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Abstract This article surveys existing cohesive zone

models (CZM) and their use in numerical simulations

for analysis impacts on composite structures and

predicting the damage induced. These models are used

for matrix cracks and delamination. The first part of

article gives the required background on failure

criteria for predicting the onset of delaminations, on

fracture mechanics and the various types of CZM. The

second part discusses applications of CZM to several

types of impact problems with composite structures.

Applications for these models to other problems are

briefly mentioned at the end. CZM are now part of

state of the art numerical simulations with progressive

damage analysis.

Keywords Cohesive zone models � Delaminations �
Composites � Impact � Damage

1 Introduction

Predicting impact induced damage in composite

structures requires the ability to predict the onset of

the various damage modes and the growth of that

damage during the impact. Cohesive zone models

(CZM) used to predict the growth of various types of

cracks are reviewed in this article with a special focus

on impact problems. These models are generally used

in a numerical progressive damage analysis that

accounts for damage development and the degradation

of the properties of the plies and the interfaces. This

article provides an overview of cohesive zone models

including their connection to fracture mechanics and

their use in prediction impact damage in composite

structures. Such damage prediction requires failure

criteria to determine when damage initiates and the

study of the subsequent damage propagation. The

article presents a brief overview of the failure criteria

used to predict damage initiation including delamina-

tion. With CZMs, the propagation of delaminations is

based on a fracture criterion so some basic concepts

from fracture mechanics are added to make the

presentation self-contained and easier to follow.

CZMs are included in several commercial finite

element codes and are widely used for various

applications. In the analysis of impact damage on

composite structures, this article will show that CMZs

have resulted in accurate predictions that were not

previously possible and greater insights.

Several types of damage can be induced: (1)

interply debonding or delamination; (2) intraply

damage in the form of shear cracks, bending cracks,

and fiber failure. These two types of damage interact to
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create complex patterns. At a microscopic level, fiber-

matrix debonding and microscopic matrix cracks

develop and eventually coalesce and form failure

surfaces at the ply level. Foreign object impacts can

cause delaminations and matrix cracks that can

severely reduce the load carrying capacity of the

structure [1]. Delaminations also occur when discon-

tinuities induce interlaminar stress concentrations.

Examples include: free edges, holes, matrix cracks,

ply drop offs, bonded joints, and bolted joints.

Extensive research has been conducted on delamina-

tions since this type of failure is induced rather easily

and can have a dramatic effect on the residual

properties. Several reviews of the literature on

delaminations in composite structures are available

[2–6]. Failure criteria for predicting the onset of

delamination are discussed in Sect. 2.

Once an interfacial crack is created, its propagation

under load should be determined using a fracture

mechanics approach. Basic fracture mechanics con-

cepts are recalled and their application to the propa-

gation of delaminations is discussed in Sect. 3 that

includes a discussion of widely used numerical

technique called the Virtual Crack Closure Technique

(VCCT). In recent years, the propagation of delami-

nations and matrix cracks has been analyzed using

CZM that are presented in Sect. 4. Applications of the

CZM to study damage in composite structures is

discussed in Sect. 5 with emphasis on foreign object

impacts on composite and sandwich structures and

energy absorbing structures made out of composite

materials.

2 Failure criteria for predicting the onset

of delamination

Debonding between adjacent layers depends on the

stresses acting on that interface: the normal compo-

nentand the two shear stresses and r23. References [7–
9] predicted delamination using a maximum stress

criterion for the normal stress and a quadratic criterion

for the two shear components

r33=ZT � 1 or
r23
S3

� �2

þ r13
S3

� �2

� 1 ð2:1Þ

r33 where S3 is the shear strength and ZT r13 the tensile
strength in the thickness direction. It is assumed that

no failure occurs when r33\0. The criterion proposed

by Christensen and DeTeresa [10]

r13
S13

� �2

þ r23
S23

� �2

� 1 ð2:2Þ

allows for different strengths for r13 and r23 but does
not account for interactions between the normal and

shear stresses acting at the interface.

Several criteria accounting for the interaction

between the three stress components acting at the

interface have been introduced. References [11–19]

postulated that the onset of delamination is governed

by

r33
ZT

� �2

þ r13
S13

� �2

þ r23
S23

� �2

� 1 when r33 [ 0

ð2:3Þ

where S13 and S23 are the shear strength in the through-

thickness and fiber plane. Again, References [12, 16,

17, 20] assumed that S12 = S23. Cesari et al. [11] used

the same criterion when r33\ 0 but with Zc (com-

pressive strength in the through-thickness direction)

instead of ZT in that case. The ellipsoid defined by

Eq. 2.3 accounts for the interaction between the three

stress components acting at the interface.

References [8, 21–26] use the delamination crite-

rion proposed by Choi and Chang [27]. In the latter,

originality lies in the fact that the stresses are averaged

over the thickness of the layer above the interface

(layer n ? 1) and the strengths can be those of either

the layer above or the layer below (n).

The quadratic delamination criterion of Brewer and

Lagace [28] is similar to Eq. (2.3) and can be written

as

r33
Z

� �2
þ r13

S13

� �2

þ r23
S23

� �2

� 1 ð2:4Þ

where Z = Zt when r33 [ 0 and Z = Zc when

r33\ 0. Thus, the value of Z makes the difference

between tensile normal stress (that are opening) and

compressive normal stress (that are closing). Naik

et al. [29–31] used Eq. 2.4 and averaged the values of

the stresses through the thickness of the ply. Li et al.

[32] used the Brewer-Lagace criterion as defined when

r33 [ 0 and omitted the effect of the transverse

normal stress when r33\ 0. In that case, we recover

the criterion proposed by Yeh and Kim [33] which
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predicts that tensile delaminations occurs when

r33 [ 0 and

r33
ZT

� �2

þ r13
S13

� �2

þ r23
S23

� �2

� 1 ð2:5Þ

and shear delaminations occurs when r33\ 0 and

r13
S13

� �2

þ r23
S23

� �2

� 1 ð2:6Þ

Equation 2.6 is identical to Eq. 2.2, the criterion

proposed by Christensen and DeTeresa [10]. Huang

and Lee [25], Liu and Wang [34] used Yeh’s criterion

(Eqs. 2.5, 2.6).

