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Abstract A two-step damage identification

approach based on wavelet multi-resolution analysis

and genetic algorithm (GA) in beam structures is

presented in this paper. The location of the crack is

identified in the first step by defining the damage index

called relative wavelet packet entropy. Then, the

damage severities at the identified locations are

assessed in the second step using GA. The wavelet

packet component energies for each damage depth

used in the first step and the severity evaluation

database required for the second step to reveal the

relationships between the energies and damage sever-

ities are obtained using a multi-resolution wavelet

packet transform. The effects of wavelet type and

decomposition level on the detection of damage

location are examined in beams with various damage

scenarios in the presence of different noise levels. To

investigate the robustness and accuracy of the pro-

posed method, numerical examples and experimental

cases with different damage depths are considered.

The results demonstrate that the proposed method

performs reasonably well and has great potential in the

identification of damage locations and estimation of

damage severities.

Keywords Damage identification � Wavelet packet

transform � Genetic algorithm � Wavelet type � Beams

1 Introduction

During the service life of various civil, mechanical and

aerospace structures, damage can accumulate, nucle-

ate and propagate leading to out-of-service conditions,

and, sometimes, dangerous collapses. Therefore,

structural health monitoring (SHM) is an important

tool for identifying the presence and the evolution of

possible damage. In the last few decades, researchers

have exerted great effort in developing different

vibration responses based on damage identification

methods [1–5] to replace traditional non-destructive

techniques, such as acoustic, magnetic field, ultra-

sonic, eddy-current, radiograph, thermal field methods

[6, 7], which suffer from weaknesses of requiring a

priori knowledge of the damage location and its

accessibility.

The fundamental theory for vibration response-

based damage identification is that damage causes
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changes in the physical properties i.e. stiffness,

damping and mass by which the modal properties

namely modal damping, mode shapes and natural

frequencies will be subsequently affected. Hence,

damage can be recognized by analyzing the variations

of vibration characteristics of the structure. The

vibration-based damage detection methods have

received much attention in the past few decades, and

several approaches have been suggested [2, 4].

Structural damage is typically a local phenomenon.

Fourier analysis transforms the vibration signal from a

time-based or space-based domain to a frequency-

based one. So, it is sometimes impossible to determine

when or where a particular event takes place by using

Fourier transforms (FT). To overcome this deficiency,

the short-time Fourier transform (STFT) that was

proposed by Gabor [8] can be used. This windowing

technique analyzes only a small section of the signal at

a time. The STFT maps a signal into a 2-D function of

time or space and frequency. The transformation has

the disadvantage that the information about time or

space and frequency can be obtained with limited

precision that is determined by the size of the window.

A higher resolution in both time and frequency domain

cannot be achieved simultaneously since once the

window size is fixed, it is the same for all frequencies.

Among the recent vibration-based structural dam-

age detection techniques, wavelet analysis has been

widely recognized as an effective and robust damage

detection tool because of its capability to deal with

non-stationary signals and to localize singularities in a

function or in any of its derivatives [9–11]. Wavelet

functions are included in the family of basis functions

that are capable of depicting a signal in a localized

frequency (or scale) and time (or space) domain. The

main advantage obtained by using wavelets is the

capability to execute local analysis of a signal, i.e.

zooming in on any interval of space or time. Wavelet

analysis is capable of demonstrating some hidden

features of the data that conventional Fourier analysis

fails to detect. The wavelet-based techniques can be

classified into two categories: wavelet transform

(WT)-based approach and wavelet packet transform

(WPT)-based approach.

According to different functions of WT, as the first

approach, damage can be found by variations in the

WT coefficients that are associated with the undam-

aged and damaged state. Melhem and Kim [12, 13]

employed this method to identify the location of

cracks in a beam. The second kind of WT-based

approach detects the damage by a combination of

wave propagation theory and WT. Analyzing the

measured responses and locating wavelet coefficient

peaks are initially carried out, which facilitates the

shortest path arrival time of flexural waves caused by

damage to be estimated, which is then followed by

localizing or quantifying the damage. Salehian et al.

[14] determined the location of the applied load, and

modeled the structural damage by establishing a set of

nonlinear equations to solve this inverse problem.

The third kind of approach takes advantage of the

modulus maximum line of continuous wavelet trans-

form (CWT) coefficients or the detailed signals of

discrete wavelet transform (DWT) to identify, localize

or quantify damage through detection of the discon-

tinuities of structural responses. In fact, this category

assumes that the presence of damage introduces

discontinuities in structural responses at the sites of

damage. Even though the signal to be processed by the

CWT is frequently the mode shape of the damaged

structure [15–26], Wang and Deng [27] employed

other spatial data like the displacement and strain

measurements of a cracked beam subjected to impact

loading to locate damage by sensing local perturba-

tions at the sites of damage, and then considering the

displacement response of a plate under in-plane stress.

Umesha et al. [28] proposed a new method based on

the CWT to detect the location and also to quantify the

crack using the deflection response of the damaged

beams.

