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Abstract The present paper deals with the homoge-

nization problem of periodic composite materials,

considering a Cosserat continuum at the macro-level

and aCauchy continuumat themicro-level. Consistently

with the strain-driven approach, the two levels are linked

by a kinematic map based on a third order polynomial

expansion.Because of the assumed regular texture of the

composite material, a Unit Cell (UC) is selected; then,

the problem of determining the displacement perturba-

tionfields, arisingwhen secondor thirdorderpolynomial

boundary conditions are imposed on the UC, is inves-

tigated. A newmicromechanical approach, based on the

decomposition of the perturbation fields in terms of

functions which depend on the macroscopic strain

components, is proposed. The identification of the linear

elastic 2DCosserat constitutive parameters is performed,

by using the Hill–Mandel technique, based on the

macrohomogeneity condition. The influence of the

selection of the UC is analyzed and some critical issues

are outlined. Numerical examples for a specific com-

posite with cubic symmetry are shown.

Keywords Heterogeneous materials �
Homogenization � Cosserat continuum � Periodicity �
Constitutive identification

1 Introduction

The computational homogenization techniques have

proved to be very effective to predict the macroscopic

behavior of composite materials. Complex nonlinear

mechanisms may be taken into account, related both to

constitutive and geometric effects. In this framework,

the problem of satisfactorily reproducing the mechan-

ical response of structural elements made from

heterogeneous materials is tackled considering two

scales: a macroscopic and a microscopic scale. At the

macroscopic level, the actual heterogeneous material

is replaced by an equivalent homogeneous medium.

The homogenized constitutive response is obtained by

solving a Boundary Value Problem (BVP) defined at

the microscopic scale, where a Representative Volume

Element (RVE) is selected. At the RVE level, all the

information concerning the texture and mechanical

behavior of the constituents are available in detail.

Depending on the choice of the continuum theory

adopted at both macro- and micro-level, different
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equivalent homogenized models are triggered. Indeed,

the classical Cauchy continuum theory can be consid-

ered suitable only when the intrinsic length at the

micro-scale is very small, compared to the macro-

scale structural length [2, 5, 16, 18, 20]. On the

contrary, when strong strain and stress gradients at the

macro-level occur, or when the microscopic length of

the constituents is comparable to the wavelength of

variation of the strain and stress mean fields at the

macro-level, some intrinsic limits emerge. This is due

to the fact that no length scale is accounted for in the

Cauchy theory. Hence, the information that the micro-

level transfers to the macro-level is insensitive to the

dimension of the constituents.

By adopting generalized continua, this limit is

overcome and the length scales are naturally

accounted for. Many authors have focused on coupling

different continuum models at the two scales. In most

cases at the microscopic level the classical Cauchy

continuum is adopted, especially because nonlinear

constitutive relationships are well-established in this

framework. At the macro-level, second-gradient [5, 7,

18, 19], couple stress [31, 33] or micropolar Cosserat

[2, 13, 14, 16] continua are used. However, among

these, only the Cosserat model incorporates an addi-

tional strain quantity, measuring the relative rotation,

i.e. the difference between macroscopic and micro-

scopic rotation. Hence, on the one hand the Cosserat

model is based on an enriched kinematic description

with respect to the second-gradient model, as it

contains the additional rotation field. On the other

hand, it does not contain all the additional higher-order

terms, as for example the axial modes. Note that, by

disregarding some of the higher order terms defined in

the second-gradient model, couple-stress formulation

can be derived. With reference to beam models, the

difference between the couple-stress and Cosserat

models can be considered as equivalent to that

between the Euler–Bernoulli and Timoshenko theory,

as also observed in [17]. Depending on the specific

application field, the most suitable generalized model

has to be adopted. In particular, the Cosserat model has

turned out to be appropriate in several cases, as for

example in brick/block masonry [30], in which the

relative rotation has a clear physical meaning.

In this work, the focus is on composite materials

characterized by periodic texture, i.e. made from the

regular arrangement of Unit Cells (UCs). The com-

putational homogenization procedure presented in [1,

13], coupling the Cosserat and Cauchy medium at the

macro- and micro-level, respectively, is adopted. This

is based on an idea originally proposed by [16], where

a polynomial kinematic map was used to link the two

levels. The displacement field at the micro-level is

represented as the superposition of the kinematic map

and an unknown perturbation field, due to the hetero-

geneous nature of the material. To be noted is that the

procedure discussed in [16] has some drawbacks, as

also remarked in [17]. Firstly, it fails to satisfy the

balance equations in the case of homogenized mate-

rial. In fact, no conditions requiring the divergence-

free stress state in the inner domain are imposed, as on

the contrary is assumed in classical homogenization

procedures [24, 25]. Furthermore, when the Cosserat

macroscopic strain components are applied to the UC,

the perturbation fields are no longer periodic [17],

differently from the case of Cauchy macroscopic

strains. In [1] a revision of the above procedure is

presented, proposing some enhancements to overcome

the highlighted limits. A modified kinematic map is

proposed, which ensures that no perturbation of the

displacement fields arises when homogeneous

microstructure is considered for the UC, as it is

expected.Moreover, to derive the most suitable BCs to

be applied to the UC when this is subjected to higher

order terms of the polynomial map, the authors

investigate on the actual distribution of the perturba-

tion fields in a RVE made of a large number of UCs.

The results of these analyses clearly show that non

periodic distributions emerge, different depending on

the applied terms of the polynomial map. Thus,

regarding the proper characterization of the perturba-

tion fields, when the Cosserat macroscopic strains are

applied to the UC, some open issues remain. Standing

on these observations, the present paper focuses on the

more correct and accurate determination of the

perturbation displacement fields, with respect to the

available proposals. To this end, a new method is

established. A three-step homogenization procedure is

proposed, on the basis of the micromechanical

approach presented in [33], where a technique

grounded on the asymptotic approach [8] is used and

a second gradient continuum is employed at the

macroscopic level. In [33] the perturbation displace-

ment field in the UC is expressed as a function of the

components of the macroscopic displacement gradi-

ents. In particular, it is decomposed into different

contributions related to the first and second gradients
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of the kinematic map. Such an approach was recently

adopted in [6], which focused on the problem of the

displacement continuity across the UC boundary, in

the case of second order computational homogeniza-

tion. It was showed that, thanks to the introduction of

generalized periodicity conditions, the continuity of

this field across the interfaces is guaranteed.

Here, the original idea presented in [33] is extended

to the case of a 2D Cosserat continuum at the macro-

level, expressing the perturbation field in function of

the first, second and third gradient of the kinematic

map. To verify the effectiveness of the proposed

procedure in the considered framework, the distribu-

tion of the perturbation fields on a single UC is

compared with the results for a RVE, obtained by

arranging a large number of UCs.

When generalized continua are considered at the

macro-level, while the standard Cauchy continuum is

retained at the micro-level, a further debated issue is

the identification of the effective constitutive param-

eters. Due to the lack of a direct correspondence

between strain and stress components at the two levels,

some problems arise. Different approaches have been

proposed, each with distinct advantages and draw-

backs. Several authors derive the homogenized con-

stitutive components starting from the generalized

Hill–Mandel macrohomogeneity condition, regardless

of whether they consider a Cosserat [13, 16] or a

second-order [12, 18, 19, 32] continuum at the macro-

level. The evaluation of the macroscopic stresses is

obtained as the weighted average of microscopic

stresses over the volume. The microscopic coordinates

work as weighting functions, leading in some cases to

physically inconsistent results [33]. Furthermore,

higher order constitutive components are identified,

also when a homogeneous elastic material at the

micro-level is considered.

To overcome these drawbacks, a different

approach, based on the spatial average theorem, to

derive the macroscopic balance equations, is proposed

in [33] in the case of second order or couple stress

continuum at the macro-level. In this way, the higher

order constitutive coefficients depend only on the

microscopic perturbation, that vanishes in the case of

homogeneous material. This technique is, however,

applied within the framework of the asymptotic

approach. Its extension to the case of continua at the

macro- and micro-levels, characterized by a different

number of kinematic and static fields, as well as by a

different number of governing equations, is not

straightforward. Other interesting proposals can be

found in the framework of the asymptotic methods [6,

29], directly causing the internal length parameter to

vanish, when the material is homogeneous. Analytical

derivation of the bending moduli in the case of a

homogenization procedure, coupling a couple stress

continuum at the macro-level with a Cauchy medium

at the micro-scale, is presented in [9], considering a

dilute suspension of spherical inclusions embedded in

an isotropic elastic matrix.