Zhao and Cho [18] used only the tensile part of the

criterion (Eq. 2.5). Chen [35] included the effect of the

in-plane transverse stress r22 and predict a damage

propagation between the layer (n) and (n ? 1) by the

relation

nr33
ZC

� �2

þD1

nr223 þ nþ1r213
S2

� �
þ D2

nþ1r22
Y

� �2

¼ eD

ð2:7Þ

where Y represents the in-plane transverse tensile

(r22 C 0) or compressive (r22\ 0) strength of lam-

inates. D1, D2 are experimental constants and they are

only related to the material properties of laminates.

Damage occurs when eD � 1.

Hou et al. [13, 14] assumed that delamination

occurs when

r33
ZT

� �2

þ r223 þ r213
S213 dmsdfs þ d
� � � 1 when r33 � 0

ð2:8Þ

or

r223 þ r213 � 8r233
S213 dmsdfs þ d
� � � 1 when

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r223 þ r213
� �

=8
q

� r33\0

ð2:9Þ

They also assumed that no delamination occurs when

r33\�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r223 þ r213
� �

=8
q

ð2:10Þ

In Eqs. (2.8, 2.9), dms is a damage coefficient of matrix

cracking and dfs is a damage coefficient of fibre failure

and d is the ratio between interlaminar stresses before

and after matrix or fiber failure.

Zou et al. [13, 14] proposed a single criterion that

accounts for different strength for tension and com-

pression in the transverse direction and for the effect of

the two transverse shear stresses

r233
ZtZc

þ r213 þ r223
S2

þ 1

Zt
� 1

Zc

� �
r33 � 1 ð2:11Þ

Fenske and Vizzini [36] extended the Brewer-Lagace

criterion by including the effects of inplane stresses.

These various criteria attempt to predict the onset of

delamination at the interface between two adjacent

plies in terms of the stresses acting at that interface. It

is important to remember that the behavior is very

different depending on the sign of the transverse

normal stress.

3 Fracture mechanics approach

Once interface failure is predicted, the stress distribu-

tion in the surrounding material becomes singular and

the presence of the crack should be accounted for in

the analysis. This section presents a brief historical

overview of the development of fracture mechanics

followed by a discussion of its application to the

propagation of delaminations at bimaterial interfaces,

and an introduction to the Virtual Crack Closure

Technique (VCCT) used for numerical simulations.

3.1 Historical background

Initially, the first studies concerning fracture mechan-

ics, which are recalled in this part, were focused on

crack propagation in isotropic metallic materials. The

later developpements of fracture mechanics theories

for orthotropic materials are based on these theories.

Leonardo da Vinci (1452–1519) conducted tests to

determine the strength of iron wires and found an

inverse relationship between the strength and the

length of the wire [37]. This early evidence of a size

effect was confirmed by several other experiments on

iron bars and wires and glass fibers. A possible

explanation for this size effect is the presence of flaws

in the material that would significantly reduce the

strength.
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In 1898, Kirsch (in [38]) studied the stress concen-

trations created by a circular hole in a plate subjected

to uniaxial tension and, in 1913, Inglis [39] extended

that work to determine the stress field around a plate

containing an elliptical rather than circular hole

(Fig. 1). It was shown that, at the end of the major

axis of the ellipse, the normal stress in the tangential

direction is given by

ry ¼ r 1þ 2
ffiffiffiffiffiffiffiffi
a=q

p� �
ð3:1Þ

where r is the remote stress, a is the length of the

major semi-axis which is perpendicular to the loading

direction, and q is the radius of curvature at the end

of the major axis of the ellipse. As becomes much

smaller than a, ry becomes infinite. This result would

imply that for a body with a sharp crack the strength

would be near zero. For a circular hole, a ¼ q and

Eq. (3.1) gives the well-known result ry ¼ 3r in that

case.

The work of Griffith [40] was motivated by the fact

that the bulk strength of glass (172 MPa) was much

smaller than the strength of a thin glass tube

(2372 MPa) or that of glass fibers (1500–6200 MPa)

[37]. Griffith introduced an artificial flaw in specimens

(Fig. 2) and experimental results indicated that, at

fracture, the product r
ffiffiffi
a

p
remained nearly constant.

Westergaard [41] showed that the stress near a

crack tip for infinite plate and through thickness cracks

is approximately equal to

rx ¼
KIffiffiffiffiffiffiffiffi
2pr

p � cos h
2

1� sin
h
2
sin

3h
2

� �

ry ¼
KIffiffiffiffiffiffiffiffi
2pr

p � cos h
2

1þ sin
h
2
sin

3h
2

� �

rxy ¼
KIffiffiffiffiffiffiffiffi
2pr

p � cos h
2
sin

h
2
cos

3h
2

ð3:2Þ

where KI ¼ r
ffiffiffiffiffiffi
pa

p
is the stress intensity factor for

mode I fracture, r is the distance from the crack tip and

h is the orientation angle (Fig. 3). Near the crack tip,

the stress is maximum for h ¼ 0 and

ryjh¼0 ¼ r

ffiffiffiffiffi
a

2r

r
¼ r

ffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffi
2pr

p ¼ KIffiffiffiffiffiffiffi
2pr

p ð3:3Þ

The stress is singular at the crack tip and the

singularity is of order r-1/2.

Irwin [42] studied this problem for an infinite plate

and plane stress conditions. He showed that for

isotropic ductile materials a plastic zone is created

near the crack tip and that the total energy release rate

G is the sum of the surface energy release rate 2c and a
plastic energy release rate Gp. For brittle materials

such as glass the surface energy release rate dominates

and G � 2c ¼ 2 J=m2. For ductile materials such as

steel Gp dominates and G � 1000J=m2.

rf
ffiffiffiffiffiffiffi
pac

p ¼
ffiffiffiffiffiffiffi
GE

p
ð3:4Þ

σ 

y 

x 

σ 

Fig. 1 Elliptic flaw in an infinite plate subjected to a uniaxial

stress

Flaw 
σ 

a 

Fig. 2 An edge crack flaw in a material

x 

y 

r 

Fig. 3 Cylindrical coordi-

nates at crack tip
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G is the strain energy release rate and E is the Young

modulus.

