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Abstract In this article, geometrically nonlinear

transient analysis based on the meshless local

Petrov–Galerkin method (MLPG) is presented for

functionally graded material thick hollow cylinders

with infinite length subjected to a mechanical shock

loading. The cylinder is assumed to be axisymmetric

and in plane strain conditions. The mechanical prop-

erties of functionally graded cylinder are assumed to

vary across the thickness. In MLPG analysis, the total

Lagrangian formulation, radial base function, and

Heaviside test function are used for approximation of

displacement field in the weak form of the equation of

motion. The system nonlinear equations are solved by

Newmark finite difference and Newton–Raphson

iteration methods. The time history of the radial

displacement and stress for various values of the

power law exponents, radii and thicknesses are

investigated. The effects of different loading types

and also the duration of loading on the dynamic

behaviors of displacement and stress fields are

obtained and discussed in details. Moreover, the

obtained results from nonlinear analysis are compared

with those obtained from linear analysis.

Keywords Large deflection � Thick hollow

cylinder � Functionally graded material � Meshless

local Petrov–Galerkin method

1 Introduction

Composition of functionally graded materials (FGMs)

varies from one surface to another. Because of low

coefficients of thermal expansion and low thermal

conductivity, FGMs have a high capability for appli-

cations with thermal and mechanical loads [1, 2].

The nonlinear dynamic analysis has been an

interesting subject of research in solid mechanics.

Several researches have been carried out on nonlinear

analysis in shell, cylinder, annular plates etc. using

numerical or analytical methods.

Alwar and Reddy [3] employed von Karman’s large

deflection plate theory to obtain the non-linear static

and dynamic response of isotropic and orthotropic

annular plates. Analysis of the large deflection bend-

ing of annular plates with variable thickness is

presented by Reddy and Huang [4] using von Karman

theory and finite element method. Large deflection

axisymmetric response analyses of cylindrically

orthotropic thin annular plates resting on annular

elastic foundations are presented by Dumir [5] using
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Hamilton’s principle and von Karman theory. Srini-

vasanan and Ramachandra [6] used the finite element

method to solve the large deflection bending of

annular and circular bimodulus plates using the

method of minimizing potential energy, finite element

and Newton–Raphson iterative procedure. Shiue [7, 8]

employed boundary element method and sub-element

technique to obtain the geometrically nonlinear

displacement and stress of a thick cylinder. Woo and

Meguid [9] analyzed large deflection of functionally

graded plates and shells under transverse mechanical

loads and a temperature field using von Karman theory

and Fourier series solution. A geometrically nonlinear

analysis of functionally graded shells was presented by

Arciniega and Reddy [10, 11] using tensor-based finite

element formulation with curvilinear coordinates and

first-order shear deformation theory. Owatsiriwong

and Park [12] presented boundary element method

for dynamic elastic and elastoplastic analyses using

Houbolt time integration scheme and Newton–Raph-

son method. Zhao and Liew [13] studied the nonlinear

response of functionally graded ceramic–metal shell

panels under mechanical and thermal loading. They

considered a modified version of Sander’s nonlin-

ear shell theory and von Karman relations. They

employed arc-length method, combined with the

modified Newton–Raphson method. Sepahi et al.

[14] analyzed large deflection of annular FGM plates

on nonlinear elastic foundation under thermo-me-

chanical load with nonlinear von Karman assumptions

using differential quadrature method. Liao-Liang et al.

[15] studied the nonlinear vibration of FG beams using

Galerkin method. Zhang et al. [16] used the perturba-

tion method to investigate the nonlinear dynamics of a

FG plate. They employed the Hamilton’s principle and

the Galerkin method in their analysis. Zhang et al. [17]

presented an analysis on the nonlinear dynamics of a

FGM circular cylindrical shell based on the first-order

shear deformation shell theory and von Karman

relations using finite element method. Large defor-

mation of transversely isotropic elastic thin circular

disk in rotation was analyzed by Akinola et al. [18].