The generalized Hill–Mandel macrohomogeneity

condition is used in this work to identify the linear

elastic homogenized coefficients of the Cosserat

continuum adopted at the macro-level and to put in

evidence the drawbacks of this approach. A simple

periodic composite medium is considered, by focusing

on the influence of the selection of the UC, [11]. A

critical interpretation of the obtained results is

provided.

The paper is organized as follows: in Sect. 2, the

computational homogenization technique is illustrated

and the adopted kinematic map is introduced; in

Sect. 3, two different procedures for the determination

of the perturbation fields are addressed and compared

by means of selected numerical tests. Section 4 deals

with the problem of identifying the homogenized

elastic constitutive terms. Finally, in Sect. 5 some

concluding remarks are reported.

2 Cosserat–Cauchy homogenization

The computational homogenization procedure adopts

the Cosserat continuum at the macro-level and the

Cauchy medium at the micro-level. According to the

classical Cosserat formulation for 2D media, at the

typical macroscopic material point X ¼ fX1; X2gT ,
the displacement vector U ¼ fU1; U2; UgT is defined,
where U1 and U2 are the translational degrees of

freedom and U is the rotational one. The Cosserat

strain vector is partitioned into three sub-vectors as

follows:

E ¼
�E

K

H

8
><

>:

9
>=

>;
; ð1Þ

where �E collects the axial and symmetric shear strains:
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�E ¼
E1

E2

C12

8
><

>:

9
>=

>;
¼ L

U1

U2

� �

withL ¼

o

oX1

0

0
o

oX2

o

oX2

o

oX1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

ð2Þ

K is the vector collecting the curvature components,

defined as:

K ¼
K1

K2

� �

¼ rU withr ¼

o

oX1

o

oX2

8
>><

>>:

9
>>=

>>;

; ð3Þ

and H is the skew-symmetric shear component:

H ¼ 2 U� ST
U1

U2

� �

with S ¼
� o

oX2

o

oX1

8
>><

>>:

9
>>=

>>;

: ð4Þ

Consistently with the strain driven approach, the

macroscopic strain components, evaluated at X, are

used as input variable for the microscopic level.

Indeed, the BVP at the micro-level is stated by

defining a kinematic map expressed in function of the

vector E.

The Cosserat stress, work-conjugated with the

strain E, is defined as:

R ¼
�R

M

Z

8
><

>:

9
>=

>;
; ð5Þ

where:

�R ¼
R1

R2

RSYM
12

8
><

>:

9
>=

>;
; M ¼

M1

M2

� �

ð6Þ

and R1 and R2 are the axial stress components, RSYM
12

and Z are the symmetric and skew-symmetric shear

stress components, respectively, and M1 and M2 are

the couple stress components. The balance equations,

thus, result as:

�LRþ F ¼ 0;

with �L ¼

o

oX1

0
o

oX2

0 0
o

oX2

0
o

oX2

o

oX1

0 0 � o

oX1

0 0 0
o

oX1

o

oX2

2

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð7Þ

where F ¼ fF1 F2 CgT is the vector of body forces

and couple.

Considering a periodic medium, a repetitive UC,

containing all the necessary information regarding the

material and geometrical properties of the composite,

can be selected for the micromechanical and homog-

enization analyses. In particular, a rectangular UC is

analyzed, whose size is a1 � a2 and its center is

located at the macroscopic point X, characterized by

the displacement field u ¼ fu1; u2gT , defined at each

point x ¼ x1; x2f gT of the UC domain x.
The relation between the macro-level displacement

vector UðXÞ and the micro-level displacement field

u xð Þ, derived by enforcing the minization of a proper

defined functional as described in detail in [1, 16],

results as

U1ðXÞ¼hu1ðxÞix
U2ðXÞ¼hu2ðxÞix

UðXÞ¼ 12

a21þa22
� �hu2ðxÞðx1�X1Þ�u1ðxÞðx2�X2Þix

ð8Þ

where the symbol h�ix indicates the average value of

the variable in x. These represent the homogenization

conditions for the micro-level displacement compo-

nents. Note that the macroscopic rotation U is defined

as the average rigid rotation of the UC around its

center located at X.

The following representation form, typical of the

first order homogenization approach, where the

Cauchy model is used at both the macro- and micro-

level [27], is assumed for the displacement field,

solution of the BVP at the typical point x of the UC:

u X; xð Þ ¼ u� X; xð Þ þ eu X; xð Þ; ð9Þ

in which the dependence on the macroscopic and

microscopic coordinates, X and x, is indicated.
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According to Eq. (9), the displacement is expressed as

the superposition of an assigned field u� X; xð Þ, i.e., the
kinematic map, depending on the macro-level defor-

mation vector E, and a perturbation field eu X; xð Þ. The
strain vector at the microscopic level is derived by

applying the kinematic operator defined for the 2D

Cauchy problem and, in expanded form, it results as:

e ¼
e1
e2
c12

8
><

>:

9
>=

>;
¼ l

u1

u2

� �

with l xð Þ ¼
�;1 0

0 �;2
�;2 �;1

2

6
4

3

7
5;

ð10Þ

where �;i indicates the partial derivative with respect

to xi:According to Eq. (9), the strain can be written as:

e X; xð Þ ¼ e� X; xð Þ þ ee X; xð Þ ð11Þ

with evident meaning of the symbols. The stress is

determined by the following linear elastic constitutive

equation:

r X; xð Þ ¼ c xð Þ e X; xð Þ ; ð12Þ

where c xð Þ ¼ cij xð Þ
� �

is the 3� 3 elastic matrix of the

composite constituent. In the following, it is assumed

that all the constituents are characterized by isotropic

behavior.

A key point of the procedure is the definition of a

suitable kinematic map, i.e., the form of the assigned

field u� X; xð Þ as a function of the macroscopic strain

variables. The different nature of the continua coupled

at the two levels implies that this step is not

straightforward. In what follows, the third order

polynomial map proposed in [1], is adopted.

The linear terms of the map depend on the macro-

scopic Cauchy strain vector E, while the quadratic and

cubic terms depend on the curvatures and the skew-

symmetric shear K andH, respectively. The final form

of the kinematic map is built in two steps.

– the first step concerns the definition of the linear

terms, involving the macroscopic Cauchy strain.

This is a standard homogenization problem and the

related part of the kinematic map is very well-

known. Indeed, all the homogenization process at

the first order can be performed independently on

the higher order problem. Thus, with reference to a

2D orthotropic homogenized medium, the effec-

tive elastic constants for the equivalent Cauchy

medium can be identified and the Young’s moduli

e1 and e2 and Poisson ratio m12 can be determined.

– once the first order homogenization problem has

been solved, the higher order problem can be

approached. To ensure that the kinematic map

leads to an equilibrated stress field for the first

order homogenized material, the quadratic and

cubic terms of the map contain the first order

homogenized constants, as shown in [1].

In the following, the final and complete form of the

kinematic map is presented containing all the additive

terms. In the considered orthotropic case, the kine-

matic map can be written in compact form as:

u� X; xð Þ ¼ A1 xð ÞE Xð Þ þ A2 xð ÞK Xð Þ þ A3 xð ÞH Xð Þ
¼ A xð ÞE Xð Þ;

ð13Þ

where

A xð Þ ¼ A1 xð Þ A2 xð Þ A3 xð Þ
� �

; ð14Þ

with

A1 xð Þ ¼
x1 0

1

2
x2

0 x2
1

2
x1

2

6
6
4

3

7
7
5; ð15Þ

A2 xð Þ ¼
�a1x1x2 � a2

1

2
x22 þ k1m12x

2
1

� �

1

2
a1 x21 þ m12x

2
2

� �
a2x1x2

2

6
4

3

7
5;

ð16Þ

A3 xð Þ ¼ a3s
3b1x

2
1x2 þ c1x

3
2

�3b2x1x
2
2 � c2x

3
1

" #

; ð17Þ

In formulas (15)–(17), k1 ¼ e2=e1, e1 and e2 are

Young’s moduli of the equivalent homogenized

orthotropic material, m12 is the Poisson ratio and:

b1 ¼ k1 1þ q2m12
� �

; c1 ¼ b2 � 2k2;

b2 ¼ q2 þ k1m12; c2 ¼ b2 � 2q2k2;
ð18Þ

where k2 ¼ e2=g12, g12 being the homogenized shear

modulus, while q ¼ a2=a1 is the ratio between the

dimensions of the UC and
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s¼ 10 1þq2ð Þ
a21 k1þq2 k1m12� 2k2ð Þ 1þq2ð Þþq4½ �f g :

ð19Þ

As briefly discussed above, the matrices A1, A2, A3,

multiplying the macroscopic strain vectors E, K andH
in the adopted polynomial map, contain the effective

elastic coefficients of the equivalent Cauchy medium.