So far, we discussed the effect of a Mode I crack—

Opening mode with a tensile stress normal to the plane

of the crack. Figure 4 shows two other fracture modes:

• Mode II crack—Sliding mode (a shear stress

acting parallel to the plane of the crack and

perpendicular to the crack front)

• Mode III crack—Tearing mode (a shear stress

acting parallel to the plane of the crack and parallel

to the crack front)

Three stress intensity factors can be defined as

KI

KII

KIII

8<
:

9=
; ¼ lim

r!0

ffiffiffiffiffi
pr

p r22
r12
r23

8<
:

9=
; ð3:5Þ

Failure criteria described in Sect. 2 can be used to

predict the onset of delamination. Once initiated, the

propagation of a delamination is a dynamic fracture

event. A Griffith type criteria can be used to determine

whether an existing delamination extends or not based

on the value of the total strain energy release rate: the

delamination does not extend if G�Gc and it extends

if G[Gc. This approach requires a detailed stress

analysis near the crack tip and the ability to calculate

the change in strain energy as the delamination

increases by a small amount. However, it does not

require knowledge of the individual strain energy

release rates GI, GII, GIlI.

In general it is assumed that a mixed-mode failure

criterion can be developed in the following form

f
GI

GIC

;
GII

GIIC

;
GIII

GIIIC

� �
� 1 ð3:6Þ

In developing such a criterion, the two challenges are:

determining the form of the function f and conducting

tests to identify the critical energy release rates and

other parameters that may be present in specific failure

criteria. The developments of fracture mechanics for

composite materials are based on the principles

defined for isotropic materials. Examples of mixed-

mode failure criteria are the power law criterion

GI

GIC

� �a

þ GII

GIIC

� �a

¼ 1 ð3:7Þ

first introduced by Wu and Reuter [43] and the

Benzeggagh and Kenane criterion [44]

GTC ¼ GIC þ GIIC � GICð Þ GII

GT

� �a

ð3:8Þ

where GT ¼ GI þ GII is the total energy release rate,

GTC is the total critical energy and a is a parameter.

Mixed-mode fracture criteria are needed in the

formulation of cohesive elements and the two men-

tioned here (Eqs. 3.7, 3.8) are the most commonly

used.

3.2 Fracture mechanics approach to delamination

propagation

Fracture mechanics can be used to study the propa-

gation of impact induced delaminations at ply inter-

faces. The objective is to predict the extent of

delaminations at each interface. Individual plies may

have cracks because of matrix failure due to tensile

bending stresses, transverse shear stresses, or residual

thermal stresses [45]. The second objective is to

determine whether these matrix cracks will lead to

interface debonding.

Interfacial cracks between two isotropic materials

with different elastic properties have been studied

extensively, For cracks at the interface of two isotropic

bodies with different elastic properties, single mode

loading produces both opening and shearing modes

(Williams [46]). For a bimaterial interfacial crack, the

near-tip normal and shear stresses are given by

(a) 

(b) 

(c) 

Fig. 4 The three fracture modes: aMode I; bMode II; cMode

III
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ryy þ irxy ¼
KI þ iKIIð Þrieffiffiffiffiffiffiffiffi

2pr
p ð3:9Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; KI and KII are components of the

complex stress intensity factor K = KI ? iKII and e is
the oscillation index

e ¼ 1

2p
ln

1� b
1þ b

	 

ð3:10Þ

where b is one of two Dundurs constants. For plane

strain, the Dundurs constants are

a ¼
�E1 � �E2

�E1 þ �E2

b ¼ G1 1� 2m2ð Þ � G2 1� 2m1ð Þ
2 G1 1� 2m2ð Þ þ G2 1� 2m1ð Þ½ �

ð3:11Þ

where �E ¼ E= 1� m2ð Þ. E is the elastic modulus, G is

the shear modulus, m is Poisson’s ratio and the

subscripts 1 and 2 refer to the materials above and

below the interface. Stresses oscillate as the distance

from the crack tip increase, as indicated by the rie term

in Eq. 3.9, but this oscillation is limited to a very small

region near the crack tip [47]. The individual rates GI

and GII oscillate very close to the crack tip but

Mulville and Mast [48] showed that the total strain

energy release rate remains almost constant as the

crack propagates. When the materials above and

below the interface are identical, e ¼ 0; a ¼ 0;

b ¼ 0. Then, stresses do not oscillate as expected for

a crack in a homogeneous material.

A crack impinging on an interface joining two

dissimilar materials may arrest or may advance by

either penetrating the interface or deflecting into the

interface (Fig. 5). He and Hutchinson [49] showed

that, in order for a crack impinging the interface at any

angle to be deflected, the toughness of the interface

must be less than one quarter of the toughness of the

material on the other side of the interface when

�0:5\a\0:25. It was shown that residual thermal

stresses have a significant effect on this problem [50].

He and Hutchinson [51] studied the kinking of a

crack out of an interface (Fig. 6). Assuming that the

condition for propagation in the interface is Go = Goc

and that for propagation in material 2, GII = GIIc. If

GIIc is sufficiently large compared to Goc the crack

does not kink into material 2. If these two critical

energy release rates are comparable there is a loading

y 

x 

1 

2 

(d) 

a 
w1 

w2 

y 

x 

1 

2 

(e) 

w2 

a 

y 

x 

1 

2 

(a) 

a 

y 

x 

1 

2 

(c) 

a a 

y 

x 

1 

2 

(b) 

a 

Fig. 5 Several scenarios for a crack impinging on a bi-material

interface

G1 , ν1 

G2 , ν2 
a 

X’1 

X’2 

X2 

X1 

r 

w 
θ 

Fig. 6 Geometry for crack kinking of a bi-material interface

[51]
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range such that the crack stays in the interface and

above that the crack will kink into material 2. Ryoji

[52] gave a stress-based criterion for predicting the

kink angle. Rudas [53] gave a simple formula for

predicting the kink angle based on the mode mixity

ratio KI/KII. Carlsson and Prasad [54–56] used the

results obtained in [51] to study interfacial cracks in

sandwich structures and the kinking of these cracks

into the core.

