

nþ1

¼
C11 þ Ca

u �C12 �C13

C21 C22 C23
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3.1 Saturation and drainage of a caisson

This example concerns the simulation of infiltration into

a large caisson filled up with a cohesive soil, and its

drainage by gravity, following the complete saturation.

The computational domain for this one-dimensional

example includes a caisson with the height of 6 m and

initial water saturation of 0.303 throughout. During

infiltration, a zero air pressure boundary condition is

assigned to the bottom surface while the water is

injected from the top boundary at the rate of 20 cm/day

until the full saturation is reached. After complete

saturation, the infiltration rate is set to zero and drainage

by gravity is allowed to take place at the bottom of the

caisson for a period of 100 days. Assuming the capillary

pressure and relative permeabilities are of the van

Genuchten [56] form:

sw¼ swrþ 1� swrð Þ 1þ apc
qwg

� �b
" #�c

krw¼
ffiffiffiffi
se

p
1� 1� s1=ce

� 	ch i2

krnw¼
ffiffiffiffiffiffiffiffiffiffiffi
1� se

p
1� s1=ce

� 	2c
; se¼ sw� swrð Þ= 1� swrð Þ;

ð30Þ

, Table 3 summarizes the values of soil and fluid

properties considered for simulation of this problem. It

is noted that these properties are those of Bandelier Tuff

and have been determined using the experimental tests

conducted at Los Alamos National Laboratory [57, 58]

For numerical modeling of this problem, a regular

nodal pattern including 2 nodes along the length, 2

nodes along the width, and 101 nodes along the height

of the caisson is used. Figure 1 displays the time

evolution of water saturation profiles during infiltra-

tion. In this figure, the EFG results are compared with

the solutions obtained by the HYDRUS code [59], and

Forsyth et al. [60] using FE2 and FV3 discretization

methods. As can be seen, the predictions of the

developed code in this study agree very well with

those of the other numerical algorithms.

The simulated water content profile at 1, 4, 20, and

100 days after starting the drainage, together with the

experimentally observed values [59] are given in

Fig. 2. In spite of some discrepancies between theo-

retical and empirical data, the agreement between

them is acceptable; especially that the EFG program

predicts the location of the drying front correctly.

3.2 Dewatering test of a sand column due

to gravity

The water drainage test from a vertical sand column

conducted by Liakopoulos [54] is known as a

Table 2 Values of EFG

numerical parameters for

analyzing multi-phase

deformable porous media

Parameter Value

Penalty factor for

Solid phase (apu) 106 9 E [43]

Wetting fluid phase (appw ) 109 9 (k/lw)

Non-wetting fluid phase (appnw ) 109 9 (k/lnw)

Scale factor to compute the influence domain radius for

One-phase flow problems 1.5 [43]

Two-phase flow problems 1.1

Time step for

One-phase flow problems h2/(CvDt) = 0.25 [43]

Two-phase flow problems (initial estimate) Dt ¼ h2 � n�min 1
Kw kð Þ=lw

; 1
Knw kð Þ=lnw

� �
[55]

Table 3 Soil and fluid properties for example 1

Property Value Unit

Intrinsic permeability (k) 2.95 9 10-13 m2

Porosity (n) 0.33 –

Residual water saturation (swr) 0.0 –

Empirical fitting parameters

a 0.0143 1/cm

b 1.506 –

c 0.336 –

2 Finite element.
3 Finite volume.
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benchmark problem for simulating the hydro-mechan-

ical behavior of non-saturated porous media, and has

been widely considered by various researchers to

validate their numerical models [1, 11, 16, 22, 27, 49,

52, 61–63]. This test has been performed on a 1 m

column of Perspex packed with Del Monte sand. In the

laboratory before the start of the experiment, the water

was continuously added from the top of the soil column

and left to drain freely at the bottom. This process

continued until the steady-state water flow correspond-

ing to the zero capillary pressure (pc = 0) throughout

the column was established. At this stage the main test

started as the water injection ceased and the sand

column is allowed to desaturate from the bottom under

the gravitational force. During this dewatering phase,

the water pressure at several elevations along with the

water outflow at the column base was measured.