The possible dependence of the kinematic map on the

effective elastic coefficients, as a consequence of the

enforcement of the balance equations in the homoge-

nizedUC, has been observed also in [9, 17] in the case of

couple stress and micromorphic media, respectively. In

this way the perturbation field arises only as a conse-

quence of the heterogeneous nature of the medium,

while vanishes for the homogenized material. It is worth

noting that this represents the relevant advantage of the

adopted kinematic map. On the other hand, this could

also seem to limit the application of the methodology to

describe nonlinear constitutive behavior. Indeed, if

nonlinear effects, such as plasticity, damage, viscosity,

are all accounted for by introducing an inelastic strain in

the overall constitutive relationship, the initial effective

elastic matrix does not change during the evolution

process of the nonlinear mechanisms [2]. As a conse-

quence, the coefficients in the map also remain the

same. Moreover, even the tangent stiffness matrix can

be obtained as the sumof the initial elastic one and a part

that depends on the derivative of the inelastic strain

vector with respect to the macroscopic strain.

The effect of the perturbation parts of the displace-

ment field in determining the average macroscopic

strains is taken into account by the quantities a1, a2 and
a3. In particular, it is set:

a1 ¼ 1� k1

K1

; a2 ¼ 1� k2

K2

; a3 ¼ 1� h
H

; ð20Þ

with k1, k2 and k3 the average macroscopic strains due

to the perturbation parts of the displacement field,

resulting as:

k1 ¼
12

a21 þ a22
heu2 þ

oeu2

ox1
x1 �

oeu1

ox1
x2ix;

k2 ¼
12

a21 þ a22
h�eu1 �

oeu1

ox2
x2 þ

oeu2

ox2
x1ix;

h ¼ 12

a21 þ a22
heu2x1 � eu1x2ix � STheuix:

ð21Þ

For example, when the value K̂1 is applied, generally a

non zero term k1 is obtained, corresponding to an actual

applied curvature equal to K1 ¼ K̂1 þ k1. Note that the

quantities k1, k2 and h are not a priori known, since their
values depend on the average of the perturbation fields

and its derivatives, as shown in Eq. (21). Therefore,

they can be computed only after solving the microme-

chanical problem on the UC, according to the follow-

ing procedure. Considering for example the case of K̂1,

first the value of a1 is set equal to 1, assuming k1 ¼ 0.

After solving the boundary value problem on the UC,

the perturbation fields and the quantity k1 are evalu-

ated by means of Eq. (21). This implies that the UC is

subjected to a resulting macroscopic curvature K1 ¼
K̂1þ k1. As a consequence, K̂1 ¼ K1 � k1 ¼ a1K1 and

the expression reported in Eq. (13) is recovered. The

same procedure is followed for the cases of K2 andH.

Once determined, the parameters a1, a2 and a3 in (20)
are definitely known. The strain field derived from the

kinematic map, in compact form, results as:

e� X; xð Þ ¼ B1 xð ÞE Xð Þ þ B2 xð ÞK Xð Þ þ B3 xð ÞH Xð Þ
¼ B xð ÞE Xð Þ; ð22Þ

where

B xð Þ ¼ B1 xð Þ B2 xð Þ B3 xð Þ
� �

¼ l xð ÞA xð Þ :
ð23Þ

The three submatrices in formula (23) have the

following explicit forms:

B1 xð Þ ¼ I; ð24Þ

B2 xð Þ ¼
�a1x2 �a2k1m12x1
a1m12x2 a2x1

0 0

2

6
4

3

7
5; ð25Þ

B3 xð Þ ¼ a3s

6sbx1x2

�6b2x1x2

3 b1 � c2ð Þx21 þ c1 � b2ð Þx22
� �

2

6
4

3

7
5; ð26Þ

I being the 3� 3 identity matrix.

3 Characterization of the perturbation field

The vector eu X; xð Þ introduced in Eq. (9) is an

unknown perturbation field, that accounts for the

effects of heterogeneities and vanishes in the trivial
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case of a homogeneous material, thanks to the specific

form adopted for the kinematic map. In the case of the

first order homogenization, eu X; xð Þ is a periodic

fluctuation. Hence, the BVP on the UC can be solved

by assigning periodic boundary conditions. When

higher order polynomials are included in the kinematic

map, there is no reason to assume periodic displace-

ment and strain fluctuation fields and anti-periodic

traction vectors at the boundary. The anti-periodicity

of the tractions, usually holding in the standard first

order homogenization, ensures equilibrium at the cell

interfaces. In the framework of higher order compu-

tational homogenization, as the periodicity conditions

may be lost, the anti-periodicity of the tractions at the

interfaces between adjacent UCs do not hold anymore

[6, 17, 33].

In this section, two different approaches to

characterize the fluctuation field are introduced.

The first technique, presented in Sect. 3.1, assumes

the decomposition of the perturbation field eu X; xð Þ
in different contributions, related to the first, second

and third order gradient of the kinematic map. The

second technique, discussed in Sect. 3.2, is based on

the enforcement of proper boundary conditions (BCs)

on the UC, as described in [1]. These result from the

analysis of the actual perturbation field distribution in

the RVE undergoing remote fully displacement

BCs. A comparison between the numerical results

obtained using the adopted procedures for a paradig-

matic example of a two-phase composite material,

characterized by cubic symmetry, is proposed in

Sect. 3.3.

3.1 Micromechanical description

of the heterogeneous medium: a three-step

homogenization

The procedure based on the methodology proposed in

[33] is extended to the case of a 2D Cosserat medium

at the macroscopic scale. Here, the main steps of the

proposed procedure are addressed, exploiting the

superposition principle. Initially, only the first order

terms of the kinematic map, multiplying the vector E

in (13), are activated; subsequently, the effects of the

quadratic terms related to K are considered and,

finally, the third order term associated withH is taken

into account.

When only the linear terms of the kinematic map

are considered, the case of the first order homoge-

nization is recovered. In this instance, considering

K ¼ 0 and H ¼ 0, the two terms defining the

displacement field u X; xð Þ in (9) can be expressed as:

u� X; xð Þ ¼ A1 xð ÞE Xð Þ; eu X; xð Þ ¼ er1 X; xð Þ ;
ð27Þ

where the perturbation term er1 X; xð Þ is an unknown

field. Here, it is assumed that er1 X; xð Þ is evaluated as

the product of unknown functions times the compo-

nents of the first gradient of the kinematic map. In

particular, this is written in vectorial form as

c1 ¼ fu�1;1; u�1;2; u�2;1; u�2;2g
T
. Since it results that

u�1;2 ¼ u�2;1, only three components of c1 are indepen-

dent and the following reduced vector can be

considered:

c1 X; xð Þ ¼
e�1
e�2
c�12

8
><

>:

9
>=

>;
: ð28Þ

Thus, it is assumed that the perturbation term is given

by:

er1 X; xð Þ ¼ K1 xð Þ c1 X; xð Þ: ð29Þ

Concerning K1 xð Þ, it can be written as:

K1 xð Þ ¼ K1
1 xð Þ K1

2 xð Þ K1
3 xð Þ

� �
; ð30Þ

K1
i xð Þ, i ¼ 1; 2; 3; being evaluated by applying the

components E1, E2 and C12 of the vector E, respec-

tively, as described in detail in Sect. 3.1.1.

When the presence of the curvature vector K is also

considered, with H ¼ 0, the two terms defining the

displacement field u X; xð Þ in (9) can be expressed as:

u� X; xð Þ ¼ A1 xð ÞE Xð Þ þ A2 xð ÞK Xð Þ;
eu X; xð Þ ¼ K1 xð Þ c1 X; xð Þ þ er2 X; xð Þ;

ð31Þ

where now er2 X; xð Þ is the only unknown field.

Following the same procedure as for the first term

er1 X; xð Þ, it is assumed that er2 X; xð Þ is expressed as the
product of unknown functions and the components of

the first gradient of c1 X; xð Þ, which is arranged in the

vector c2 ¼ fe�1;1; e�1;2; e�2;1; e�2;2; c�12;1; c�12;2g
T
. As, if

H ¼ 0, it results that c�12;1 ¼ c�12;2 ¼ 0; the only
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nonvanishing components of c2 are arranged in the

following vector:

c2 X; xð Þ ¼

e�1;1
e�1;2
e�2;1
e�2;2

8
>>><

>>>:

9
>>>=

>>>;

: ð32Þ

Then, the unknown field er2 X; xð Þ is represented in the
form:

er2 X; xð Þ ¼ K2 xð Þ c2 X; xð Þ; ð33Þ

with the matrix K2 xð Þ defined as:

K2 xð Þ ¼ K2
1 xð Þ K2

2 xð Þ K2
3 xð Þ K2

4 xð Þ
� �

; ð34Þ

K2
i xð Þ, i ¼ 1; . . .; 4; being functions evaluated accord-

ing to the procedure illustrated in Sect. 3.1.2.