Experiments using a modified DCB (Double Can-

tilever Beam) specimen to produce high speed Mode I

crack propagation showed that the Mode I dynamic

fracture toughness of unidirectional AS4/3501-6 is

equal to the static fracture toughness for crack speeds

up to 200 m/s [57]. Dynamic delamination experiments

on modified ENF specimens of unidirectional AS4/

3501-6 graphite/epoxy composite under three point

bending showed that the dynamic fracture toughness is

not affected significantly by crack speed up to 1100 m/s

[58, 59]. Dynamic initiation fracture toughness of S2/

8552 and IM7/977-3 composites were obtained using a

wedge insertion fracture (WIF) test method indicated

that both the dynamic initiation fracture toughness and

the fracture toughness during dynamic delamination

cracking at speeds up to 1000 m/s remain approxi-

mately equal the static fracture toughness [60]. Studies

of the effects of loading rates on fracture toughness for

composites include Refs [61, 62] for mode I, [48, 63–

66] for mode II, and [67] for mode III.

Analytical studies of dynamic interfacial crack

propagation were presented by Gol’dshtein [68], Brock

and Achenbach [69], Atkinson [70], Willis [71], Deng

[72]. Willis [71] presented a two-dimensional analysis

of the stress field around a crack on the plane interface

between two bonded dissimilar anisotropic elastic half-

spaces. Yang et al. [73] examined the singular fields

around a crack running dynamically along the interface

between two anisotropic substrates.

Experimental studies of dynamic interface crack

propagation started with the work of Tippur and

Rosakis [74] in 1991. In a homogeneous solid, the

crack tip velocity cannot exceed the Rayleigh wave

speed of the material [75]. A series of experiments

[76–83] showed that, at the interface of bimaterial

plates, crack tip velocities between steel and PMMA

(polymethylmethacrylate) can reach the intersonic

regime. That is, the range between the shear wave

velocity and the longitudinal wave velocity of PMMA.

Large scale contact behind the crack tip is observed

when cs\v\
ffiffiffi
2

p
cs. An analysis of these experiments

confirms those experimental findings [84].

A study of dynamic crack growth along the

interface of a fiber-reinforced polymer composite–

homalite bimaterial subjected to impact shear loading

[85] led to the first conclusive experimental evidence

of interfacial crack speeds faster than any character-

istic elastic wave speed of the more compliant material

and the first experimental observation of a mother–

daughter crack mechanism allowing a subsonic crack

to evolve into an intersonic crack.

Lambros and Rosakis [86] applied the same exper-

imental techniques to laminated composite plates. In

[87] laminated composite plates where subjected to

transverse impacts and delamination speeds measured

ranged from 500–1800 m/s. Accurate optical mea-

surements of the transverse displacements were used

to estimate the size of delaminations and the speed at

which they grew.

Elder et al. [88] provide a quick overview of

currently available methods for predicting delamina-

tions induced by low velocity impacts. Davies et al.

[89–94] presented a very simple approach to predict

the delamination threshold load (DTL) using a simply

supported circular plate and a clamped circular plate

with an existing delamination of radius a located on

the midplane (Fig. 7). For plates without a delamina-

tion, bending stresses are zero and transverse shear

stresses reach a maximum on the midplane. One can

then expect that delaminations might occur on the

midplane under mode II fracture.

The deflection of the central portion an undamaged

clamped plate of thickness 2 h under the force P is

du ¼
3Pa2 1� m2ð Þ
4pE 2hð Þ3

ð3:12Þ

The central portion of the damaged plate can be

considered as two plates each having a thickness h and

subjected to a force P/2. The deflection of the central

portion of the damage plate is then

A B C 

A’ B’ 

2a 

P 

Fig. 7 Simplified model for predicting the delamination

damage threshold load [375]
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dd ¼ 3
P

2

a2 1� m2ð Þ
4pEh3

ð3:13Þ

The energy available to drive the crack is

U ¼ 1

2
P dd � duð Þ ¼ 9P2a2 1� m2ð Þ

64pEh3
ð3:14Þ

As the crack advances from a to

aþ da; G:2pada ¼ oU
oa
da. The DTL is then given by

P2
c ¼

64p2Eh3

9 1� m2ð ÞGIIc ð3:15Þ

which indicates that this load is independent of the

initial radius of the delamination, that it depends of

the Mode II critical energy release rate, and that it

varies with h3/2. Schoeppner and Abrate [95]

showed that the DTLs predicted by this equation

are in good agreement with experimental results for

a large number of tests. Equation 3.15 is also used

by Olsson [96–99] and others (e.g. [100]) to predict

the DTL.

3.3 Virtual crack closure technique

The finite element method is used extensively in linear

elastic fracture mechanics and a first review of the

literature is presented by Banks-Sills [101, 102]. The

virtual crack closure technique (VCCT) proposed by

Rybicki and Kanninen [103] is widely used and

several reviews have been presented by Krueger [104].

The principle of the two-step VCCT [104] can be

described as follows:

1. A finite element model is used to model a solid

with pairs of coincident nodes coupled together

ahead of the crack (Fig. 8a).

2. When the load reaches a critical value, the

coupled nodes at the crack tip are released and

the crack extends one element length Da(Fig. 8b).
3. The energy released during the crack extension is

assumed to be equal to the energy required to

close the crack extension back.

DE ¼ 1

2
X1L � Du2L þ Z1L � Dw2L½ � ð3:16Þ

where Du2L and Dw2L are the differences in shear and

opening displacements at node L in the second finite

element model and X1L and Z1L are the forces applied

at node L in the first model to close the crack

extension.