Based on the above experimental procedure, a

boundary condition of atmospheric pressure is assumed

for the water at the bottom and for the air at both ends of

the domain, whereas the upper boundary is imperme-

able to water. In addition, the lateral impervious walls

of the column and the bottom surface are constrained

against the horizontal and all displacements, respec-

tively, to reproduce the laboratory conditions.

Table 4 gives the material parameters used for

numerical modeling of this test. In order to describe

the saturation–capillary pressure and water relative

permeability-saturation equations the experimentally

determined functions by Liakopoulos [54], which are

valid for sw C 0.91, are employed while the air

relative permeability-saturation relation is assumed

to be that proposed by Brooks and Corey [64]:

sw ¼ 1� 0:10152
pc

qw g

� �2:4279

krw ¼ 1� 2:207 1� swð Þ1:0121

krnw ¼ 1� seð Þ2 1� s 2þkð Þ=k
e

� �
;

se ¼ sw � swrð Þ= 1� swrð Þ

ð31Þ

In the above equations, se is the effective wetting

phase saturation, swr = 0.2 is the residual wetting

phase saturation, and k = 3 is the pore size distribu-

tion index.

To discretize the column, an EFGmesh consisting of

2 nodes in length, 2 nodes in width, and 51 nodes in

height is utilized. The obtained numerical results by the

developed code for the water pressure, air pressure,

capillary pressure, water saturation, and vertical dis-

placement distribution along the column height at

different times, as well as, the time evolution of

water outflow rate at the column base and air inflow rate

at the column top are displayed in Figs. 3 and 4, and

compared with the available experimental and numer-

ical solutions. As can be seen in Fig. 3a, at the early

time periods the numerical model predicts that the

water pressure decreases more rapidly than the mea-

sured values, but after the first 120 min they closely

correspond to each other. Similar behavior is observed

in Fig. 3b for the water flow at the bottom surface.

The comparison between the EFG results and the

FE ones reported by Klubertanz et al. [63], Lewis and

Schrefler [52], and Khoei and Mohammadnejad [27]

indicates very good agreement. Here for brevity only

the last study is presented. However as mentioned by
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Schrefler and Scotta [16] and Khoei and Mohammad-

nejad [27], choosing different main unknowns, solution

strategies, initial conditions, or neglecting the air flow,

causes some differences between the model predictions

and those of the other references (e.g. [16]).

3.3 Consolidation of a partially saturated soil

column due to evaporation

This problem describes the behavior of unsaturated

soil systems under environmental changes. A vertical

soil column of linear elastic material, 1 m in height, is

subjected to a surface load of 1000 Pa at the upper

boundary. The soil column is initially unsaturated with

the initial water saturation of 0.52 and the initial pore

water pressure of -280 kPa. Then, the pore water

Table 4 Material properties for example 2

Property Value Unit

Young’s modulus (E) 1.3 MPa

Poisson’s ratio (m) 0.4 –

Porosity (n) 0.2975 –

Intrinsic permeability (k) 4.5 9 10-13 m2

Solid phase density (qs) 2000 kg/m3

Water density (qw) 1000 kg/m3

Air density (qnw) 1.2 kg/m3

Solid phase bulk modulus (Ks) 1012 Pa

Water bulk modulus (Kw) 2 9 109 Pa

Air bulk modulus (Knw) 105 Pa

Water viscosity (lw) 0.001 Pa s

Air viscosity (lnw) 1.8 9 10-5 Pa s
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pressure suddenly changes to -420 kPa at the top

surface and as a result the soil layer undergoes the

volume decrease or consolidation. The other boundary

conditions are as follows: no water and air flow are

permitted through the lateral surfaces and a condition

of atmospheric pressure is imposed for the air pressure
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at the soil surface. The side boundaries can move only

in the vertical direction whereas the bottom boundary

is restrained against all displacements. Considering

the Brooks and Corey [64] equations for the relative

permeability of water and air and the water saturation–

capillary pressure curve, the material properties
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presented in Table 5 are employed for the numerical

simulation of this problem.