Despite the effectiveness of wavelet analysis in

damage identification, the reliable detection of tiny

damages is still an open challenge because they can be

masked by measurement noise and/or edge (border)

distortion of the WT. In addition, acquiring modal

shapes in practice usually involves installing a large

number of sensors that is not always straightforward or

practical. In addition, this affects the structural/

vibrational properties [29].

According to the above discussion, the WPT-based

approach, which is a generalized form of the DWT is

proposed here to present the detailed information of

signals in the high-frequency region. TheWPT creates

the same frequency bandwidths in every resolution.

Such features of the wavelet are naturally inherited by

the wavelet energy and entropy, leading to better

damage identification. Several researchers took the

wavelet packet component energies extracted from
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structural dynamic responses as a characteristic fea-

ture, and established neural networks to detect the

occurrence of damage, location and damage severity

[30–34].

The wavelet entropy, which is a combination of

entropy and wavelet, could take advantage of both

methods to explain the characteristics of a signal,

which are not directly visible in the original space. The

wavelet entropy is modified to give a damage signa-

ture, which can both be achieved at different time

stations and spatial locations to identify the existence

of damage [35, 36]. Lee et al. [37] proposed a new

damage detection algorithm based on the continuous

relative wavelet entropy (CRWE) for truss bridge

structures. The damage-sensitive index (DSI) of each

sensor’s location was defined by CRWE measure-

ments of different sensor-to-sensor pairs. The CRWE

was reported to be able to detect damage but with

considerably large computation cost for the real time

monitoring algorithm. In particular, Ren and Sun [38]

suggested a combination of information entropy [39]

and DWT having a damage-sensitive feature to

characterize the level of irregularity in the measured

signals to identify the occurrence and location of

damage in beam structures.

Previous studies used a combination of DWT and

Shannon entropy to generally identify the occurrence

and location of damage [38, 39]. However, they are not

effective for estimating the location of small-scale

damage in various positions due to the application of

only one specified mother wavelet function and decom-

position level, while the robustness of wavelet-based

techniques are absolutely dependent on the mother

wavelet function to identify the damage location,

especially in multi-damage scenarios. In addition,

wavelet-based methods are not always reliable in the

prediction of damage severities. Therefore, computa-

tional intelligence methods, such as genetic algorithms

(GAs) have been applied to overcome this difficulty.

The GAs have been recognized as promising intel-

ligent search techniques for difficult optimization

problems and more attention has been given to the

design of an effective damage detection procedure [40–

44]. Hao and Xia [45] applied a GA with real number

encoding to identify the structural damage by minimiz-

ing the objective function, which directly compares the

changes in the measurements before and after damage.

Three different criteria were considered, namely, the

frequency changes, the mode shape changes, and a

combination of the two.Thealgorithmdidnot require an

accurate analytical model and gave better damage

detection results for the beam than the conventional

optimization method. Vakil-Baghmisheh et al. [46]

successfully applied the GA to predict the size and

location of a crack in a cantilever beam by minimizing

the cost function, which was based on the difference in

the measured and calculated natural frequencies.

In this paper, a two-step vibration-based damage

detection method is presented in the framework of the

wavelet multi-resolution analysis (MRA) and opti-

mization techniques. In the first step, the multi-

resolution WPT is combined with entropy analysis to

determine an effective damage indicator, relative

wavelet packet entropy (RWPE), to obtain the infor-

mation about the relative energy correlated with

various frequency bands presented in structural

response segments for investigating the location of

damage. To improve the detection accuracy of iden-

tifying small-scale damages with different depths in

various locations, several types of wavelet function

and decomposition levels are examined. In the second

step, the GA optimization method was applied to

estimate the damage severities by defining a database

to reveal the relationships between the energies

obtained in the first step and damage severities. Both

numerical simulation and experimental data with

different damage scenarios revealed that the proposed

algorithm has great potential in damage identification

in beam-like structures and that it is insensitive to

measurement noise.

2 Wavelet multi-resolution analysis

The MRA of wavelet is a significant property in the

multilevel approximation of engineering problems

[47]. The concept of MRA for square-integrable

signals in the context of wavelet analysis was elabo-

rated upon byMallet [48]. The MRA can decompose a

signal into components spanned by the scaling and

wavelet basis functions at different resolutions. Any

finite energy function f(t) can be expressed by:

f tð Þ ¼
X1

k¼�1
a jo; kð Þ£jo;k tð Þ

þ
X1

j¼jo

X1

k¼�1
d j; kð Þwj;k tð Þ

ð1Þ
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where £jo;kðtÞ ¼ 2�j0=2£ð2�jo t � kÞ and wj;kðtÞ ¼
2�j=2wð2�jt � kÞ are the scaled and translated version

of the scaling function [(t) and mother wavelet wðtÞ,
respectively, a(jo, k) is the kth approximation at the

scale index jo and d(i, k) is the kth detail coefficient at

scale index j. In Eq. (1), the first summation gives a

low resolution or coarse approximation of f(t) at the

scale index jo. For each j in the second summation, a

higher or finer resolution function that included more

detail of f(t) is added. Equation (1) can be simplified

as:

f tð Þ ¼ Ajo þ
X1

j¼jo

Dj ð2Þ

where:

Ajo ¼
X1

k¼�1
a jo; kð Þ£jo;k tð Þ ð3Þ

is the approximation at level jo and:

Dj ¼
X1

k¼�1
d j; kð Þwj;k tð Þ ð4Þ

is the detail at level j. The scaling function [ satisfies

the scaling condition:

£ tð Þ ¼
X

k2Z
c kð Þ£ 2t � kð Þ ð5Þ

where Eq. (5) is called the two-scale relation for the

scaling function £ tð Þ and fcðkÞgk2Z are the coeffi-

cients for this relation. Generally, the MRA proposes

that the scaling function plays a key role in the

piecewise approximation of the continuous function

f(t) and depending on the scaling index. In addition,

based on such a scaling function[ a mother wavelet w
can be created as:

w tð Þ ¼
X

k2Z
b kð Þ£ 2t � kð Þ ð6Þ

where b(k) are the coefficients for the two scale

relation for the wavelet function w(t). Note that the

MRA is not unique and relies on the selection of the

mother wavelet function. The selection of the mother

wavelet and scaling function is application-dependent;

therefore, no specific selection of the mother wavelet

and scaling function can be employed for all applica-

tions with the desired results. In this study, Daubechies

wavelets from the orthogonal wavelets family are

employed, since they have been widely implemented

in vibration signals. Also, the order of the mother

wavelet function is the main issue in the wavelet

analysis, which is determined by trial-and-error based

on the intrinsic properties of the data [10, 38, 49–52].

3 Wavelet packet transform

Wavelet analysis is MRA in the time and frequency

domain of a non-stationary signal. It can be considered

as an extension of the traditional FT with a modifiable

window size and location [53]. WPT can be consid-

ered as an extension of the DWT, which does not

require a priori knowledge of the frequency bands (i.e.

scales) but it filter the signal in adaptive way. The

difference between WPT and DWT is that, the WPT

decompose not only the approximation but also the

detail coefficients at each level of decomposition.

Therefore it is more flexible and have wider base for

the analysis of signals. The idea of separating the

signal into packets is to obtain an adaptive partitioning

of the time frequency plane depending on the partic-

ular signal. More details can be found in the textbook

by Mallat [54]. The wavelet packet function is defined

as:

wi
j;k tð Þ ¼ 2�j=2wi 2�jt � k

� �
i ¼ 0; 1; 2; . . .; 2 j � 1

ð7Þ

where a wavelet packet wj,k
i (t) is a function of three

indices with integers i, j and k, denoting the modula-

tion, the scale and the translation parameter, respec-

tively. Moreover, w0(t) = [(t) for i = 0 and

w1(t) = w(t) for i = 1. The wavelet [(t) is called

the scaling function andw(t) called the mother wavelet

function. The wavelets wi for i[ 1 are obtained from

the scaling function and the mother wavelet function

as:

w2i ¼
ffiffiffi
2

p X

k

h kð Þwi 2t � kð Þ ð8Þ

w2iþ1 ¼
ffiffiffi
2

p X

k

g kð Þwi 2t � kð Þ ð9Þ

where g(k) and h(k) are quadrature mirror filters

associated with the mother wavelet function and the

scaling function. The signal is passed through a serious
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of high pass filters, i.e. g(k), to analyze the high

frequency, and through a serious of low pass filters, i.e.

h(k), to analyze the low frequency. Hence, the original

signal can be filtered in different frequency bands. In

this work, the measured dynamic structural response is

decomposed into wavelet component functions. While

the level of decomposition is j, 2j WPD components

can be obtained.

The original signal can be expressed as a summa-

tion of WPD components as:

f tð Þ ¼
X2 j

i¼1

f ij tð Þ ð10Þ

where t is time lag; fj
i(t) is the WPD component signal

that can be represented by a linear combination of

wavelet packet functions, as follows:

f ij tð Þ ¼
X1

k¼�1
Ci
j;kw

i
j;k tð Þ ð11Þ

where Cj,k
i is the wavelet packet coefficient and can be

calculated from:

Ci
j;k ¼

Z 1

�1
f tð Þwi

j;k tð Þdt ð12Þ

WPT offers good time resolution in the high-fre-

quency range of a signal and good frequency resolu-

tion in the low-frequency range of the signal.

4 Damage identification approach

Vibration-based structural damage identification is

aimed at comparing structural parameters extracted

from measured vibration signals between the undam-

aged and damaged state. When structural damage

occurs, a corresponding change is produced according

to the damage features that evolve from the structural

response signals before and after the damage. The key

issue in structural damage identification is how to

identify and quantify this change. Therefore, this study

deals with the development of a hybrid approach using

RWPE and GA by defining a database to accurately

determine the location and severity of the damage in

beam structures. This approach contains two steps, i.e.

the first is detecting damage locations and the second is

to determine the severity of damage. In addition, to

evaluate the influence of changing the wavelet function

and level of decomposition on the accuracy of identi-

fying damage location, the wavelet functions DB1 to

DB10 are used for beams.