The modified VCCT or one-step VCCT is illus-

trated in Fig. 9. Considering the extension of the crack

from node i to node k, it is assumed that the

displacements at node i after the extension will be

the same as those at node L in the current configura-

tion. The forces shown at node i are those needed to

prevent the extension from i to k. The energy released

is

DE ¼ 1

2
Xi:DuL þ Zi:DwL½ � ð3:17Þ

Using four-noded elements as in Fig. 9, the mode I and

mode II energy release rates are given by

GI ¼
1

2Da
Zi:DwL; GII ¼

1

2Da
Xi:DuL ð3:18Þ

Bonhomme et al. in [105], determine the energy

release rate under mode I in a AS4/8552 carbon/epoxy

laminates by the one step and the two step VCCT

method. Results were compared with empirical data

obtained from double cantilever beam (DCB) tests.

Both one and and Two-step VCCT methods converge

as element length decreases.

Extensions of this basic approach to 2D problems

modeled usind 8-noded elements, to 3D problems

using solid elements and problems modeled using

plate or shell elements are discussed in Krueger [104].

The additional dimension allowed to calculate the

distribution of the energy release rates along the

delamination front and makes it possible to obtain GIII.

The use of elements with quadratic shape functions

gives a kinematically incompatible interpenetration

which caused initial problems. Element-wise opening

(where edge and midside nodes are released) corrects

this and yields reliable results.

Special attention should be given to the calculation

of the strain energy release rate components when the

element lengths (Da) for the element in front of the

crack tip and behind are not identical. The following

relationships, which only depend on the length of the

elements in front and behind the crack tip, account for

this effect.

GI ¼
1

2Da1
Zi � DwL �

Da2
Da1

� �

GII ¼
1

2Da1
Xi � DuL �

Da2
Da1

� � ð3:19Þ
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where Da1 and Da2 are the element length in front and

behind the crack tip. A similar correction can be used

when the elements along the delamination front have

different widths.

The modified VCCT is used in [101, 102] to

characterize respectively the energy release rate in

mode I, mode II, mode III, mixed mode I ? II of glass/

epoxy laminates and the energy release rate in mode I

of carbon fiber reinforced composites. Improvements

for tracking delamination fronts made by Pietropaoli

and Riccio [105–108] consist in adapting the load step

size to the size of the mesh by an iterative calculation

x,u,X 

z,w,Z 

l i x1,l 

z1,l 

a 

Crack closed 

Δa Δa 

(a)

x,u,X 
i 

Δa 
Crack closed 

Δa a 

z,w,Z 

l 
Δw2l 

Δu2l 

(b)

Fig. 8 Two step VCCT.

a First step—crack closed.

b Second step—crack

extended
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Δa 
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u from equilibrium 

Zi
u 

Zi
’ 

Xi
’ 
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Fig. 9 Modified VCCT or

one-step VCCT
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until the convergence is reached, which corresponds to

the superposition of the crack front with mesh nodes.

To allow more complex shapes of the delamination

front to be taken into account, this improvements is

associated with the use of weight factors expressed in

terms of fraction of debonded area in order to take into

account the node position in the delaminated lobe.

The VCCT method is used by Yoshimura [109] to

calculate the energy release rate of the delamination

crack in a stitched carbon fiber reinforced composite

laminate. In order to consider the bridging effect, a

linear spring element is used to connect the neighbor-

ing layer. Simulation results revealed that the

improvement in impact damage resistance due to

stitching became greater as the delamination area grew

larger.

4 Cohesive element approach

The virtual crack closure technique used to estimate

the energy release rates has several drawbacks: (1) it

requires a very fine mesh near the interfacial crack tip;

(2) an existing crack with given shape and size is

needed; (3) it requires complex moving mesh tech-

niques to advance the crack front. A different

approach has been developed recently and is used

extensively for studying delaminations in composite

materials and failure of bonded joints. This approach

is based on the cohesive zone concept proposed by

Barenblatt [110, 111] and Dugdale [112]. It is assumed

that ahead of the crack tip, there is a very thin layer

separating two solids in which the damage mecha-

nisms leading to fracture are localized. The behavior

of this fracture process zone is characterized by a

traction–separation law called the cohesive law. Shet

and Chandra [113] listed eleven popular CZM with

different cohesive laws. Cohesive laws are classified

into two categories: (a) intrinsic cohesive laws that

have an initial elastic slope; and (b) extrinsic cohesive

laws that are initially rigid [114].

For finite element analyses, several types of

elements based on this CZM were developed to model

the behavior of the interface. These elements called

‘‘cohesive elements’’ or ‘‘decohesion elements’’ can

be: (1) point decohesion elements or discrete cohesive

elements [115–118] which are essentially three

dimensional nonlinear springs; (2) continuous deco-

hesion elements connecting line elements, 2D or 3D

solid elements, or plate or shell elements. This strategy

allows the modelling of complex shapes by the use of

refined meshes.

Considering the interface between two elastic layers,

Fig. 10 shows the lower layer, the interface, the

delamination front, and the local coordinate system to

be used in the following. The x1-x2 plane is the plane of

the interface, x3 is normal to the interface, and the

delamination extends in the x1 direction. In that

coordinate system, stresses acting on the interface have

two shear components s1 and s2, and one normal

component s3. At a given point on the interface, two

nodes are initially in contact: one is on the lower layer

and the other is on the upper layer. The displacements

of the upper and lower layers are denoted by uUi and uLi
where i = 1, 2, 3. The relative displacements defined

by di ¼ uUi � uLi consist of two sliding displacements

(d1 and d2) and one opening displacement d3.
The behavior of the interface is defined by a cohesive

law that relates the relationship between the interfacial

stresses and the relative displacements. Many cohesive

laws have been formulated [119]. Indeed, CZMs have

been used to simulate the fracture process in a number

of material systems and under various loading condi-

tions. Here, the cohesive laws most used in the

frameworks of impacts on composite structures are

presented. The use of cohesive elements for the

modelling of interlaminar and intralaminar cracks in

composite laminates under impact is treated in part 5.