Finally, when the component H is also taken into

account, it results that:

u� X;xð Þ ¼ A1 xð ÞE Xð ÞþA2 xð ÞK Xð ÞþA3 xð ÞH Xð Þ;
eu X;xð Þ ¼K1 xð Þc1 X;xð ÞþK2 xð Þc2 X;xð Þþer3 X;xð Þ:

ð35Þ

The field er3 X;xð Þ is written as the product of unknown
functions times the components of the first gradient of

c2 X;xð Þ, which are arranged in the vector:

c3 ¼ fe�1;11; e�1;12; e�1;21; e�1;22; e�2;11; e�2;12; e�2;21;
e�2;22; c

�
12;11; c

�
12;12; c

�
12;21; c

�
12;22g

T :

As in the previous cases, only the relevant and

nonvanishing components of c3 are collected in the

reduced vector, resulting as:

c3 X; xð Þ ¼
e�1;12
e�2;12
c�12;12

8
><

>:

9
>=

>;
: ð36Þ

Again, the unknown vector er3 X; xð Þ is expressed as:

er3 X; xð Þ ¼ K3 xð Þ c3 X; xð Þ; ð37Þ

with

K3 xð Þ ¼ K3
1 xð Þ K3

2 xð Þ K3
3 xð Þ

� �
; ð38Þ

K3
i xð Þ, i ¼ 1; . . .; 3, being functions evaluated accord-

ing to the procedure illustrated in Sect. 3.1.3.

Finally, the total fluctuation displacement vector

eu X; xð Þ can be expressed as the sum of three fields

evaluated in sequence (three-step homogenization),

according to formulas (29), (33) and (37):

eu X; xð Þ ¼ er1 X; xð Þ þ er2 X; xð Þ þ er3 X; xð Þ
¼ K1 xð Þ c1 X; xð Þ þ K2 xð Þ c2 X; xð Þ
þ K3 xð Þ c3 X; xð Þ:

ð39Þ

The typical component (i ¼ 1; 2) of the vectors

er1 X; xð Þ, er2 X; xð Þ and er3 X; xð Þ takes the explicit

expression:

er1i X; xð Þ ¼ K1
i1 xð Þ E1 Xð Þ � a1K1 Xð Þx2½

� a2K2 Xð Þk1m12x1 þ 6a3H Xð Þs b1x1x2�
þ K1

i2 xð Þ E2 Xð Þ þ a2K2 Xð Þx1½
þ a1K1 Xð Þm12x2 � 6a3H Xð Þs b2x1x2�
þ K1

i3 xð Þ C12 Xð Þ þ 3a3H Xð Þf
s b1 � c2ð Þx21 þ c1 � b2ð Þx22
� �

g;
ð40Þ

er2i X;xð Þ ¼ K2
i1 xð Þ �a2K2 Xð Þk1m12 þ 6a3H Xð Þsb1x2½ �

þK2
i2 xð Þ �a1K1 Xð Þ þ 6a3H Xð Þs b1x1½ �

þK2
i3 xð Þ a2K2 Xð Þ � 6a3H Xð Þs b2x2½ �

þK2
i4 xð Þ a1K1 Xð Þm12 � 6a3H Xð Þsb2x1½ �

¼ �K2
i1 xð Þ a1K1 Xð Þ þ ��K

2

i1 xð Þ6a3H Xð Þs x1
h i

þ �K2
i2 xð Þ a2K2 Xð Þ þ ��K

2

i2 xð Þ6a3H Xð Þs x2
h i

;

ð41Þ

er3i X; xð Þ ¼ K3
i1 xð Þ 6a3H Xð Þs b1½ �

þ K3
i2 xð Þ �6a3H Xð Þs b2½ �

þ K3
i3 xð Þ 6a3H Xð Þs b1 � c2ð Þ½ �

¼ K3
i xð Þ 6a3H Xð Þs 2b1 � b2 � c1ð Þ½ �;

ð42Þ

where

�K2
i1 xð Þ ¼ �K2

i2 xð Þ þK2
i4 xð Þm12;

��K
2

i1 xð Þ ¼ ðK2
i2 xð Þb1 �K2

i4 xð Þb2Þ= �K2
i1 xð Þ;

�K2
i2 xð Þ ¼ �K2

i1 xð Þk1m12 þK2
i3 xð Þ;

��K
2

i2 xð Þ ¼ ðK2
i1 xð Þb1 �K2

i3 xð Þb2Þ= �K2
i2 xð Þ;

ð43Þ

and K3
i1 xð Þ ¼ K3

i2 xð Þ ¼ K3
i3 xð Þ ¼ K3

i xð Þ.
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Similarly to [6, 33], it is assumed that the functions

in Ki xð Þ (i ¼ 1; 2; 3) satisfy the periodicity conditions

in the UC.

In the next sections, the details of the procedure to

obtain Ki xð Þ are addressed and the boundary condi-

tions to be imposed on the UC are derived. For the sake

of brevity, as of now, the explicit dependence of the

macroscopic strain components and of the perturba-

tion fields on X and x, respectively, is omitted if not

strictly necessary.

It may be remarked that the perturbation field, given

by Eq. (39), is expressed as a linear combination of the

macroscopic strain components according to

Eqs. (40), (41) and (42). The coefficients of the linear

combination depend on the functions in Ki xð Þ.

3.1.1 First order case

When at the macroscopic level only the presence of

the components E1, E2 and C12 is considered, the first

order computational homogenization is recovered. As

known [3, 23], in this case the perturbation field is

periodic. Hence, the unknown field eu is evaluated by

imposing periodic boundary conditions on the UC.

Taking into account Eqs. (27) and (29), the displace-

ment field components in (9) take the following

explicit representation form:

u1 ¼ x1E1 þ
1

2
x2C12 þ K1

11E1 þ K1
12E2 þ K1

13C12

u2 ¼
1

2
x1C12 þ x2E2 þ K1

21E1 þ K1
22E2 þ K1

23C12:

ð44Þ

Setting E1 ¼ 1 and E2 ¼ C12 ¼ 0 in Eq. (44), by

solving the micromechanical problem, the functions

K1
11 and K1

21 under the periodicity conditions are

determined. Analogously, setting E2 ¼ 1 and

E1 ¼ C12 ¼ 0, it is possible to evaluate the periodic

functions K1
12 and K1

22; finally, setting C12 ¼ 1 and

E1 ¼ E2 ¼ 0, the periodic functions K1
13 and K1

23 are

determined.

3.1.2 Second order case

Aiming at the evaluation of the unknown field er2, the

displacement components in Eq. (9) are now written

taking into account Eqs. (31), (40) and (41), the

expression of the operator A2 given in (16) and setting

E ¼ 0:

u1 ¼ �a1x1x
2
2K1 � a2

1

2
x22 þ k1m12x

2
1

� �
K2

þ K1
11ð�a1K1x2 � a2K2k1m12x1Þ

þ K1
12ða2K2x1 þ a1K1m12x2Þ

þ K2
11ð�a2K2k1m12Þ þ K2

12ð�a1K1Þ
þ K2

13ða2K2Þ þ K2
14ða1K1m12Þ

u2 ¼
1

2
a1 x21 þ m12x

2
2

� �
K1 þ a2x1x2K2

þ K1
21ð�a1K1x2 � a2K2k1m12x1Þ

þ K1
22ða2K2x1 þ a1K1m12x2Þ

þ K2
21ð�a2K2k1m12Þ þ K2

22ð�a1K1Þ
þ K2

23ða2K2Þ þ K2
24ða1K1m12Þ

ð45Þ

To evaluate the 8 unknown functions K2
ij (i ¼ 1; 2;

j ¼ 1; . . .; 4), assuming that the periodicity conditions

hold for them, the two components of the displace-

ment field u1 and u2 are represented in the form:

u1 ¼ u
ð1Þ
1 þ u

ð2Þ
1 þ u

ð3Þ
1 þ u

ð4Þ
1

u2 ¼ u
ð1Þ
2 þ u

ð2Þ
2 þ u

ð3Þ
2 þ u

ð4Þ
2

ð46Þ

where

– u
ð1Þ
1 and u

ð1Þ
2 depend only on the unknown func-

tions K2
14 and K2

24,

– u
ð2Þ
1 and u

ð2Þ
2 depend only on the unknown func-

tions K2
12 and K2

22,

– u
ð3Þ
1 and u

ð3Þ
2 depend only on the unknown func-

tions K2
11 and K2

21,

– u
ð4Þ
1 and u

ð4Þ
2 depend only on the unknown func-

tions K2
13 and K2

23.