Upadhyay and Shukla [19] studied geometrically

nonlinear static and dynamic behavior of FG skew

plates using von-Karman’s nonlinear relations, Che-

byshev series and Houbolt’s method. Arefi [20]

studied the nonlinear thermoelastic analysis of thick-

walled functionally graded piezoelectric cylinder. He

solved the governing nonlinear differential equations

using an analytical method. Dong et al. [21] perused

nonlinear vibration of the FG cylindrical shell based

on Reddy’s third-order plates and shell theory using

finite element method. The nonlinear free vibration

behavior of a laminated composite spherical shell

under uniform thermal loading was investigated by

Panda and Mahapatra [22] based on Green–Lagrange

relations, finite element model and Hamilton’s prin-

ciple. Zhang et al. [23] used total Lagrangian particle

method for the large deformation analyses of solids

and curved shells. Borboni and Santis [24] investi-

gated the large deflection of a non-linearelastic beam

using a numerical algorithm and finite element

method. The transient large deformation of a geomet-

rically nonlinear rectangular plate subjected to a

moving mass was analyzed by Enshaeian and Rofooei

[25] using the von Karman plate theory and Lagrange

method. Shegokar and Lal [26] obtained the large

amplitude vibration of FG piezoelectric beams based

on von-Karman nonlinear strain kinematics and finite

element method.

Also some researchers investigated nonlinear anal-

ysis using meshless methods specially MLPG that

proposed by Atluri and Zhu [27] at first. Recently,

Sladek et al. [28] presented a nice review on the

applications of the MLPG method in Engineering and

Sciences problems including nonlinear analysis.

Xiong et al. [29] employed MLPG method to solve

the geometrically nonlinear problem using an incre-

mental and iterative solution procedure. MLPG

method is examined by Xiong et al. [30] to solve the

elasto-plasticity problem using the incremental tan-

gent stiffness method. Zhang et al. [31] analyzed large

deformation of hyperelastic and elasto-plastic solids

based on the MLPG method. Soares et al. [32]

proposed a time-domain MLPG formulation for the

dynamic analysis of nonlinear porous media. They

solved the governing equations using Newmark and

Newton–Raphson techniques. In another work [33],

they applied meshless local Petrov–Galerkin formu-

lations considering a time-marching scheme based on

implicit Green’s functions to solve linear and nonlin-

ear dynamic 2D problems. Also MLPG method was

applied by them [34] for the dynamic analysis of

nonlinear problems considering elastic and elastoplas-

tic materials. Wang and Sun [35] formulated a

Galerkin mesh free approach for geometrically non-

linear analysis of plates with large deflection. Moosavi

and Khelil [36] performed isogeometric meshless
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finite volume for three-dimensional large deformation

analysis in nonlinear elasticity.

Recently, some papers have been published to solve

a hyper-elastic FG thick hollow cylinder under a

mechanical load using MLPG method. Ghadiri Rad

et al. [37] analyzed the large deflection analysis of a

functionally graded thick hollow cylinder with

Rayleigh damping using MLPG method. They con-

sidered the hyper-elastic neo-Hookean model for the

cylinder. Also in another research [38], they obtained

the displacements and stresses in hyper-elastic FG

thick hollow cylinder using MLPG method.

In the literature, most of the previous researches

have considered the nonlinear transient analysis of

thin cylinder or other structures such as plate and beam

using numerical or analytical method such as finite

element method, MLPG, etc.

In this research, linear and nonlinear transient

analysis is investigated in a FG thick hollow infinite

length cylinder that is subjected to an impact loading.

The analysis is conducted for a plane strain condition

where a one dimensional grading patterns is assumed.

The meshless local Petrov–Galerkin method and

considering the Heaviside step function as the test

function are employed. The total Lagrangian formu-

lation is used as well. Also moving least square shape

functions are used for the approximation of the

displacement field in the weak form of the equation

of motion. The mechanical properties of FG cylinder

are assumed to be variable in the radial direction in

terms of the volume fraction as power function. The

time history of the nonlinear radial displacement and

stress are discussed in details for various values of the

power law exponent and different radius. Also, the

effects of thickness value, loading types and the

duration of loading on the dynamic behaviors of

displacement and stress fields are obtained and

discussed in details.

2 Meshless local Petrov–Galerkin method

formulation and governing equations

In MLPG method formulation, tX, oX, n and V are the

domain of quadrature, internal boundary of the

quadrature domain, unit outward normal vector on

the boundary in the current configuration and weight

or test function, respectively. Also tCqi is the internal

boundary of the domain, tCqu is the part of the natural

boundary that intersects the quadrature domain, and
tCqs is the part of the essential boundary that intersects

the quadrature domain [39].