4.1 Damage location detection

To examine the structural health condition, it is

essential to achieve an index that is sensitive to

structural damage. Usually, the measured vibration

signals are decomposed by WPT into component

signals and then component energies are calculated.

Thewavelet packet component energy is a suitable tool

for identifying and characterizing a specific phe-

nomenon of signal in the time-frequency domain. It

has been shown by Yen and Lin [55] that the energy

stored in a specific frequency band at a certain level of

WPD provides a greater potential for signal feature

than the coefficients alone. Sun and Chang [52]

conducted a comparative study on the sensitivity of

four damage indices based on variations of frequency,

mode shape, flexibility and wavelet packet energy, and

deduced that the wavelet packet energy based index

has a high potential to capture the reduction in

structural stiffness. The sensitivity of the WPT com-

ponent energywith regard to local change in the system

parameters was derived by Law et al. [56]. Ren et al.

[57] studied the application of the wavelet packet

energy variation based damage detection method in

bridge shear connector monitoring.

The wavelet packet energy Ef of a signal is defined

as:

Ef ¼
Z 1

�1
f 2 tð Þdt

¼
X2 j

m1¼1

X2 j

m2¼1

Z 1

�1
f m1

j tð Þf m2

j tð Þdt
ð13Þ

where f m1

j and f m2

j stand for decomposed wavelet

components. The total signal energy can be expressed

as the summation of wavelet packet component

energies when the mother wavelet is orthogonal:

Ef ¼
X2 j

i

Ef i
j
¼
X2 j

i¼1

Z 1

�1
f ij tð Þ2dt ð14Þ

Then, the energy ratio of each wavelet coefficient

can be written as:
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pij ¼
Ef i

j

Ef

ð15Þ

The pij values correspond to a ratio of the energy of a

particular coefficient Ef i
j
to the total energy. The pij

value acts like a probability distribution of the energy,

therefore, the pij values sum to one.

The Shannon entropy represents the amount of

information, which is also often used as a measure of

the extent of signal energy concentration in the time-

frequency domain. Ren and Sun [38] applied the

concept of the wavelet entropy to structural damage

detection problems. The wavelet entropy spectra repre-

sent the level of order/disorder of vibration signals [39].

The damage detection problem can be formulated

through the changes in the wavelet packet entropy

before and after the occurrence of damage. To

identify the change in vibration signal p from a

(potentially) damaged structure relative to the

vibration signal q from an undamaged structure,

the RWPE is defined as:

SkRWPE pkjqk
� �

¼
X

j

X

i

pkijln
pkij

qkij

 !�����

����� k ¼ x; y; z

ð16Þ

It is notable that accelerations measured in the same

direction should be used in computations of RWPE.

Since damage at a location affects the vibration signals

in every direction, the damage index based on the

RWPE is considered as:

DIRWPE ¼
Xx;y;z

k¼1

SkRWPE pkjqk
� �

ð17Þ

However, when the structure is damaged, the values of

pij and qij become different, and, consequently, the

RWPE value increases. The capability of RWPE-

based structural damage identification to extract the

irregular information of a signal due to damage is

enhanced by its WPT component energy. The RWPE

has significant usefulness at high frequency where the

information of a high frequency level is important.

5 Numerical simulation

To validate the feasibility of the method proposed in

this study, numerical simulation of four steel-I beams

with material properties tabulated in Table 1 and

various predetermined damage conditions is carried

out, as demonstrated in Fig. 1. Beam 0 is considered as

the reference beam without damage while beam 1 is

the single damage scenario with damage located at

point 5. Beam 2 has two points of damage at locations

11 and 13, and beam 3 has three points of damage at

different locations 9, 11 and 13. Damage is simulated

in the form of a notch with a width of 3 mm. Let tn
d

stand for damage depth in which n is a number

assigned to each damage depth case (n = 1, 2,…, 25).

The damage depth is increased gradually for all beams

from 3 up to 75 mm, as depicted in Fig. 1a, to obtain

the damage severity an calculated by Eq. (18):

an ¼
tdn
t

ð18Þ

The time history acceleration responses of beams are

computed by the finite element analysis package

(ABAQUS) using transient dynamic analysis. To

simulate an impulse load, the force-time history is

applied at location 14 on the beam. This location is not

a node point for the first five flexural mode shapes. If a

node point of a mode shape is situated at the excitation

point, then this mode cannot be excited and identified.

Location 15 is very close to the support and can be

affected by the support, thus it cannot be chosen as the

excitation point. Also, locations 10, 11 and 13 have

node points of modes 5, 3 and 4, respectively. Hence

these nodes were eliminated to be chosen as excitation

point as well. Therefore, location 14 was chosen

against locations 8 and 12 for the following reasons:

(1) Mid-span of beam is the node point for modes 2

and 4 and location 8 is located at the mid-span; (2) The

damage locations in beam B3 are very close to

location 12 and cannot be chosen as the excitation

point. Thus, to provide a better excitation, location 14

was chosen as an excitation point in this study. The

node acceleration responses of the beam under the

Table 1 Structural model parameters

Parameters Value

Mass density (q) 7850 kg/m3

Poisson’s ratio (t) 0.33

Elasticity modulus (E) 2.1 GPa

Length (L) 3 m

640 Meccanica (2016) 51:635–653
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impulse load are obtained from sixteen locations on

the top flange, as shown in Fig. 1b at a sampling

frequency of 2000 Hz to identify the characteristics of

damage in beams. Also, the frequency bands of the

WPT components at decomposition level 6, as well as

the relation between the WPT components and the

frequencies of beam 0 are demonstrated in Table 2.