In order to model the present example, the domain is

discretized using a uniformly spaced nodal pattern

including 2 nodes in length, 2 nodes in width, and 21

nodes in height (Fig. 5). Figures 6a, b depict the time

evolution of vertical displacement and water saturation

at four different heights within the soil column during

the consolidation process, respectively. Furthermore,

the spatial distribution of pore water pressure in the soil

layer at time intervals of 0.01, 0.1, 0.5, 2, and 100 days

are shown in Fig. 7. This consolidation problem has

been previously solved by Rahman and Lewis [7] and

Khoei and Mohammadnejad [27] using FE method. To

assess the accuracy of the computer code, the obtained

numerical solutions by these FEbased programs are also

presented in Figs. 6 and 7. It is observed that despite

some differences between the developed EFG code and

FE ones in the employed spatial and temporal dis-

cretization methods, iterative scheme, and formulation,

the model predictions agree very well with those of the

other two numerical algorithms.

3.4 Water infiltration into a semi-saturated caisson

In the fourth example, the presented three-phase

computational algorithm is used to study the process

of water infiltration into a caisson 6 m long and 6 m

high. The caisson has been filled up with an elastic

partially saturated porous material having the

properties listed in Table 6. Initially, the bottom part

of the caisson is fully saturated with water to a height

of 2 m and steady-state conditions with zero air

pressure in the unsaturated zone prevail. Then, the top

surface of the caisson is exposed to a constant water

flux with the flow rate of 2.3 9 10-6 m/s over the

central 1 m area.

Table 5 Medium and fluid

properties used in example

3

Property Value Unit

Young’s modulus (E) 6 9 106 Pa

Poisson’s ratio (m) 0.4 –

Porosity (n) 0.3 –

Intrinsic permeability (k) 0.46 9 10-11 m2

Solid phase density (qs) 2000 kg/m3

Water density (qw) 1000 kg/m3

Air density (qnw) 1.22 kg/m3

Solid phase bulk modulus (Ks) 0.14 9 1010 Pa

Water bulk modulus (Kw) 0.43 9 1013 Pa

Air bulk modulus (Knw) 105 Pa

Water viscosity (lw) 0.001 Pa s

Air viscosity (lnw) 0.001 Pa s

Residual wetting phase saturation (swr) 0.3966 –

Displacement pressure (pd) 225 kPa

Pore size distribution index (k) 3 –

Fig. 5 Boundary conditions and nodal arrangement for

example 3
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Using symmetry, only one half of the caisson is

modeled and for this purpose a regular arrangement

of nodes, namely 11 9 2 9 21 along the length,

width, and height of the domain, respectively is

employed (Fig. 8). For the mechanical boundary

conditions, zero normal displacement is assigned to

the lateral sides and no movement is allowed along

the bottom surface.
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Figure 9 shows the obtained numerical result for

the saturation contour at t = 2 9 105 s and compares

it to that presented in the commercial FD-based

software FLAC V. 4.0 Manual [55] for this problem.

Although the predicted contour by the EFG code is not

that smooth, its agreement with the FLAC solution,

especially on the size of the zone of infiltrated water is

acceptable. Certainly, the increase in the number of

nodes leads to the more rounded isolines with more

computational cost.

3.5 Infiltration of a LNAPL into a porous medium

A two-dimensional multiphase flow example solved

previously by Rahman and Lewis [7] using a FE

computer model is simulated in this section to show

the application of the developed EFG model for

environmental studies. The problem is designed to

study the migration of a LNAPL4 which leaks from a

continuous surface source into a porous medium. The

adopted geometry together with the applied loadings

for the numerical simulation of this example are

shown schematically in Fig. 10a. As observed, the

system is subjected to both water and NAPL infiltra-

tion with the release rates of 100 kg/year/m2 and

900 kg/year at the soil surface, respectively, but the

LNAPL source is limited to a area at the top left-hand

edge. Rahman and Lewis [7] assumed that the gas

phase pressure is negligible in this problem. As a

result, the simulation reduces to the flow of two pore

fluid phases of water and NAPL through the soil matrix.