Approximation of the displacement field in the sub-

domain can be interpolated, at point r as:

urðr; tÞ ¼ uðrÞûrðtÞ ¼
XN

a¼1

uaðrÞûa
r ðtÞ

durðr; tÞ ¼ uðrÞd ûrðtÞ ¼
XN

a¼1

uaðrÞ dûa
r ðtÞ

ð1Þ

where

ûT
r ðtÞ ¼ u2

r ðtÞ u2
r ðtÞ . . . uN

r ðtÞ
� �

dûT
r ðtÞ ¼ du1

r ðtÞ du2
r ðtÞ . . . duN

r ðtÞ
� � ð2Þ

Equations (1) can be rewritten as:

UðrÞ ¼ fûrðr; tÞgT

dUðrÞ ¼ fdûrðr; tÞgT
ð3Þ

where N denotes the total number of nodes in the

support domain Xs that is independent of the quadra-

ture domain. ua is the MLS shape function for node

‘‘a’’ that is created in the support domain Xs of point r,

ûa are the nodal parameters of displacement compo-

nents in the r direction.

The shape function and the set of the radial basis

functions are defined as:

/TðrÞ ¼ RTðrÞR�1
O

rj j2¼ r � rIj j2

RTðrÞ ¼ R1ðrÞ R2ðrÞ . . . RNðrÞ½ �
ð4Þ

where

RO ¼

R1ðr1Þ R2ðr1Þ . . . RNðr1Þ
R1ðr2Þ R2ðr2Þ . . . RNðr2Þ
. . . . . . . . . . . .

R1ðrNÞ R2ðrNÞ . . . RNðrNÞ

2
6664

3
7775

RIðrÞ ¼ jr � r
I
j2 � c2

� �m
2

; I ¼ 1; 2; 3; . . .;N

ð5Þ

The motion of the cylinder is shown in Fig. 1. To

obtain the displacements, the equation of motion in

polar system is described as:

rr;r þ
1

r
ðrr � rhÞ þ Xr ¼ q€ur ð6Þ

where €ur is the acceleration vector.
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To solve the governing Eqs. (6) in the axisymmet-

ric cylinder we consider the local weak form of those

equations in the current configuration tX over inter-

secting sub-domains which is expressed by the

following relations [40]:
Z

tX
rr;r þ

1

r
ðrr � rhÞ � q€ur

� �
VrdX ¼ 0 ð7Þ

where Vr is the test or weight function.

Considering axisymmetric problems, the sub-do-

mains are:

dX ¼ 2pr dXq ð8Þ

Therefore
Z

tX
r rr;r þ

1

r
ðrr � rhÞ � q€ur

� �
VrdXq ¼ 0 ð9Þ

Essential and natural boundary conditions are:

u ¼ u�
r r 2 tCu

s ¼ rij nj ¼ s�r r 2 tCs

�
ð10Þ

Because the problem is axisymmetric, each phys-

ical field depends on the radial and axial coordinate.

Applying Gauss divergence theorem to Eq. (9) we

have:
Z

tCqu

rrr nrVrdCþ
Z

tCqi

rrr nrVrdC

�
Z

tXq

rrrVr;r þ rhVr

� �
dX

�
Z

tXq

qr€ur VrdXþ
Z

tCqs

rs�r VrdC ¼ 0

ð11Þ

The governing Eq. (11) in matrix form can be given

as:

Z

tCqu

rVnrdCþ
Z

tCqi

rVnrdC�
Z

tXq

WrdX

�
Z

tXq

rVq€udXþ
Z

tCqs

rVs�dC ¼ 0

ð12Þ

where

W ¼ rVr;r Vr

� �
; V ¼ Vr 0½ �; n ¼

nr 0

0 0

" #
;

r ¼ frr;rhgT; s� ¼ fs�r g
T ð13Þ

The Green-Lagrangian strain relations and the

incremental strain components in polar system are

defined as follows [41]:

er ¼ ur;r þ
1

2
ður;rÞ2

eh ¼
1

r
ðurÞ þ

1

2r2
ðurÞ2

ð14Þ

der ¼ ð1 þ ur;rÞdur;r

deh ¼
1

r
1 þ ur

r

� �
dur

ð15Þ

Relation between the Cauchy stress r and the

second Piola–Kirchhoff stress S can be defined as:

r ¼ J�1FSF ð16Þ

where J and F are the deformation gradient determi-

nant and the deformation gradient respectively.