5.1 Identification of damage locations

To validate the proposed damage identificationmethod,

the simulated simply supported beams with damage

elements are considered. The RWPE at 16 locations are

calculated for each damage scenario based on Eq. (17),

as shown in Fig. 2. According to these figures, the value

and distribution of RWPEs changed considerably after

damage. In cases with small damage, there is not much

frequency difference in signals. This highlights that the

type of mother wavelet and decomposition level play a

key role in damage identification. Hence, in the single

damage scenario, several wavelet functions and differ-

ent levels of decomposition are investigated. More

accurate results for these cases are obtained when the

wavelet function DB2 and decomposition level 5 are

used for differentiating the damages, as shown in

Fig. 2a. The damage location can be clearly identified

with the significant change in values of RWPE at

location 5. However, the peak values of RWPE of the

multiple-damage scenario for beam 2, where the

damages are located at points 11 and 13, are identified

by using the DB5 and decomposition level 6, as shown

in Fig. 2b. The damage index is noticeably greater at

point 11. Furthermore, in beam 3, DB10with 6 levels of

decomposition is found to be the appropriate DB order

for damage identification. Figure 2c depicts that the

peak value of the RWPE at point 9 is larger than that of

point 11 and point 13.

In order to indicate the influence of changing the

wavelet function on the accuracy of identifying the

damage location, various wavelet functions DB1 to

DB10 are applied for the considered beams. The

standard difference percentage of RWPE

ð½ð
P

RWPEmax�
P

RWPEaveÞ=ð
P

RWPEaveÞ� �100Þ
for each damage scenario at every specific depth of

damage is calculated, as shown in Fig. 3. For beam 1,

the standard difference percentage is obtained in

decomposition level 5, as illustrated in Fig. 3a. A

comparison of the histograms associated with every

depth of damage for all considered DBs indicates that

wavelet function DB2 is the suitable wavelet function

order. However, in beam 2, as shown in Fig. 3b, the

values of DB5 with 6 levels of decomposition are

Fig. 1 I-section specimen. a Dimension and damage depth of beams, b damage location of beams
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larger than those of the other DBs. The results for

beam 3 with multiple damages, as depicted in Fig. 3c,

reveal that DB10 and the decomposition level of 6 can

precisely identify the damage locations along the

beam length compared with other Daubechies wavelet

functions.

Table 2 Frequency bands

of the WPT Components at

decomposition level 6 of

beam 0

The sequence

of WPT

Frequency bands

of WPT components (Hz)

Natural

frequencies (Hz)

1 [0–15.625] 12.888

2 [15.625–31.25] 25.784

3 [31.25–46.875] –

4 [46.875–62.5] 52.80

: : :

15 [187.5–203.125] 201.64

: : :

28 [421.875–437.5] 429.67

: : :

48 [703.125–718.75] 714.90

: : :

64 [984.375–1000] –

Fig. 2 The values of RWPE for each depth of damage. a Beam 1, b beam 2, c beam 3

642 Meccanica (2016) 51:635–653
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In addition, Fig. 4 depicts the values of RWPE in

beam 2 to demonstrate the difference between various

orders of Daubechies wavelets in discrimination of

damage locations. Evidently, the damage locations

were distinguishable in these histograms with RWPE

reaching a maximum value at locations 11 and 13

which were the exact damage locations. By compar-

ing the considered Daubechies orders shown in Fig. 4,

it can be seen that the peak of RWPE was not as

clearly distinguishable in DB6 even though it had the

same location and severity of damages. Furthermore,

DB5 showed a significant difference in the values of

RWPE relative to the other DBs for each depth of

damage. For DB2, the shortcomings were identical to

that of DB6 but produced more accurate results. DB10

was not a worthy consideration since it was not able to

precisely indicate the damage location. It is consid-

erable to note that the accuracy of differentiating the

damage cannot be compared to DB5 for the two

damage scenario.

From the above observations, it may be construed

that an increase in the damage depth of beams

influences the vibration response signal, and, conse-

quently, the RWPE values. Comparison of the peak

values of RWPEs in the region of damage reveals that

larger values of the RWPE take place when the

damage is located near the center of the beam since the

local perturbations caused by the damage occur at a far

distance from the support. On the other hand, the

presence of damage adjacent to the support results in a

singularity around the support, which cannot be found

with a predetermined DB. The problem with one

predetermined DB arises when multiple damages are

located on the beam and the proper selection of the

mother wavelet function influences the accuracy of

damage location identification.