In particular, it is set:

– Case 1

u
ð1Þ
1 ¼ K1

12x2þK2
14

� �
a1m12K1

u
ð1Þ
2 ¼ 1

2
a1 x21þ m12x

2
2

� �
K1þ K1

22x2þK2
24

� �
a1m12K1

ð47Þ

Setting K1 ¼ 1 the micromechanical problem is

solved and the unknown periodic functions K2
14

and K2
24 are determined.
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– Case 2

u
ð2Þ
1 ¼ �a1x1x

2
2K1 � K1

11x2 � K2
12

� �
a1 K1

u
ð2Þ
2 ¼ � K1

21x2 � K2
22

� �
a1 K1

ð48Þ

Setting K1 ¼ 1, the micromechanical problem is

solved and, in this case, the unknown periodic

functions K2
12 and K2

22 are evaluated.

– Case 3

u
ð3Þ
1 ¼ �a2

1

2
x22 þ k1m12x

2
1

� �
K2

� K1
11x1 þ K2

11

� �
a2k1m12 K2

u
ð3Þ
2 ¼ � K1

21x1 þ K2
21

� �
a2k1m12 K2

ð49Þ

Setting K2 ¼ 1, the micromechanical problem is

solved and the unknown periodic functions K2
11

and K2
21 are computed.

– Case 4

u
ð4Þ
1 ¼ K1

12x1 þ K2
13

� �
a2 K2

u
ð4Þ
2 ¼ a2x1x2K2 þ K1

22x1 þ K2
23

� �
a2 K2

ð50Þ

Setting K2 ¼ 1, the micromechanical problem is

solved and now the unknown periodic functions

K2
13 and K2

23 are determined.

It can be proved that, following the proposed proce-

dure, the displacement fields across two adjacent UCs

are continuous.

3.1.3 Third order case

Finally, to compute the unknown field er3, the

displacement components in (9) are expressed con-

sidering Eqs. (35), (40), (41) and (42), under the

hypothesis that both E and K vanish, as:

u1 ¼ a3Hs 3b1x
2
1x2 þ c1x

3
2

� �

þ K1
116a3Hsb1x1x2 � K1

126a3Hsb2x1x2

þ K1
133a3Hs b1 � c2ð Þx21 þ c1 � b2ð Þx22

� �

þ K2
11ð6a3Hsb1x2Þ þ K2

12ð6a3Hsb1x1Þ
þ K2

13ð�6a3Hsb2x2Þ þ K2
14ð�6a3Hsb2x1Þ

þ K3
1 6a3Hs 2b1 � b2 � c1ð Þ½ �

u2 ¼� a3Hs 3b2x1x
2
2 þ c2x

3
1

� �

þ K1
216a3Hsb1x1x2 � K1

226a3Hsb2x1x2

þ K1
233a3Hs b1 � c2ð Þx21 þ c1 � b2ð Þx22

� �

þ K2
21ð6a3Hsb1x2Þ þ K2

22ð6a3Hsb1x1Þ
þ K2

23ð�6a3Hsb2x2Þ þ K2
24ð�6a3Hsb2x1Þ

þ K3
2 6a3Hs 2b1 � b2 � c1ð Þ½ �

ð51Þ

The functions K3
i (i ¼ 1; 2) are evaluated assuming

periodicity conditions between corresponding edges

of the UC.

3.2 Micromechanical description

of the heterogeneous medium: analysis

of the perturbation field in the RVE

The characterization of the perturbation field eu is

performed considering a RVE obtained as assemblage

of a large number of UCs for a selected two-phase

periodic composite material; the RVE is subjected to

remote fully displacement BCs. In particular, the

Cosserat deformation modes are imposed on the

boundary, according to the kinematic map in

Eq. (13), and the RVE response is evaluated by the

Finite Element (FE) method. Hence, the distribution of

the perturbation field arising in the central UC of the

RVE is taken as the benchmark. It is assumed as the

actual field occurring in the composite, when second

and third order polynomial terms of the kinematic map

related to the additional Cosserat strain components

are assigned. Thus, the problem of the derivation of

suitable BCs to impose on a single UC is investigated,

in order to reproduce, with a satisfactory level of

accuracy, the actual distribution of the perturbation

field.

In particular, some selected two-phase composite

materials, characterized by material symmetries rang-

ing from cubic to orthotropic are analyzed. In Fig. 1,

the UCs corresponding to the four different analyzed

textures are shown.

In all the considered cases, similar distributions of

the perturbation displacement fields on the UC

boundary emerge. Differently from the case of the

first order homogenization procedure, where periodic
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BCs are suitably adopted, in the analyzed cases more

complex BCs have to be considered, which are

different for the two components of eu. In Fig. 2 the

derived BCs are summarized. In the first row, the

applied Cosserat macroscopic deformation compo-

nents are reported; in the second row the BCs for the

component eu1 along the horizontal and vertical edges

of the UC are schematically reported, while in the third

row those for the displacement component eu2 are

shown. The symbol ‘‘p’’ indicates periodic BCs, ‘‘s’’

skew-periodic BCs, while ‘‘0’’ indicates zero pertur-

bation displacement BCs.

3.3 Perturbation displacement fields: comparison

between the proposed approaches

The approaches presented above to evaluate the

perturbation field eu on the UC are compared by

carrying out some numerical tests. Computations are

performed by using classical Lagrangian bi-quadratic

8-node FEs within the FEAP code [28].

In particular, numerical analyses are developed for

a two-phase composite material, characterized by

cubic symmetry. The texture is made from a soft

matrix with stiff square inclusions, both isotropic,

regularly spaced and arranged as shown in Fig. 3,

where the RVE is represented. The ratio between

Young’s moduli of the inclusions, ei, and of the

matrix, em, is set ei=em ¼ 102, while the same Poisson

ratio m ¼ 0:3 is used for both the materials. The

volume fraction f, defined as the ratio between the area

of the inclusions and the total area of the UC, is set

equal to 36 %.

Fig. 1 Analyzed textures

Fig. 2 Boundary conditions required for the perturbation fields when 2D Cosserat strain components are applied

Fig. 3 RVE of the two-phase composite material Fig. 4 UCs considered for the composite material
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In Fig. 3, the dashed lines delimit the central UC

represented in Fig. 4a. Of course, the choice of the UC

is not unique and different UCs can be selected, as for

example that shown in Fig. 4b, [11, 12]. In the

following, they will be referred as UC(a) and UC(b).

Micromechanical analyses concerning the macro-

scopic strain components E1, E2 and C12 are standard

and are not presented below. Thus, numerical analyses

are carried out only for the components K1, K2 andH.

Fully displacement BCs, evaluated according to the

kinematic map in Eq. (13), are imposed at the

boundary of the RVE and the corresponding pertur-

bation fields along the edges of the central UC are

evaluated. These are compared with those obtained

analyzing a single UC and applying the procedures

described in Sects. 3.1 and 3.2, denoted in the

following by M1 and M2, respectively. Both the UCs

represented in Fig. 4 are analyzed.

Since the selected material exhibits cubic symme-

try, the expressions of the coefficients s, b1, b2, c1 and

c2, defined in Eqs. (18) and (19), become simpler.

In all the reported figures, solid lines correspond to

the perturbation displacement fields, evaluated at the

boundary of the UC located at the center of the RVE.

Dashed lines refer to those evaluated for the single

UC, adopting the procedure M1, and dotted lines

correspond to the results obtained imposing the BCs

deduced from the procedureM2. Moreover, the values

of the displacements are normalized with respect to the

maximum value in the UC of the correspondent

component, obtained from the kinematic map.

Initially, the values of the coefficients a1, a2 and a3
are determined. To this end, the UCs represented in

Fig. 4 are analyzed and the integrals in Eq. (21) are

evaluated. From computations, it results that the

values of k1=K1, k2=K2 and h=H are lower than 10�2

in this case, so that their effect can be neglected; then,

in the following it is assumed a1 ¼ a2 ¼ a3 ¼ 1. It is

worth noting that these coefficients are generally not

negligible. Indeed, their values depend on the specific

geometrical and mechanical properties of the UC.