Fig. 1 Motion of the

cylinder
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Equations (15) can be rewritten as [42]:

der ¼ F11dur;r

deh ¼
1

r
F22dur

ð17Þ

where

F ¼
1 þ ur;r 0

0 1 þ ur

r

" #
ð18Þ

The following incremental relation represents

stress vector in terms of strain vector:

dS ¼ Cde ð19Þ

where C is the material response tensor:

C ¼ E

ð1 þ mÞð1 � 2mÞ
1 � m m
m 1 � m

� �
ð20Þ

and

de ¼ fder; dehgT ð21Þ

Because the current configuration is unknown, the

total Lagrangian formulation, which transfers the

current configuration to the undeformed configuration,

is used.

Moreover in the total Lagrangian formulation all

variables are related to the initial configuration at time

0.

We have

rn dtC ¼ FSN d0C ð22Þ

q ¼ J0q ð23Þ

where 0C, N and 0q are, respectively, the boundary,

unit outward normal vector on the boundary and the

density in the initial configuration at time t = 0.

Therefore the equation of motion (12) can be

rewritten as:
Z

0Cqu

rVNFSdCþ
Z

0Cqi

rVNFSdC�
Z

0Xq

WFSdX

�
Z

0Xq

rV0q€udXþ
Z

0Cqs

rV0s�dC

¼ 0

ð24Þ

All variables at time t þ Dt are referred to the initial

configuration at time 0 in the total Lagrangian

formulation. Those variables are referred to the

configuration at time t in the updated Lagrangian

formulation [43].

Considering incremental relations for the problem

geometric nonlinearity, we have:

tþDt
0 u ¼ t

0u þ du

tþDt
0 S ¼ t

0S þ dS

tþDt
0 F ¼ t

0F þ dF

ð25Þ

Substituting the incremental terms (25) into the

local weak form of the equation of motion (24) leads

to:

Z

0Xq

rV0qd€udX�
Z

ð0Cquþ0CqiÞ
rVNFCdedC

þ
Z

0Xq

WFCdedX�
Z

ð0Cquþ0CqiÞ
rVNSdFdC

þ
Z

0Xq

WSdFdX

¼ �
Z

0Xq

rV0q€udXþ
Z

ð0Cquþ0CqiÞ
rVNF�SdC

�
Z

0Xq

WF�SdXþ
Z

0Cqs

rV0s�dC

ð26Þ

where

�S ¼ fSr; ShgT ð27Þ

and �S is the 2nd Piola–Kirchhoff stress vector.

Substituting (1) in (26) we obtain the following

system of non-linear equations:

Z

0Xq

rV0qudX

 !
d €U þ �

Z

ð0Cquþ0CqiÞ
rVNFCBNLdC

 

þ
Z

0Xq

WFCBNLdX�
Z

ð0Cquþ0CqiÞ
rVNSBLdC

þ
Z

0Xq

WSBLdX

!
dU ¼ �

Z

0Xq

rV0qudX

 !
€U

þ
Z

ð0Cquþ0CqiÞ
rVNF�SdC�

Z

0Xq

WF�SdX

þ
Z

0Cqs

rV0s�dC

ð28Þ
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where

BNL ¼
F11u;rðrÞ
1

r
F22uðrÞ

2
4

3
5; BL ¼

u;rðrÞ
1

r
uðrÞ

" #
;

S ¼
Sr 0

0 Sh

" # ð29Þ

BL and BNL are linear and nonlinear strain–displace-

ment transformation matrices, respectively.