Therefore, the selection of a proper mother wavelet

for wavelet-based methods is important, as it can

affect the performance improvement of the proposed

method in order to achieve accurate results. The type

of mother wavelet function plays a key role in

reducing the false positives adjacent to the damage

locations, as depicted in Figs. 3 and 4. This is mostly

because the correlation between the mother wavelet

Fig. 3 Damage identification results using different wavelet function. a Beam 1, b beam 2, c beam 3
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functions and the signal is calculated as a wavelet

coefficient.

5.2 Verification of noise effect on the proposed

method

The presence of noise in the recorded signal is

unavoidable in real life applications. Therefore, to

investigate the effect of measurement noise on the

performance of the proposed method, white Gaussian

noise (WGN) is added to the generated acceleration

signals of the test cases to simulate the uncertainties of

real-life problems such as the environmental condi-

tions during an experimental work. The noise intensity

is defined by the signal-to-noise ratio (SNR):

SNR dBð Þ ¼ 20 log10
AS

AN

ð19Þ

where AS and AN are the root-mean-square (RMS)

value of the acceleration signal and the noise, respec-

tively. In present applications, the effect of different

levels of noise on damage identification is investigated

by applying SNRs 2, 5 and 10 dB. Figure 5 shows the

noise-contaminated original acceleration signals at

location 8 for the undamaged case.

Beam 3 with three damage scenarios is analyzed for

noise effect, and the identified results in terms of the

noise levels are shown in Fig. 6. It can be observed

that the presence of noise did not have an adverse

effect on the histograms regardless of noise level and

that the RWPE values are identical to the noiseless

case. This could because the noise is assigned to the

different wavelet functions and the noise effect in each

bandwidth is reduced. Hence, it can be inferred that the

proposed method will work satisfactorily in the

presence of measurement noise.

Fig. 4 Histograms of RWPE in beam 2 with different orders of Daubechies wavelets
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Fig. 5 Different levels of noise contamination in the measured signal at location 8 for the undamaged case

Fig. 6 Damage identification results in beam 3 after adding different levels of noise. a SNR = 2 dB, b SNR = 5 dB, c SNR = 10 dB
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6 Evaluation of damage severities

6.1 Genetic algorithm

GAs are stochastic search algorithms, which are based

on the mechanics of natural selection and natural

genetics, which is designed to efficiently search large,

non-linear, discrete and poorly understood search

spaces, where expert knowledge is scarce or difficult

to model and where traditional optimization

techniques fail [58]. Typically, a simple GA consists

of three operations: (1) parent selection, (2) crossover,

and (3) mutation.

In this research, a population of individuals is

created by randomly generating a set of candidate

solutions and encoding these solutions into binary

strings. Each individual in the population then under-

goes evaluation and is assigned a fitness value based

on how well the individual satisfies the stated objec-

tive. Tournament selection is used to pick individuals

to undergo crossover and mutation. The two-point

crossover is employed for every chromosome of the

chromosome-pair with a 50 % probability of selec-

tion; the two parents selected for crossover are in

charge of exchanging information that lies between

two randomly generated points within the binary

string. The chromosomes are the representations of

tentative solutions, which can be evaluated by a fitness

function. The fitness function determines the fitness of

the chromosome. These chromosomes undergo

Damage severities Damage locations

2 1

0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 

location 11 location 13 

Fig. 7 Proposed chromosome for GA for two damage location

and severities

Damage location evaluation 

Raw vibration signals 

Wavelet packet decomposition of signals 

Wavelet packet component energy ( )

Relative wavelet packet entropy ( ( | ))

Determine the damage location 

Random generation of initial population 
(chromosome include locations and severities of damage) 

Fitness function evolution 
for each population 

Selection 

Crossover 

Mutation 

Fitness function evolution 
for each population 

Convergence 
control 

Determine the damage 
identification through 
minimizing the fitness 

function among the damage 
severities derived from loop 

End 

Damage severity 

Yes  

No  

Fig. 8 Flowchart of the entire proposed algorithm
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genetic operations to produce next-generation chro-

mosomes. This occurs repeatedly until chromosomes

of acceptable solutions are discovered.

The selected chromosome has two kinds of vari-

able: the damage locations, and severities of damage.

The GAs use bit strings to represent their chromo-

somes. Consequently, each gene of the chromosome

may be either 0 or 1. Therefore, bit strings may be

directly used to encode the candidate solution. In other

words, the solution for the true damage configuration

is a bit string whose substrings indicate the related

parameters. Figure 7 depicts the proposed chromo-

some in a case with two damage locations with

different severities.

In order to formulate the damage severities problem

as an optimization problem, the following fitness

function is applied to search for the ‘‘best fit’’

severities from the evaluation database:

minf ¼
Pnd

k¼1 F
bk
ak � FmPnd

k¼1 F
bk
ak

�����

�����
2

ð20Þ

where �k k2 is the Euclidean norm, F ¼P
j

P
j pijða1; a2; . . .; anÞ is the discrete function of

the damage severities an(n = 1, 2, …, 25) at sixteen

locations (it is reflected by the severity evaluation

database), constraint 0.02\ an\ 0.5 limits the sever-

ity search space from 0.02 to 0.5, k is the number of

damage locations, b is the sensor locations and Fm is

the summation of measured energies in damage

locations for each severity of damage. For the purpose

of simulation, only the noise-contaminated signals

calculated by Eq. (19) are employed to obtain energies

in each frequency band.