Nevertheless, the coefficients a1, a2 and a3 can be

computed following the procedure described in

Sect. 2. It could be also emphasized that the very

low values of the ratios k1=K1, k2=K2 and h=H are due

to the kinematic map here adopted, that avoids the

presence of perturbation displacements when homo-

geneous media are considered.

First of all, the case where K1 6¼ 0 is considered,

while all the other macroscopic strain components

vanish. In this case, the displacements applied at the

boundary of the RVE are u�1 ¼ �K1x1x2; u
�
2 ¼

1

2
K1ðx21 þ m12x

2
2Þ.

In Figs. 5 and 6, the results for the UC(a) are

reported. In particular, in Fig. 5 the horizontal and

vertical perturbation components are plotted along the

TOP and BOTTOM horizontal lines (see Fig. 3). No

differences arise between the results for the horizontal

component, while it is evident that a better approxi-

mation of the vertical component is obtained with M1

compared to M2. Instead, in Fig. 6 the three proce-

dures lead to the same results for both horizontal and

vertical components along the vertical lines (LEFT

and RIGHT).

Figures 7 and 8 show the horizontal and vertical

components of the perturbation fields along horizontal

and vertical edges considering the UC(b). Obviously,

the central UC in the RVE is selected accordingly. In

this case, too, it emerges that the procedureM1 is more

effective in capturing the actual response of the

composite material. To be noted is that the solution

corresponding to the curvature K2 can be obtained by

rotating by p=2 that evaluated for K1.

Finally, the case H 6¼ 0 is considered. Now, the

applied BCs on the RVE are computed according to

u�1 ¼Hs 3b1x
2
1x2 þ c1x

3
2

� �
;u�2 ¼�Hs 3b2x1x

2
2 þ c2x

3
1

� �
.

In Figs. 9 and 10, the results for the UC(a) are first

shown. In this case, the horizontal and vertical

perturbation components along the TOP and BOT-

TOM lines coincide with the vertical and horizontal

components along the LEFT and RIGHT lines,

respectively. In Figs. 11 and 12, the case of the

UC(b) is analyzed. Also considering this macro-strain

component, there is an evident improvement in repro-

ducing the displacement field of the RVE, for all the

considered components, adopting the procedure M1.

3.4 Characterization of the tractions

As mentioned in Sect. 3, the classical anti-periodicity

of the tractions on the UC boundary, holding in the

first order homogenization framework, is not verified

in relation to the higher order deformation modes.

Considering, for example, the case of K1 ¼ 1 and all

the other macroscopic strain components set equal to
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zero, it is interesting to show the actual trends of the

traction components along the boundaries of the

central unit cell extracted from the RVE (Fig. 3),

made assembling UC(a) (Fig. 4). This will be assumed

as the reference solution.

In Fig. 13a, b the traction components t1 and t2 are

plotted along the top (tT1=2) and bottom (tB1=2) edges. It

emerges that the t1 component is skew-periodic, while

the t2 component is periodic.

In Fig. 14a, b the traction components t1 and

t2 are plotted along the left (tL1=2) and right (tR1=2)

edges. Also in this case it results that the t1 component

is skew-periodic, while the t2 component is periodic.

Fig. 5 K1 component on the UC (a): (1) horizontal and (2) vertical perturbation components along the horizontal lines

Fig. 6 K1 component on the UC (a): (1) horizontal and (2) vertical perturbation components along the vertical lines

Fig. 7 K1 component on the UC(b): (1) horizontal and (2) vertical perturbation component along the horizontal lines
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The reported distributions, satisfying the equilib-

rium conditions enforced in the adopted FE formula-

tion, show that the classical anti-periodicity conditions

do not hold anymore.

It appears also relevant to show the same distribu-

tions, obtained by analyzing the single UC and by

applying the two proceduresM1 andM2, in comparison

with the reference solution. In Fig. 15a, b the t1 and t2
components, respectively, are reported along the top

edge of UC(a). Similarly, in Fig. 16a, b the t1 and t2
components, respectively, are depicted along the left

edge of UC(a). In all the shown cases, a satisfactory

agreement with the reference trends emerges, mainly

when the more complex procedure M1 is adopted.

Fig. 8 K1 component on the UC (b): (1) horizontal and (2) vertical perturbation components along the vertical lines

Fig. 9 H component on the UC (a): (1) horizontal and (2) vertical perturbation component along the horizontal lines

Fig. 10 H component on the UC (a): (1) horizontal and (2) vertical perturbation components along the vertical lines
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It can be deduced that, although the UC satisfies the

equilibrium condition with zero body forces, the

equilibrium between adjacent cells is not ensured. This

is a consequence of the adopted approximated BCs.

Note that, if the classical periodicity conditions were

adopted to evaluate the perturbation field ~u, the

derived tractions on the UC boundary would have

been significantly far from the reference solution.

Indeed, these are not reported in Figs. 15 and 16, as

their values are completely out of range.

Fig. 12 H component on the UC(b): (1) horizontal and (2) vertical perturbation components along the vertical lines

Fig. 11 H component on the UC(b): (1) horizontal and (2) vertical perturbation component along the horizontal lines
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Fig. 13 Traction components along the TOP and BOTTOM edges of the UC(a) in the RVE: a t1 component; b t2 component
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4 Identification of the constitutive terms

The identification procedure adopted in this work is

based on the generalized Hill–Mandel macrohomo-

geneity condition. The virtual work evaluated at the

macroscopic Cosserat point is set equal to the average

virtual work of the heterogeneous Cauchy medium in

the UC. Thus, the following expression holds:

RT E ¼ rT e
� 	

x ; ð52Þ
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Fig. 15 Comparison of the traction components along the TOP

edge on the UC(a): a t1 component; b t2 component. Solid lines:

reference solution (UC extracted from the RVE); dashed lines:

solution obtained with procedure M1; dotted lines: solution

obtained with procedure M2
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Fig. 16 Comparison of the traction components along the LEFT

edge on the UC(a): a t1 component; b t2 component. Solid lines:

reference solution (UC extracted from the RVE); dashed lines:

solution obtained with procedure M1; dotted lines: solution

obtained with procedure M2
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Fig. 14 Traction components along the LEFT and RIGHT edges of the UC(a) in the RVE: a) t1 component; b) t2 component
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where R is the Cosserat stress vector evaluated at the

macroscopic point, while r is the Cauchy stress vector

at the typical point of the UC.

After solving the BVP on the UC and determining

the microscopic strain and stress fields, e and r, the

homogenized Cosserat elastic constitutive matrix C

can be derived by using Eq. (52). In particular,

considering a two-phase composite material with a

regular arrangement of the inclusions, characterized

by orthotropic texture, the homogenized Cosserat

elastic constitutive matrix, expressed in a reference

frame aligned with the principal axes of the material,

results as:

C ¼

C11 C12 0 0 0 0

C12 C22 0 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð53Þ

Regarding the two-phase composite medium examined

inSect. 3.3, themacroscopicCosserat elasticitymatrixC

is evaluated considering the two UCs shown in Fig. 4.

It is worthwhile noting that the two specific UCs here

analyzed are the same as those adopted by [11, 12],

where it is remarked that the results of the identifica-

tion procedure depend on the choice of the UC. In

particular, they suggest the criterion of centering the

UC in the stiffer phase, to determine the couple-stress

constitutive constants. Here, the dependence of the

identification results on the centering of the UC is

analyzed. Indeed, differently from the Cauchy coef-

ficients, which are proved to be independent on the

specific choice of the UC (for a given composite), for

the bending and skew-symmetric shear Cosserat

coefficients this is not straightforward, at least in the

framework of computational homogenization. The

constants C11, C22, C12 and C33, appearing in the first

3� 3 submatrix of C and involved in the constitutive

relationship between the Cauchy stress and strain

components, are evaluated according to the classical

homogenization procedure. Here, the attention is

focused on the determination of C44, C55 and C66,

governing the bending and skew-symmetric shear

behavior of the Cosserat equivalent medium.

Aiming at determining the coefficient C44, the

macroscopic strain componentK1 ¼ 1 is applied to the

UC, with all the other components set equal to zero.