The Heaviside unit step function is considered for

test functions in each sub-domain:

Vðr; tÞ ¼ 1 r 2 XI

0 r 62 XI

�
ð30Þ

The nonlinear governing Eqs. (28) can be presented

as Eq. (31) where M, KT and �F are the mass matrix, the

tangent stiffness matrix and the external load vector,

respectively [44]:

Md €U þ KT dU ¼ �F ð31Þ

Also dU is the nodal incremental displacements

vectors from time t to time t þ Dt and

M ¼
Z

0Xq

r0qudX

KT ¼ �
Z

ð0Cquþ0CqiÞ
rNFCBNLdCþ

Z

0Xq

FCBNLdX

�
Z

ð0Cquþ0CqiÞ
rNSBLdCþ

Z

0Xq

SBLdX

�F ¼ �
Z

0Xq

rV0qudX

 !
€U þ

Z

ð0Cquþ0CqiÞ
rNF�SdC

�
Z

0Xq

F�SdXþ
Z

0Cqs

r0s�dC ð32Þ

3 The Newmark and the Newton–Raphson

iterations methods

The transient response of the system is calculated

using the Newmark finite difference method [45].

We have:

K̂tþDtðdUÞ ¼ tþDtR̂ ð33Þ

where

K̂ ¼ 1

g1Dt2

	 

M þ KT

tþDtR̂ ¼ t �F þ M
1

g1Dt

	 

tð _UÞ þ 1

2g1

� 1

	 

tð €UÞ

� �

ð34Þ

and the Newmark parameters, time step and the

iterative variation are:

g2 � 0:5

g1 � 0:25ð0:5 þ g2Þ2

Dt ¼ tN � tN�1

tþDtU ¼ tU þ dU

ð35Þ

The following relations are the new acceleration,

velocity and displacement vectors at time t þ D t.

tþDtðd €UÞ ¼ 1

g1Dt2

	 

ðdUÞ � 1

g1Dt

	 

tð _UÞ

� 1

2g1

� 1

	 

tð €UÞ

tþDtð _UÞ ¼ tð _UÞ þ Dtð1 � g2Þtð €UÞ þ ðg2DtÞtþDtð €UÞ
tþDtðUÞ ¼ tðUÞ þ dU ð36Þ

The term dU is the incremental displacements vector

at time t.

The nonlinear Eq. (33) can be solved by an

incremental iterative procedure. In this research, the

Newton–Raphson iterations [44] are applied at each

time step. Therefore, incremental displacement from

Eq. (33) is substituted into Eq. (31) at each time step.

The residual force is not zero and must be corrected.

Hence the iterations are continued until the incremen-

tal displacement vanishes.

We can suppose for (k ? 1)th iteration:

tþDtUðkþ1Þ ¼ tþDtUðkÞ þ tþDtDdUðkþ1Þ

tþDtdUðkþ1Þ ¼ tþDtdUðkÞ þ DdUðkþ1Þ ð37Þ

Then the nonlinear Eq. (33) is rewritten and the

responses at each iterative step may be computed.
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We have:

ðDdUÞðkþ1Þ ¼ ðK̂ÞðkÞ
h i�1

R̂
ðkÞ

R̂
ðkÞ ¼ t �F � M

1

g1Dt2

	 

dUðkÞ � 1

g1Dt

	 

t _U

�

� 1

2g1

� 1

	 

t €U

�

ð38Þ

where DdU is the correction to the displacement

increment.

4 FGmaterial properties and Boundary conditions

In the present analysis, the mechanical properties vary

through the radial direction as follows [46]:

P ¼ ðPout � PinÞ
r � rin

rout � rin

	 
m

þ Pin ð39Þ

where Pin, Pout and m are mechanical properties

such as elasticity modulus and mass density of inner

and outer surfaces and power law exponent,

respectively.

Poisson’s ratio is assumed to be constant. The

cylinder is assumed to be made from a mixture of

ceramic and metals and the material composition is

continuously varied such that the inner surface of the

cylinder is ceramic, whereas the outer surface is metal.

As boundary conditions, the outer bounding surface of

FG cylinder is assumed to be traction free and a

dynamic pressure is considered to be applied on the

inner bounding surface.

5 Results and discussions

The linear problem of expansion of a thick cylinder

due to an internal pressure is solved by Owatsiri-

wong and Park [12] and Shariyat et al. [47]. To

check the accuracy of linear simulation of the

present study the similar conditions as employed by

them are considered. Figure 2 shows a comparison

of the time history of the linear radial displacement

at the inner point with that of Ref. [12]. Also Fig. 3

shows a comparison of the time history of the linear

radial stress at the middle point with that of Ref.