4.1 Bilinear cohesive law

The most commonly used cohesive law used in the

development of cohesive elements is the bilinear law

X1 

X2 

X3 

O 

Fig. 10 Coordinate system at a delaminating interface
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illustrated in Fig. 11 for pure mode I fracture. The

normal stress s3 increases linearly with the relative

displacement d3 until the onset of the decohesion

process when these two quantities reach the critical

values N and softening is observed as the relative

displacement increases beyond do3 as shown in the

figure. Complete failure of the interface occurs when

s3 ¼ 0 and the displacement reaches its final value.

The area under the curve is the energy dissipated in the

process and must be equal to the critical energy release

rate GIc in this case.The behavior of the cohesive zone

is assumed to be similar for Mode II and pure Mode III

loading. Therefore, the behavior for the initial phase

can be written as

si ¼ kidi ð4:1Þ

where ki is the initial stiffness of the interface. If the

limits for the tractions in the tangential directions and

the normal direction are T, S, and N, then

do1 ¼ T=k1; do2 ¼ S=k2; do3 ¼ N=k3 ð4:2Þ

The area under the curves must be equal to the

corresponding critical strain energy release rate. That is,

GIc ¼
Z df

3

o

s3dd3; GIIc ¼
Z df

1

o

s1dd1;

GIIIc ¼
Z df

2

o

s2dd2

ð4:3Þ

Therefore, for this bilinear cohesive law, the relative

displacements at failure are

df1 ¼ 2GIIc=T; df2 ¼ 2GIIIc=S; df3 ¼ 2GIc=N

ð4:4Þ

In the case of mixed mode loading, the relative

displacements are d1m; d2m; d3m where the subscript m

is added to distinguish quantities for mixed mode

loading from the same quantities in the case of pure

mode loading. Introducing the normalized relative

displacements ki ¼ dim = dfi , the total effective relative
displacement is defined as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

q
ð4:5Þ

Under mixed mode loading the decohesion process

starts when k reaches a value

ko ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ko1
� �2þ ko2

� �2þ ko3
� �2q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
do1m
df1

 !2

þ do2m
df2

 !2

þ do3m
df3

 !2
vuut ð4:6Þ

Complete failure occurs when

kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf1

� �2
þ kf2

� �2
þ kf3

� �2r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df1m
df1

 !2

þ df2m
df2

 !2

þ df3m
df3

 !2
vuut ð4:7Þ

A stress based failure criterion is used to determine ko

and a mixed mode fracture criterion is used to

determine kf .

During the unloading phase ko � k� kf
� �

the

tractions reduce linearly according to

si ¼ ki
ko

k
kf � k

kf � ko
dim ð4:8Þ
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The present description follows that of Bui et al. [120]

and is very similar to that used by many authors.

Because for pure mode loading the maximum tractions

are the strengths of the interface and the area under the

cohesive law is equal to the fracture toughness, this

approach predicts the onset of delamination using a

stress-based criterion and the propagation of delam-

inations using an energy criterion based on fracture

mechanics.

To be more specific, following Pinho et al. [121],

we define the equivalent relative displacement in shear

and the shear traction as

kshear ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
; tshear ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22

q
ð4:9Þ

The effective relative displacement can be written as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kshearð Þ2þ k3h i2

q
ð4:10Þ

Since compressive normal stresses do not induce

delaminations, the second term under the radical is

written using the McCauley bracket so that

k3h i ¼ max 0; k3f g. An equivalent Yeh quadratic

delamination criterion is used for the prediction of

delamination onset. It’s expressed in terms of relative

displacements. A mixed-mode propagation criterion

(power law type) establishes the state of complete

decohesion for different ratios of applied mode I and

shear mode energy release rates.

May and Hallet [122], like many others, used the

quadratic stress criterion (2.5) for predicting the onset

of delamination and the linear multi-mode fracture

criterion (Eq. 3.7 with a ¼ 1) for delamination prop-

agation. Camanho et al. [123, 124] same penalty

stiffness in Modes I, II and III. Many other choices can

be made. For example, references [123–128] used the

Benzeggagh and Kenane criterion (Eq. 3.8) for

delamination propagation and Jiang et al. [129] used

the power criterion (Eq. 3.7) for predicting the onset

of delaminations.

For very high initial stiffnesses the bilinear model

in Fig. 11 becomes the linear cohesive law used by

many authors (e.g. [130]) that consist only of the

decreasing portion of the curve.

The major advantage of bilinear cohesive laws is

that it is a very simple traction/separation law that

provides results good enough to model with accuracy

matrix cracking and delamination. Computational

implementation is straightforward and the parameters

can be easily identified from simple tests (DCB,

ENF…). Nevertheless, this cohesive law represents

brittle materials and can not account for dissipative

phenomena like pseudo-plasticity or friction. More,

the linear softening of the traction load can lead to

computational instability issues when the decreasing

slope is too high [131].

4.2 Other cohesive laws

Even though bilinear cohesive laws are widely used

for the modelling of matrix cracks and delamination

during impact loading on composite laminates, several

other cohesive laws are frequently used. These laws,

initially developed for metallic or ceramic materials,

can also be used for composite materials. This

subsection describes several commonly used cohesive

laws.

4.2.1 Exponential cohesive laws

Several other cohesive laws are also used by various

researchers. One of them is the exponential law

si
sic

¼ di
dic

exp
1� di=dicð Þb

b

" #
ð4:11Þ

used by Goyal et al. [132] and illustrated in Fig. 12.

When b = 1, this expression recovers the Smith-

Ferrante universal binding law used by several inves-

tigators [133–138]. Ortiz and Pandolfi [139] defined

the surface tractions �s in terms of a single potential

function /

�s ¼ o/

o�d
ð4:12Þ

The Smith-Ferrante cohesive law is obtained using the

function

/ ¼ escdc 1� 1þ d
dc

� �
e�d=dc

	 

ð4:13Þ

Other types of exponential cohesive laws are used.