To sum up, GA is used to optimally search locations

and severities of damage, which can be reflected by the

values of the energies. Figure 8 depicts the whole

scheme of the damage identification algorithm. Some

preliminary tests are performed to decide the GA set

up parameters. The nal set up parameters used ithis

work are shown in Table 3.

6.2 Discussion of damage severities evaluation

To evaluate the damage severity, the beams with ten

different severity combinations specified by various

magnitudes of a, presented in Table 4, are considered.

The GA is applied with the proposed fitness function

to calculate the damage severity. Figure 9 shows the

search convergence process for different damage

scenarios. The results of the damage severity detection

of beam 1 for each damage case are shown in Table 5

and Fig. 9a. It can be observed from the histograms

that the proposed algorithm precisely follows the

corresponding specified crack location and severity for

the damage cases.

More difficult cases are encountered in multiple

damage scenarios with different severities as in beams

2 and 3. Beam 2 relates to two points of damage whose

depths are different in each case. Beam 3 has three

points of damage, which simulates an even more

complicated damage scenario due to the variety of

depth values. To show the robustness and sensitivity of

the proposed algorithm, the GA is assigned to obtain

the damage severity in the specified locations. Table 5

presents the predicted value of damage severities. As

shown in Fig. 9b, c, estimation of the proposed

algorithm accurately follows the corresponding

values.

Table 4 Considered damage cases in beams

Case Damage severity

Beam 1 Beam 2 Beam 3

a1 a1 a2 a1 a2 a3

1 0.02 0.02 0.02 0.02 0.04 0.02

2 0.04 0.1 0.4 0.08 0.02 0.48

3 0.1 0.06 0.04 0.14 0.14 0.14

4 0.16 0.16 0.16 0.2 0.24 0.28

5 0.22 0.2 0.1 0.26 0.3 0.4

6 0.28 0.12 0.28 0.32 0.16 0.34

7 0.34 0.3 0.3 0.38 0.42 0.38

8 0.4 0.42 0.34 0.44 0.12 0.22

9 0.44 0.48 0.12 0.5 0.18 0.46

10 0.5 0.5 0.5 0.06 0.06 0.36

Table 3 GA set up parameters

Number of generation 500

Population 100

Selection function Tournament

Fitness normalization Rank

Crossover Pc = 0.7, two-point, uniform

Mutation Pm = 0.05, uniform
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The evaluation errors for severities of damages in

beams 1 and 2 are in the range of 0–6 % with mean

values of 1.20, 2.00 and 2.20 %. Also, with the

increase of damage severities in beam 3, the prediction

errors vary in an acceptable range from 0 to 8 % with

mean values of 2.20, 3.00 and 2.60 %. Therefore, the

proposed algorithm is effective in evaluating the

damage severities and yields reasonably good results

when the data contain a certain level of noise.

7 Experimental verification

To verify the effectiveness of the proposed method, an

experimental study is carried out on a test beam. Most

of the vibration-based damage identification tech-

niques obtained from the measured signals requires

modal properties, which are sensitive to measurement

error and noise. The proposed damage identification

technique has to be validated using real measurement

data from vibration tests in the presence of measure-

ment errors and noise. Vibration tests are carried out

on four I-section steel beams with a span length of

3 m, as depicted in Fig. 10, under undamaged and

various damage states. The damage is induced by

introducing a saw cut at the prescribed locations on the

beam with varying depths of cut, as described in

Table 6.

The analogue data from the sensors is converted via

an analysis digital center using the OROS OR35

analyzer. The signal analyzer is capable of generating

all the different forms of signals, including white

noise, which is used in this test. The beam is excited

using a shaker at node 14. The acceleration response of

the K-shear Kistler accelerometers is measured at

sixteen locations on the top flange along the beam

(Fig. 10b). These accelerometers have a frequency

range of 0.5–10 kHz and a sensitivity of 100 mV/g.

The sampling rate is set to 5.12 kS/s to achieve the

frequency band width of 2000 Hz.

7.1 Experimental results

For evaluation of the location of damage through the

measured acceleration responses, the RWPE is imple-

mented for each considered beam as shown in Fig. 11.

It is observed that the damage location in beam 1 can

be precisely identified with DB2 and decomposition

level 6 based on the change of RWPE values shown in

Fig. 11a. In beam 2, DB 5 with 6 levels of

Fig. 9 The damage severity evaluation results by using GA. a Beam 1, b beam 2, c beam 3
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decomposition is chosen for the two-damage scenar-

ios, since the damage locations presented in Fig. 11b

are distinguishable in these histograms with RWPE

reaching a peak value at locations 11 and 13.

Moreover, location 11 has a relatively larger damage

index while location 13 has a comparatively lower

RWPE. The reason lies in the damage location, which

is adjacent to the support. It should be mentioned that

selection of a non-suitable type of wavelet may causes

a false-negative indication.