Employing this assumption, the other boundary condi-

tions can be stated as follows: the side boundaries of the

domain are treated as impermeable to both wetting and

non-wetting fluids, and a constant atmospheric pressure

condition with pw = pnw = 101,325 Pa is assigned to

the bottom surface. Figure 10b presents the initial

conditions for water saturation utilized by Rahman and

Lewis in their model. Considering Brooks and Corey

[64] equations for the hydraulic constitutive relation-

ships, Table 7 gives the values of solid and fluid

parameters used in this analysis.

Numerical modeling of the above problem is

performed using a regular EFG mesh with 20 nodes

along the length, 6 nodes along the height, and 2 nodes

along the width (Fig. 11). The simulated saturation

contours for the NAPL and water phases after the time

period of 3.17 years (t = 108 s) are illustrated and

compared to the FE ones [7] in Figs. 12 and 13,

respectively. Since the injected contaminant is less

dense than the water, it is expected to float over the

rising water table. In other words, the lighter contam-

inant instead of moving downwards, mostly migrates

laterally and makes a plume over the water front. This

behavior along with the higher saturation level of the

LNAPL near the infiltration location is predicted well

by the developed model in Fig. 12. In comparison to

Table 6 Values of physical parameters for example 4

Property Value Unit

Shear modulus (G) 0.3 9 108 Pa

Porosity (n) 0.3 –

Intrinsic permeability (k) 10-13 m2

Solid phase bulk modulus (Ks) 108 Pa

Water bulk modulus (Kw) 106 Pa

Air bulk modulus (Knw) 103 Pa

Water viscosity (lw) 0.001 Pa s

Air viscosity (lnw) 0.001 Pa s

Solid phase density (qs) 1500 kg/m3

Water density (qw) 1000 kg/m3

Air density (qnw) 0 kg/m3

Van Genuchten [56] parameters

Residual wetting phase saturation (swr) 0 –

a 1.428 1/m

b 1.52 –

c 0.34 –

Fig. 8 Geometry and nodal pattern for example 4

4 Light non-aqueous phase liquid.
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Fig. 9 Saturation contour after 2 9 105 s (left FLAC solution, right this study)

Fig. 10 a Geometry and

boundary conditions for

example 5, b initial water

saturation

Table 7 Material

properties and physical

parameters applied in

example 5

Property Value Unit

Young’s modulus (E) 10 MPa

Poisson’s ratio (m) 0.3 –

Porosity (n) 0.3 –

Intrinsic permeability (k) 10-12 m2

LNAPL density (qnw) 950 kg/m3

Solid phase bulk modulus (Ks) 6.1 9 108 Pa

Water viscosity (lw) 0.001 Pa s

LNAPL viscosity (lnw) 0.001 Pa s

Residual wetting phase saturation (swr) 0.2 –

Residual non-wetting phase saturation (snwr) 0.02 –

Displacement pressure (pd) 1.682 kPa

Pore size distribution index (k) 3 –
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the FE solutions, it is observed that both methods

simulate the process of LNAPL propagation in the

subsurface rather correctly.

4 Conclusions

This paper presents a new EFG formulation for mesh-

less analysis of the rather complex phenomena which

describe the hydro-mechanical behavior of triphasic

porousmedia consistingof adeformable soil skeletonand

two pore fluid phases. After introduction of the set of

highly nonlinear partial differential equations governing

the behavior of such coupled flow-deformation systems,

the numerical implementation of the model is explained.