Alfano [140] used different exponential functions for

the increasing and decreasing portions of the curve.

Corigliano [141, 142] used the cohesive law proposed

by Rose et al. [143, 144] and used by Xu and

Needleman [145, 146] and Camacho and Ortiz [147]

(Fig. 13)
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s3 ¼ Kd3 exp �b
d3
do3

	 

ð4:14Þ

and introduced rate effects by assuming that the

parameter b depends on _d3, the velocity of the opening
displacement. Other exponential functions were used

by Song and Waas [148, 149].

Alfano [135] showed that exponential cohesive

laws are optimal in terms of finite element approxi-

mation. However, the computational cost is higher

than bilinear laws and the parameters are identified

less easily.

4.2.2 Polynomial cohesive laws

Zerbst et al. [150] discuss the use of different cohesive

laws including polynomial laws like Needleman’s law

si
sic

¼ 27

4

di
dic

1� di
dic

� �2

ð4:15Þ

shown schematically in Fig. 14. Cubic polynomial laws

such as Eq. 4.15 are also used in [125, 151], and

Blackman et al. [152] who obtained analytical and finite

element results for the DCB (Double Cantilever Beam)

test, the tapered DCB test and the 90o peel test. These

laws present a similar shape for the traction/separation

behavior than for the exponential cohesive laws.

4.2.3 Linear exponential cohesive laws

The linear-exponential cohesive law (Fig. 15) used by

Bouvet [153] and others [154] consists of an initial

linear part given by si ¼ ki di followed by a softening

curve given by

si
sic

¼ di
dic

exp �b di � dicð Þ½ � ð4:16Þ

The two curves meet when the relative displacements

reaches the critical value dic. Other linear-exponential
cohesive laws are used by Liu et al. [155]. This law is a

combination of the bilinear cohesive law and the

exponential cohesive law. The main advantage of this

law is that instability issues due to the quick decreas-

ing of the traction load in the bilinear law [131] are

avoided. More, as for the bilinear law, the initial

stiffness can easilybe identified.

4.2.4 Trapezoidal cohesive law

The trapezoidal cohesive law (Fig. 16) proposed by

Tvergaard and Hutchinson [156, 157] for elastic–
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Fig. 12 Exponential cohesive law (Eq. 4.11)
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plastic problems is used by many investigators (i.e.

[140, 158–165]. Multilinear cohesive laws (Fig. 17)

are also employed [159, 162, 166, 167]. The effect of

the shape of the cohesive load was found to be

problem-dependent [140]. In some cases it makes very

little difference on the accuracy of the solution while

on some examples differences up to 15 % are reported

[140]. Another concern is that the shape of the

cohesive law affects the stability of the solution. In

that respect, the trapezoidal cohesive model performs

worse than the exponential or bilinear laws. On the

other hand there are examples such as those treated by

Pinto [166] in which, because of the highly nonlinear

behavior of the adhesive, a multilinear model performs

best when modeling a bonded joint.

4.2.5 Loading rate, moisture and other complicating

effects

In addition to the Corigliano’s method discussed

above [141, 142], rate dependent cohesive laws have

been proposed in [168–175] and the effect of friction

between delaminated interfaces was introduced in

cohesive laws Alfano and Sacco [176], Yang and Cox

[177]. The mechanical behavior of polymer matrix

materials and adhesives is usually affected by mois-

ture absorption. Moisture dependent CZM properties

were determined by several investigators and Refs.

[178–182] showed that the cohesive strength and the

cohesive fracture energy decrease with moisture

absorption.

When delamination cracks grow in laminated

composites, fibers may bridge the two laminas behind

the crack tip. Similarly, with z-fiber pinning the crack

is intentionally bridged by the transverse fiber rein-

forcement. Then, there is both a bridging zone and a

cohesive zone. Delaminations have been studied using

CZM in several publications (i.e. [183–187]). Dantu-

luri [188] modeled z-pinned laminates with bilinear

cohesive law for interface and also a nonlinear spring

with a bilinear force–displacement law for the z-pins.

With this model the z-pin are effective only in the

normal direction. Cui et al. [189] use interface

elements for laminates with z-pins that provide Mode

I–Mode II bridging. For predicting failure of the z-pins

themselves, cohesive laws for mode I and mode II are

used separately.

dI 

GI
c 

σI 

σI
0 
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4.3 Interface elements formulation

The development of cohesive finite elements can

follow classical lines like for an eight node solid finite

element with the top surface connected to elements

representing the layer above the interface and the

bottom surface connected to elements modeling the

layer below the interface. Instead of finite thickness

elements, zero thickness elements can also be devel-

oped. In both cases, interpolation functions are used to

determine various quantities from their values at the

nodes. In other words, in continuous interface ele-

ments nodal forces depend on all nodal displacements.

The following outlines some of the early develop-

ments of finite elements with CZM. Hillerborg [190] is

considered to be the first to use cohesive crack tip

model in finite element analysis as stated by Geißler

and Kaliske [171]. Some of the first applications of

cohesive elements for the analysis of composite

material include Cui and Wisnom [117], Allix,

Ladeveze and Corigliano [191], and Schellekens and

de Borst [192].

Mi et al. [193] developed zero-thickness interface

elements to be used in a 2D finite element analysis

between 8-noded elements. A bilinear cohesive law

and a linear fracture criterion were used. Alfano and

Crisfield [194] developed cohesive elements and

discussed problems related to mesh size leading to

spurious oscillations in the solution. The number of

integration points in the isoparametric formulation of

the element is also shown to have a significant effect

on the stability of the solution. Cohesive models have

also been developed for use between beam, plate or

shell elements [195–197].

A different approach consists of introducing spring

elements at the nodes. With these discrete cohesive

elements, zero-length springs connect nodes initially

at the same location and depend only on the displace-

ments at those nodes. Several authors have used this

approach [116, 155, 158, 159, 198, 199]. This

approach is sometimes called discrete cohesive zone

model (DCZM).