A similar trend of damage index, as in beam 2, is

observed for beam 3 by using DB10 and decomposi-

tion level 6 with three damage locations at points 9, 11

and 13, as shown in Fig. 11c. Evaluation of the RWPE

Fig. 10 Dynamic test in laboratory. a Damage locations of tested beams, b data acquisition system

Table 5 The damage severity results obtained by GA

Case Predicted value Error (%)

Beam 1 Beam 2 Beam 3 Beam 1 Beam 2 Beam 3

a�1 a�1 a�2 a�1 a�2 a�3 e1
a e1

a e2
b e1

a e2
b e3

c

1 0.02 0.02 0.04 0.04 0.02 0.02 0 0 2 2 2 0

2 0.06 0.14 0.34 0.12 0.02 0.42 2 4 6 0 6

3 0.1 0.04 0.06 0.14 0.16 0.1 0 2 2 0 2 4

4 0.16 0.16 0.16 0.26 0.2 0.24 0 0 0 6 4 4

5 0.2 0.26 0.08 0.26 0.32 0.36 2 6 2 0 2 4

6 0.24 0.14 0.26 0.34 0.1 0.34 4 2 2 2 6 0

7 0.32 0.26 0.34 0.4 0.42 0.36 2 4 4 2 0 2

8 0.4 0.42 0.34 0.4 0.2 0.22 0 0 0 4 8 0

9 0.46 0.5 0.1 0.5 0.12 0.48 2 2 2 0 6 2

10 0.5 0.48 0.5 0.04 0.06 0.4 0 2 0 2 0 4

Mean error 1.20 2.20 2.00 2.20 3.00 2.60

a The detection error, e1 ¼ a�1 � a1
�� ��� 100%

b The detection error, e2 ¼ a�2 � a2
�� ��� 100%

c The detection error, e3 ¼ a�3 � a3
�� ��� 100%
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associated with beam 3 shows the damage locations

precisely with respect to the support, as mentioned

earlier for beam 2.

The presented results demonstrate that the proposed

damage index (RWPE) can identify the damage

location accurately in all damage scenarios from the

dynamic measurement. In addition, varying opera-

tional and environmental conditions of the structure

raise a discrepancy, i.e., false alarm, which can be

reduced by choosing an appropriate mother wavelet

function and decomposition level.

After identification of the damage locations, the

analysis evaluates the severity of the damage. The

optimization algorithm presented in Sect. 6.1 is

employed for detection of the severity of damage.

All of the considered beams with different damage

scenarios and various levels of severity are subjected

to damage severity detection by the proposed algo-

rithm where a is varied from 0.02 to 0.5 with the step

length of 0.02. The detection results for each damage

scenario of the GA are found to be accurate and

identical to the real values of severity. For instance,

the results of GA encoded as a binary number

associated with case 3 with three depth ratios of

a23 = 0.46, a9 = 0.46 and a25 = 0.5 are shown in

Fig. 12.

Table 6 Damage scenarios Damage

case

Damage

scenario

Damage

location

Width of

damage (mm)

Depth of

damage (mm)

Beam 0 Undamaged – – –

Beam 1 Single 5 3 3 up to 75

Beam 2 Double 11, 13 3 3 up to 75

Beam 3 Triple 9, 11, 13 3 3 up to 75

(a) (b)

(c)
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Fig. 11 RWPE for different damage cases. a Beam 1, b beam 2, c beam 3
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8 Conclusions

A two-step vibration-based damage detection method

is proposed to determine the location and severity of

damage in beam structures. The damage locations are

accurately identified in the first step by proposing a

new damage index based on the WPT, which is

combined with the information entropy to take

advantage of both techniques. Based on the results it

can be concluded that the selections of a proper mother

wavelet function and decomposition level are crucial

to improve the performance of the proposed algorithm.

On the other hand, the wavelet-based techniques are

absolutely dependent on the mother wavelet function,

whose correlation with the signal is influenced by the

locations and number of points of damages. It should

be highlighted that utilization of a specific mother

wavelet and a decomposition level does not necessar-

ily successfully identify various damage scenarios that

are located on a beam. Once the damages are located,

the severity evaluation database is defined in terms of

the relationships between the component energies and

the damage severities. The GA optimization is then

used to evaluate the damage severities by exploring

the database. The effectiveness of the proposed

method is examined by both numerical simulation

and experimental tests. Sensitivity and robustness of

the method is then tested against noise-contaminated

signal. The results show that the proposed algorithm

can accurately identify the locations of damage as well

as the damage severity even for multiple-damage

scenarios.

Although the proposed damage identification

methodology has shown great potential in the simu-

lated and the laboratory tested beam, the proper

selection of mother wavelet functions and decompo-

sition levels are determined by trial-and-error based on

the intrinsic properties of the data. Further work is

needed to apply the computational intelligence meth-

ods to optimize the algorithm so as to determine the

best values for ‘‘mother wavelet function’’ and ‘‘de-

composition level of the signals by means of wavelet

analysis’’. These are practical aspects that should be

studied further so that a RWPE-based structural

damage identification method can be applied with

confidence to real structures.
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