[47]. A good agreement between these results is

observed.

For verifying the nonlinear results, first, the internal

pressure is expressed as:

rr ¼ r0½1 � expð�CtÞ� ð40Þ

where t is the time, r0 and C are 0.5 Psi and 106 1/s,

respectively.

Equation (40) implies that the value of radial stress

converges to a certain value in long time. It means that

the behavior of displacement and stress fields should

be converges to steady state values in both displace-

ment and stress fields. The obtained results are

compared with the data resulted from analysis of an

geometrically nonlinear thick cylinder that was solved

by Shiue [7, 8]. Figures 4 and 5 show the nonlinear

radial displacement and stress along the radial direc-

tion, respectively. A good agreement can be found in

these figures.

As a next step, a functionally graded thick hollow

cylinder is considered for nonlinear analysis with

Fig. 2 Time history of the

linear radial displacement at

the inner point of the thick

hollow cylinder under

uniform loading
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Fig. 3 Time history of the

linear radial stress at the

middle point of the thickness

of the FGM thick hollow

cylinder under ramp loading

Fig. 4 The nonlinear radial

displacement along the

radial direction

Fig. 5 The nonlinear radial

stress along the radial

direction
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infinite length. The grading patterns are expressed as a

nonlinear power law function. Inner and outer radii of

FG cylinder are considered to be equal to ri = 0.2 m

and ro = 0.4 m, respectively.

The cylinder is subjected to an sinusoidal internal

pressure [48] expressed by:

rr ¼ r0 sin
pt

t0

	 

t� t0

0 t[ t0

8
<

: ð41Þ

where r0 and t0 are 10 MPa and 0.00015 s,

respectively.

Elasticity modulus and density of inner and outer

bounding surfaces are 380 GPa, 3800 kg/m3, 70 GPa

and 2707 kg/m3, respectively. The proper time incre-

ment is assumed as Dt ¼ 106 s.

The time history of radial displacement and stress

for the certain power law exponent (m = 0.1) at the

midpoint of the cylinder (r = 0.3 m) are shown in

Figs. 6, 7 and 8, respectively. In these figures numer-

ical results obtained from the present study are

compared for linear and nonlinear responses.

The time history of the nonlinear radial displacement

and stress for several radii with certain power law

exponent are shown in Figs. 9 and 10. Also the time

history of the nonlinear radial displacement and stress of

all points of the thickness of the cylinder is illustrated in

Figs. 11 and 12 for a better visualization. As it can be

seen in these figures, the vibration amplitude decreases

by moving from the inside surface to the outside surface.

Also, the ceramic surface has a greater vibration

amplitude with respect to the metal surface.

Fig. 6 Time history of the

linear and nonlinear radial

displacement at the middle

point before unloading for

m = 0.1

Fig. 7 Time history of the

linear and nonlinear radial

displacement at the middle

point after unloading for

m = 0.1
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Fig. 8 Time history of the

linear and nonlinear radial

stress at the middle point for

m = 0.1

Fig. 9 Time history of the

nonlinear radial

displacement at various radii

under sinusoidal loading

Fig. 10 Time history of the

nonlinear radial stress at

various radii under

sinusoidal loading
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The time histories of the radial displacement and

stress for the different power law exponents are shown

in Figs. 13 and 14. The amplitude of vibration in the

radial displacement and stress fields are increased

when the value of power law exponent are decreased.

As it is shown in these figures, the wave propagation

velocity depends on the amount of the power law

exponent. The frequency of vibration in radial dis-

placement and stress fields are increased by increasing

the value of power law exponent.

The effects of various thicknesses of FG cylinder on

dynamic behaviors of displacement and stress fields

have been obtained and illustrated in Figs. 6, 7, 8, 15

and 16. It can be seen that there is no any significant

differences between linear and nonlinear results for

bigger thicknesses. The difference between linear and

nonlinear results is increased by decreasing the

thickness of FG cylinder. It means that the nonlinear

analysis is taken into consideration for thin FG

cylinder. Figures 17 and 18 show the time histories

of radial displacement based on the linear and

nonlinear analysis, which are obtained for various

values of loading intensity. Also, the effect of loading

duration on the linear and nonlinear dynamic behav-

iors of radial displacement and stress fields can be

studied using Figs. 19, 20, 21 and 22. The amplitude

of radial displacement vibration is decreased when the

value of t0 is increased.