This is done by employing the EFG technique for

discretization of the problem domain with respect to

space, using finite differences to dicretize the time

domain, and solving the equation system for the solid
Fig. 11 Nodal configuration for example 5

Fig. 12 LNAPL saturation after 3.17 years (left this study; right Rahman and Lewis [7])

Fig. 13 Water saturation after 3.17 years (left this study; right Rahman and Lewis [7])
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displacements and pore pressure of wetting and non-

wetting fluids as the primary unknowns. On this basis, a

three-dimensional EFG computer program is developed

in which: (1) the imposition of the essential boundary

conditions is based on the penalty method, (2) a fully

implicit scheme is used to avoid any spatial oscillation,

and (3) the main variables of the problem are approxi-

mated using the same order of EFG shape functions. This

program is successfully tested against various example

problems. Comparing the obtained results with the

experimental observations and results of other computa-

tional algorithms indicates that: (1) the proposed EFG

model has been formulated properly, (2) the accurate and

stable EFG solutions for soil deformation-fluid flow

coupled problems in deforming three-phase porous

materials can be obtained if the numerical parameters

are selected according to Oliaei et al. [43] recommenda-

tions adjusted for multiphase flow phenomena, and (3)

thenewlydevelopedEFGcodewith the abovementioned

features has the capability to become a powerful

numerical tool to simulate a wide range of engineering

applications such as ground deformation/subsidence due

to fluid extraction, contaminant migration in deforming

porous media, and flooding operations in oil reservoirs.
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Appendix

The nodal matrices and vectors in Eq. (27) are defined

as:

C11 IJ ¼
Z

X

BT
I DT BJ dX ð32Þ

Ca
u IJ ¼

Z

Cu

UT
I apu UJ dC ð33Þ

C12 IJ ¼
Z

X

BT
I am sw þ pc osw=opc½ �uJ dX ð34Þ

C13 IJ ¼
Z

X

BT
I am 1� swð Þ � pc osw=opc½ �uJ dX

ð35Þ

Fu I ¼
Z

X

UT
I qg dXþ

Z

Cr

UT
I
�t dC ð36Þ

Fa
u I ¼

Z

Cu

UT
I apu �u dC ð37Þ

C21 IJ ¼
Z

X

/I a sw m
T BJ dX ð38Þ

C22 IJ ¼
Z

X

/I sw
a� n

Ks

sw þ osw

opc
pc

� ��

þ n sw

Kw

� n
osw

opc

�
uJ dX

ð39Þ

C23 IJ ¼
Z

X

/I sw
a� n

Ks

1� sw � osw

opc
pc

� �
þ n

osw

opc

� �

uJ dX ð40Þ

K22 IJ ¼
Z

X

BT
pI

k krw

lw
BpJ dX ð41Þ

Ka
pw IJ ¼

Z

Cpw

uI appw uJ dC ð42Þ

Fpw I ¼
Z

X

BT
pI

k krw

lw
qwg dX �

Z

Cqw

uI �qw dC ð43Þ

Fa
pw I ¼

Z

Cpw

uI appw �pw dC ð44Þ

C31 IJ ¼
Z

X

uI a 1� swð ÞmT BJ dX ð45Þ

C32 IJ ¼
Z

X

uI 1� swð Þa� n

Ks

sw þ
osw

opc
pc

� �
þ n

osw

opc

� �

uJ dX ð46Þ

C33 IJ ¼
Z

X

uI 1� swð Þ a� n

Ks

1� sw � osw

opc
pc

� ��

� n
osw

opc
þ n 1� swð Þ

Knw

�
uJ dX ð47Þ
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K33 IJ ¼
Z

X

BT
pI

k krnw

lnw
BpJ dX ð48Þ

Ka
pnw IJ ¼

Z

Cpnw

uI appnw uJ dC ð49Þ

Fpnw I ¼
Z

X

BT
pI

k krnw

lnw
qnwgdX �

Z

Cqnw

uI �qnw dC ð50Þ

Fa
pnw I ¼

Z

Cpnw

uI appnw �pnw dC ð51Þ

where m = {1, 1,1, 0, 0, 0}T.
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