Hence, the applied kinematic map, in this case, results

as:

u�1 ¼ �x1x2

u�2 ¼
1

2
ðx21 þ m12x

2
2Þ
: ð54Þ

For the two selected UCs, C44 is evaluated and

reported in Table 1, by using both the above presented

procedures M1 and M2. Note that, due to the cubic

symmetry of the composite material, the case K2 ¼ 1

leads to results which are the rotated of the case

K1 ¼ 1, so that it is C55 ¼ C44. It emerges that the two

adopted methods, M1 and M2, lead to homogenized

constitutive parameters that differ by about 8 % for the

same UC. Moreover, the obtained results depend on

the choice of the UC. Indeed, the values of C44

computed for the two UCs differ by 14 %, when the

method M1 is adopted, and about 27 % when the

method M2 is employed. The dependence of the

identified coefficient C44 on the choice of the UC can

be reasonably related to the adopted polynomial

kinematic map, as well as to the identification

procedure.

To motivate the above results, the expression of the

average internal work in Eq. (52), evaluated over the

UC, is reported in expanded form as:

rT e
� 	

x ¼ x22 c11 þ m12 m12 � 2ð Þ½ �
� 	

x

� 2 x2 c11ee1 þ c12 ee2 þ m12ee1ð Þ½ �h ix
þ 2c12ee1ee2 þ c11ee

2
1 þ c12ee

2
2 þ c33ee

2
12

� 	

x

ð55Þ

Table 1 Constitutive coefficient C44 evaluated in the UC for

K1 ¼ 1 adopting M1 and M2 for the solution of the BVP

C44 C44

M1 19.5 M1 16.8

M2 21.1 M2 15.36

Meccanica (2016) 51:569–592 585

123



in which clearly emerges that the relative position of

the two (stiffer and softer) constituents, with respect to

the UC center, strongly influences the value of the

identified parameter. Indeed, when the stiffer con-

stituent is farer from the center, the value of C44 is

higher. This problem is well-known in literature [12,

15, 20] and is related to the definition of the higher-

order or couple stresses as the volume average of the

product of microscopic stresses and microscopic

coordinates over the UC.

Further numerical tests are performed to investigate

on the influence of the size of theRVE [17, 21].Various

square RVEs are considered, taking into account

assemblages of 3� 3, 5� 5, 7� 7, 9� 9; . . .; 15�
15 UCs, subjected to the boundary conditions shown

in Fig. 2, which correspond to the M2 methodology

illustrated in Sect. 3.2. The average internal work is

evaluated over the entire RVE domains and rescaled

by factor L2 with L the size of the square RVE. This

identification procedure is denoted as P1.

In Table 2, the values of C44 computed for the

different RVEs are reported. Thanks to the introduc-

tion of the factor L2, the dependence of the homog-

enized coefficient C44 on the size of the RVE is

avoided. To the same end, also in [22] a correction

to the higher order constitutive coefficients is

introduced. As the RVE size increases, the scaled

values of C44 for the two UCs in Fig. 4 converge to the

same quantity, from above and from below,

respectively.

Simple calculations reveal that the converged value

of C44 in Table 2 can be obtained following a simple

procedure. Let the classical first order homogenization

be accomplished and the homogenized moduli for the

equivalent Cauchy medium derived. Then, the

obtained equivalent homogeneous UC is considered

and is subjected to the higher order term of the

polynomial kinematic map, corresponding to the

curvature K1. As a result, the value C44 ¼ 18:1 is

obtained, which represents the converged bending

elastic coefficient. It can be remarked that in the latter

case, since a homogeneous UC is considered, where

the perturbation displacement field vanishes, no BVPs

have to be solved for the computation of C44. This

leads to think that the response of the heterogeneous

medium tends to the response of the Cauchy medium

subjected to a curvature.

A possible alternative for the evaluation of the

elastic coefficient C44, different from the previous one

and characterized by the independence on the RVE

size is herein proposed and denoted as P2. The main

idea consists in distinguishing in the RVE internal

work (right hand side of Eq. 52) the contribution of the

classical Cauchy strain components from that related

to the Cosserat additional deformation modes. When

the RVE total internal work is computed by summing

the work evaluated in each UC composing it, the

contribution associated to the classical Cauchy defor-

mation modes acting on the UC has to be ignored. In

other words, this corresponds to subtract from the

strain distribution in the UC its average value and then,

on the basis of the resulting strains, compute the

internal work to evaluate the elastic coefficient C44. In

this way only the pure bending effect is taken into

account, while the axial Cauchy modes are disre-

garded. Of course, the same procedure can be applied

for the other Cosserat modes to identify C55, when

different from C44, and C66.

In Table 2 the values of the elastic coefficient C44

computed adopting the procedure P2 are also reported.

The numerical results show that the identified values

remain almost the same as the RVE size increases; the

very small variation observed for the C44 value is due

to the boundary effects.

In Table 3 the values of C44 are reported

considering two different contrasts in the elastic

properties of the constituents, i.e. ei=em ¼ 103 and

Table 2 Microscopic elastic strain energy for K1 ¼ 1 evalu-

ated in different RVEs

C44 C44

RVE P1 P2 P1 P2

3� 3 18.21 18.21 17.17 17.17

5� 5 18.15 18.21 17.61 17.17

7� 7 18.16 18.22 18.00 17.18

9� 9 18.10 18.22 18.00 17.18

11� 11 18.09 18.23 18.09 17.19

13� 13 18.08 18.23 18.10 17.19

15� 15 18.07 18.24 18.10 17.20

586 Meccanica (2016) 51:569–592

123



ei=em ¼ 10. The same trend as in Table 2 is shown.

Even in this case, the procedure P1 leads to identify

different values of the elastic coefficient C44 when

RVE size is increased, with the value of C44 converg-

ing to the one obtained considering the homogenized

Cauchy medium; on the contrary, the procedure P2 is

able to obtain a value for C44 which is (almost)

independent on the RVE size.

When it is set H ¼ 1, while all the other macro-

level strain components are equal to zero, the compo-

nents of the kinematic map are:

u�1 ¼ s 3b1x
2
1x2 þ c1x

3
2

� �

u�2 ¼� s 3b2x1x
2
2 þ c2x

3
1

� �
:

ð56Þ

Table 4 collects the results in terms of the coefficient

C66 for the two selected UCs, evaluating the

perturbation displacement fields with M1 and M2

methods. Again, different results are obtained for the

two UCs and for the two adopted methods. The

average virtual work results as:

rT e
� 	

x ¼ 9s2 4x21x
2
1 b21c11 � 2b1b2c12 þ b22c22
� ��

þ c33 b1 � c2ð Þx21 þ c1 � b2ð Þx22
� �2

E

x

þ 6s 2x1x2 ee1 b1c11 � b2c21ð Þ½h
þ ee2 b1c21 � b2c22ð Þ�ix
þ 6s c33ee12 b1 � c2ð Þx21 þ c1 � b2ð Þx22

� �� 	

x

þ 2c12ee1ee2 þ c11ee
2
1 þ c12ee

2
2 þ c33ee

2
12

� 	

x

ð57Þ

In this case, too, it is evident that the position of the

two constituents, with respect to the center of the

reference system in the UC, influences the value of the

average work. In Table 5 the values of C66, for the

same RVEs considered in the previous application

(3� 3, 5� 5,...,15� 15) are derived using the two

proposed procedures, i.e. P1 and P2. Adopting the

procedure P1, a convergence value for C66 is reached

from above in the case of the UC(a) and from below

for the UC(b), as the RVE size increases. Note that in

this case the convergence rate is slower than for C44

and, again, the converged results are not influenced by

the choice of the UC. Then, computations are also

performed adopting the procedure P2; in this case, the

identified value of C66 does not (substantially) change

Table 4 Constitutive coefficient C66 evaluated in the UC for

H ¼ 1 adopting M1 and M2 for the solution of the BVP

C66 C66

M1 5366 M1 3003

M2 6210 M2 2310

Table 3 Microscopic

elastic strain energy for

K1 ¼ 1. C44 evaluated in

different RVEs for

ei=em ¼ 103 and ei=em ¼ 10

ei=em ¼ 103 ei=em ¼ 10 ei=em ¼ 103 ei=em ¼ 10

RVE P1 P2 P1 P2 P1 P2 P1 P2

3� 3 18.87 18.87 15.64 15.64 17.93 17.93 14.83 14.83

5� 5 18.52 18.87 15.48 15.64 18.18 17.93 15.18 14.83

7� 7 18.45 18.89 15.44 15.66 18.29 17.95 15.27 14.85

9� 9 18.43 18.89 15.43 15.66 18.34 17.95 15.31 14.85

11� 11 18.43 18.90 15.43 15.68 18.37 17.97 15.34 14.87

13� 13 18.42 18.92 15.42 15.70 18.38 17.97 15.37 14.87

15� 15 18.41 18.94 15.41 15.72 18.40 18.01 15.40 14.90
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for the different RVE sizes, showing the suitability of

the proposed approach.