To show the capability of the presented method for

nonlinear analysis, various commonly used loadings

Fig. 11 Time history of the

nonlinear radial

displacement at all points of

the thickness of the cylinder

for m = 0.1

Fig. 12 Time history of the

nonlinear radial stress at all

points of the thickness of the

cylinder for m = 0.1
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Fig. 14 Time history of the

nonlinear radial stress at the

middle point for various

values of the power law

exponent under sinusoidal

loading

Fig. 15 Time history of the

linear and nonlinear radial

displacement at the middle

point for h = 0.175 m under

sinusoidal loading

Fig. 13 Time history of the

nonlinear radial

displacement at the middle

point for various values of

the power law exponent

under sinusoidal loading
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Fig. 17 Time history of the

linear radial displacement at

the middle point for various

values of the sinusoidal

loading intensity (r0)

Fig. 18 Time history of the

nonlinear radial

displacement at the middle

point for various values of

the sinusoidal loading

intensity (r0)

Fig. 16 Time history of the

linear and nonlinear radial

stress at the middle point for

h = 0.175 m under

sinusoidal loading
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Fig. 19 Time history of the

linear radial displacement at

the middle point for

different duration of

sinusoidal loading

Fig. 20 Time history of the

nonlinear radial

displacement at the middle

point for different duration

of sinusoidal loading

Fig. 21 Time history of the

linear radial stress at the

middle point for different

duration of sinusoidal

loading
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(see Refs. [19] and [49]) are considered as dynamic

pressure applied on inner bounding surface of the

cylinder, which can be found as follows:

Case a:

rr ¼ r0 1 � t

t0

	 

exp � 2t

t0

	 

t� t0

0 t[ t0

8
<

: ð42Þ

Case b:

rr ¼ r0 1 � t

t0

	 

t� t0

0 t� t0

8
<

: ð43Þ

Case c:

rr ¼
r0 t� t0

0 t[ t0

�
ð44Þ

Case d:

rr ¼ r0 ð45Þ

where r0 and t0 are 10 MPa and 0.00015 s,

respectively.

Relations (42) to (45) represent exponential, trian-

gular, rectangular and step loading, respectively. The

obtained time histories of radial displacement and

stress fields base on the presented loadings in

Eqs. (42)–(45) (as case a–d) are illustrated in Figs. 23,

24, 25 and 26. The similar behaviors can be observed

in these figures comparing to ones obtained from

sinusoidal loading. It means that the presented mesh-

less approach has a high capability for nonlinear

analysis of FG cylinder subjected to various transient

and dynamic loadings.

Fig. 22 Time history of the

nonlinear radial stress at the

middle point for different

duration of sinusoidal

loading

Fig. 23 Time history of the

linear radial displacement at

the middle point under

different loading for

m = 0.1
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Fig. 25 Time history of the

linear radial stress at the

middle point under different

loading for m = 0.1

Fig. 26 Time history of the

nonlinear radial stress at the

middle point under different

loading for m = 0.1

Fig. 24 Time history of the

nonlinear radial

displacement at the middle

point under different loading

for m = 0.1
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6 Conclusion

In the current study, the geometrically nonlinear

transient analysis of FG cylinder is investigated using

MLPG method and total Lagrangian formulations.

The derived nonlinear equations are solved using the

Newmark finite difference and Newton–Raphson

methods in the time domain. To derive the descritized

equations, the axisymmetry and plane strain condi-

tions are assumed in the problem. The results indicate

that the grading patterns of FG, thickness of cylinder

and intensity and type of loading have important roles

on the transient and dynamic behaviors of radial

displacement and stress fields in nonlinear analysis.

The dynamic behaviors of radial displacement and

stress fields are studied in details for various kinds of

dynamic loadings. Also, the effects of various param-

eters (such as the grading patterns of FG, thickness of

cylinder and intensity) on the results are assessed for

each type of loadings. It can be concluded that the

presented meshless approach has a high capability for

both linear and nonlinear dynamic analysis of FG

structures.
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