In order to validate the effectiveness of the

presented homogenization procedure, a structural 2D

application on a rectangular wall made from a

composite material is presented. The geometry

together with the loading and boundary conditions

are reported in Fig. 17, adopting the following

dimensionless parameters: B=H ¼ 1:6, b=H ¼ 0:4,

eiH=p ¼ 250000, ei=em ¼ 100, mi ¼ 0:3 and

mm ¼ 0:3. The wall is made from the periodic repeti-

tion of 16� 10 UCs, adopting the UC(a) and (b). In

Fig. 17 the arrangement considered by adopting UC(a)

is shown on the left, while on the right side that

corresponding to the adoption of UC(b) is reported.

The numerical simulations are performed considering

the response of the heterogeneous materials, compared

with the response of the homogenized Cosserat media.

The values of the homogenized elastic coefficients

C44, C55 and C66, used in the equivalent Cosserat

models, are derived by means of the M1 method, with

procedure P2, and these are reported in Tables 1 and 4.

The profile of the vertical displacements under the

vertical load area is firstly derived on the equivalent

Cauchy model. Then, this vertical displacement dis-

tribution is applied at the top edge of the wall and its

response is evaluated by using both the micromechan-

ical and the Cosserat models. Regarding these last, the

rotation degrees of freedom at the boundary are not

restrained. Due to the symmetry of the problem, only

one half of the panel is considered.

The structural stiffness is evaluated by dividing the

total vertical reaction by the maximum vertical

Fig. 17 Panel under vertical load: geometry and boundary conditions

Table 5 Constitutive coefficient C66 evaluated in the UC for

H ¼ 1 evaluated in different RVEs

C66 C66

RVE P1 P2 P1 P2

3� 3 5507 5507 3673 3673

5� 5 4859 5507 4024 3674

7� 7 4600 5509 4130 3674

9� 9 4444 5509 4200 3677

11� 11 4321 5511 4201 3677

13� 13 4299 5511 4202 3680

15� 15 4212 5515 4205 3681

588 Meccanica (2016) 51:569–592

123



displacement at the midspan of the top edge. In Table 6

the values of the stiffness, obtained considering the

different UCs, are shown. The second column shows

the results obtained by the micromechanical analysis

of the real heterogeneous structure, while the third,

fourth and fifth columns contain the stiffness of the

equivalent homogenized medium, evaluated by adopt-

ing the Cosserat, Cauchy and couple stress model at

the macro-level, respectively. It is noteworthy that the

position of the inclusions in the heterogeneous

medium significantly influences the response, causing

a difference of about 7 % in the stiffness values. For

both the considered UCs, the homogenized Cosserat

models provide the better estimation of the stiffness.

As expected, the Cauchy model gives results not

influenced by the arrangement of the UCs. The

Cosserat based homogenization results in a stiffer or

softer medium, depending on the position of the stiff

inclusion in the UC. Finally, also the results obtained

by using the couple stress model are shown for

comparison, resulting stiffer than the Cosserat ones,

since the rotational deformation component vanishes

in this case. With reference to the UC(a), in Fig. 18, on

the left side, the vertical stress along a horizontal

alignment placed at the mid-height of the panel is

reported, for both the heterogeneous (solid line) and

the homogenized (dashed line) models. On the right

side, instead, the comparison of the vertical displace-

ments along the same alignment is shown. Analo-

gously, in Fig. 19 the same distributions as in Fig. 18

are shown in the case of UC(b).

From the comparison of the vertical stress distri-

butions, it is clear that the effective Cosserat models

provide results close to the average of that evaluated

Fig. 19 UC(b) Left: Vertical stress versus panel abscissa at

height H=5. Solid line: heterogeneous model; Dashed line:

Cosserat homogenized model. Right: Vertical stress versus

panel abscissa at height H=5. Solid line: heterogeneous model;

Dashed line: Cosserat homogenized model

Fig. 18 UC(a) Left: Vertical stress versus panel abscissa at

height H = 5. Solid line: heterogeneous model; Dashed line:

Cosserat homogenized model. Right: Vertical stress versus

panel abscissa at height H = 5. Solid line: heterogeneous

model; Dashed line: Cosserat homogenized model

Table 6 Elastic stiffness of the panel

Heterogeneous model Cosserat model Cauchy model Couple stress model

UC (a) 154.2 156.2 151.7 158.1

UC (b) 143.2 147.2 151.7 149.2
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with the heterogeneous models. In Fig. 18 the stress

distributions show more pronounced peaks with

respect to the analogous in Fig. 19 and this is related

to the position of the measurement line, that in the

former case intersects both the constituents, while in

the latter case runs exclusively along the matrix.

5 Conclusions

Focusing on the computational homogenization,

where the Cosserat and Cauchy continuum models

are assumed at the macro- and micro-level, to study

periodic 2D composite materials, some relevant

topics were discussed and analyzed. To characterize

the perturbation fields in presence of higher order

polynomial boundary conditions, a micromechanical

three-step computational homogenization was

adopted. The results obtained by analyzing a single

UC, proper selected for the composite analyzed, are

in a very good agreement with the reference

solution evaluated on a large RVE made from the

same material. The observed little discrepancies are

due to the lacking in fully satisfying the kinematic

compatibility between the adjacent UCs. Further-

more, the perturbation fields, evaluated by applying

on the UC the BCs derived in [1] and reported for

comparison, match worst the reference solution,

although the results are satisfactory taking into

consideration the simplicity of the procedure.

The other issue discussed in the paper concerns

the identification of the homogenized linear elastic

constitutive parameters. Reference was made to the

additional Cosserat components, thus relating K1,

K2 and H to the work-conjugated stresses, for the

studied two-phase composite material. The classical

Hill-Mandel procedure was adopted. By analyzing

two different UCs, selected for representing the

composite texture, it emerged that the constitutive

response of the homogenized medium depends on

the choice of the cell. In fact, while the elastic

Cauchy coefficients are independent on the specific

choice of the UC, for the bending and skew-

symmetric shear Cosserat coefficients this does not

occur, at least in the framework of computational

homogenization. This fact is also confirmed by the

results obtained from the structural application. The

two different UCs used to build the structure lead to

slightly different results, which agree with those

evaluated with the equivalent Cosserat media. It is

also highlighted that considering a RVE made from

an assemblage of UCs, the elastic coefficients

converge to the same value, apart from the consid-

ered UC. This value corresponds to that evaluated

by simply considering at the micro-level a homog-

enized Cauchy medium.

An alternative procedure has been proposed to

avoid the dependence of the identified Cosserat

elastic coefficients on the RVE size, based on the

idea of evaluating in the RVE only the internal work

related to the Cosserat deformation modes by

eliminating the Cauchy strain contribution. This

proposal resulted to be effective in overcoming the

mentioned drawback of the classical Hill–Mandel

procedure. It is worth noting that, in the framework

of the asymptotic techniques applied to the strain

gradient models [4, 8, 10, 26, 29], some limits

arising when the computational homogenization is

performed are naturally overcome. For example, the

higher order terms automatically vanish in the case

of homogeneous medium. Furthermore, the identi-

fied higher order effective elastic coefficients seem

not to depend on the selection of the UC. Consid-

ering this approach, the theory has been developed

in a rigorous and robust mathematical tool, in which

hierarchy of equilibrium problems is solved at the

different orders, considering proper auxiliary body

forces (with zero volume average) and obtaining

periodic perturbation functions. Nevertheless, to date

the asymptotic technique has been satisfactorily

applied to link a higher order Cauchy continuum at

the macro-level to a classical first order Cauchy

medium at the micro-level. On the other hand, this

has not been adopted in the case of the Cosserat–

Cauchy homogenization, due to the difficulty of

coupling, at the two scales, continua endowed with

different number of displacement degrees of free-

dom. On the contrary, the computational homoge-

nization is well-established and widely adopted in

this context, although some open issues still remain.

The proposed paper is a contribution to better

clarify some aspects. In particular:

1. the effectiveness of simplified periodicity/skew-

periodicity conditions with respect to more com-

plex procedures is shown;
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2. some new advancements in the problem of the

identification of an equivalent Cosserat contin-

uum starting from a heterogeneous Cauchy model

are made;

3. some open issues in the framework of the

Cosserat–Cauchy homogenization procedure are

remarked.

Hence, it appears relevant to carry on further

developments, focusing on the formulation of the

link between the macro- and micro-levels, as well

as on the improvement of the identification

procedure.
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