The force–separation relationship for the discrete

spring element is based on the continuum damage

evolution law governing the material behavior. Gen-

erally, the form is bilinear or trapezoidal. Each

fracture mode (I, II, and III) requires three or four

parameters according the form of the law. The

required parameters are the critical energy release

rates, the critical strengths or critical separation for

damage initiation, the shape factors that define the

plasticity and the initial stiffnesses. The critical forces

in the spring depend on the material cohesive

strengths.

Borg et al. [118] consider this method as a penalty

method tying coincident nodes with three orthogonal

springs. The penalty forces Pi are related to di, the
relative displacements for the coincident nodes by

Pi ¼ 1� xið Þ ki di where ki is the penalty stiffness in

direction i and xi are damage variables with values

between 0 and 1. This penalty approach can also be

used when layers above and below the interface are

modeled as beams, plates or shells. Forces and

moments are applied to force the transverse displace-

ments to be the same and to eliminate shear deforma-

tions at the interface [200].

To sum up, CZMs are widely used to model crack

propagation in composite laminates. A large number

of cohesive laws have been developed and studied.

The most used is the bilinear cohesive law. Alfano

[135] shows that the bilinear laws represent the best

compromise between computational cost and

approximation.

These laws have been implemented in specific finite

elements (zero thickness 8-noded elements and zero

length spring elements) that have to cope with specific

numerical issues. Many authors [201–203] showed

that the element size was very important for the

accuracy of the calculation and its convergence. At the

crack tip, the variation of stress can be very high in a

small area. More details on the calculation of cohesive

elements length are given in part 5.1.1. More, inde-

pendently of the element size, some cohesive laws

leads to difficult convergence, like the trapezoidal law

[135].

In the following, a description is given of how these

cohesive elements are used for the modelling of

impact damages in composite structures.

5 Applications of cohesive elements

The study of foreign object impacts on laminated

composite structures goes back several decades and

led to the publication of thousands of articles. The

most challenging aspect is the prediction of impact

damage and in particular the size and location of

delaminations. Until recently, it was only possible to
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predict the onset of damage but predicting the

sequence of events leading to the final damage pattern

and the details through the thickness was not possible.

The development of cohesive elements and their

availability in well-known finite element programs has

made detailed simulations of the impact possible.

Realistic results are obtained and compare well with

experimental results. Similarly the introduction of

cohesive elements enabled significant progress in the

simulation of composite structures under crash

impacts. In the following, we briefly discuss the use

of this type of elements in the analysis of foreign

object impacts on composite and sandwich structures

and the crushing of energy absorbing structures.

The use of cohesive elements for simulating

impacts on composites in recent years can be

attributed in part to the availability of elements such

as element COH3D8, a three dimensional, 8 node, zero

thickness element in ABAQUS. Table 1 lists 45

references published between 2008 and 2015 in which

this element is used. ABAQUS also offers the 6 node,

three dimensional cohesive element COH3D6 to be

used with tetrahedral solid elements [204–208] and the

4 node, two- dimensional cohesive element COH2D4

[209–211]. Cohesive elements are also available in

many commercial finite element programs including

LS-DYNA, MSC.Marc and ANSYS [212]. Table 2

provides a quick reference to other publications cited

in this section in which cohesive elements are used.

5.1 Impact on composite laminates

Failure initiation in laminated composite materials

under foreign object impacts is predicted using

intralaminar failure criteria for matrix cracks and fiber

failures and interlaminar failure criteria such as those

discussed in Sect. 2 for delamination. Once the

damage is initiated it might grow under further

loading and may cause other type of damage to

develop. For example, matrix cracks may cause

delaminations as they reach an interface between

plies. Similarly, a delamination crack may induce a

matrix crack in one of the adjacent plies which in turn

will induce a delamination at the next interface. The

simulation should treat the initial failures as cracks

and, using cohesive interface elements, it is possible to

track their evolution throughout the impact and obtain

accurate predictions of the damage state and get an

understanding of the damage development process.

This section focuses on transverse impacts by hard

projectiles.

5.1.1 Low velocity impacts

Cohesive elements are used to predict delaminations

during low velocity impacts (LVI) on laminated

composites. In most cases, interface elements with a

bilinear cohesive law are placed between adjacent

plies [128, 209, 211, 213–228]. A linear elastic phase

is followed by a linear softening. Unloading after

damage onset is expected to follow a linear path to the

origin. In some studies a different cohesive law is used

[229, 230]. Some simulations use the tie-break inter-

face in LS-DYNA which also provides for a bilinear

traction–separation law [231]. Airoldi [228] showed

examples of multiple delaminations that propagate

unstably and lead to immediate loss of load-carrying

capability and also of slowly-propagating interlaminar

damage that does not affect the overall response.

Cohesive elements can also be used to model intra-

ply failures in composites. This includes matrix cracks

induced by transverse tensile stresses, transverse shear

stresses, and inplane shear stresses. Reference [212]

reviews application of cohesive zone interface ele-

ments to modelling discrete matrix dominated failures

in polymer composites. Fiber failures can also be

modeled by cohesive elements. In a series of articles,

Bouvet et al. [199, 232–234] use cohesive elements to

Table 1 Articles in which

the cohesive element

COH3D8 in ABAQUS is

used

References

Low velocity impact [209, 213–218, 232, 237–239, 253, 260, 281, 356–371]

High velocity impact [201, 275, 372, 373]

Soft impact [202, 254–256]

Crushing tube [203, 326]

Crushing plate [349, 350]

Energy absorbing structures [338, 339, 374]
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predict both intraply and interlaminar damage during

low velocity impacts. This approach was also used to

study the compression after impact behavior of

laminates [235]. In [236] damage in a beam under

three-point bending is predicted using cohesive ele-

ments for both matrix cracks and delaminations. Other

studies also include interface elements to predict both

intralaminar and interlaminar impact damage [237,

238].

While most studies assume a linear stress–strain

behavior for each ply, several studies account for

nonlinear stress–strain behavior under inplane shear.

For example, in [214, 238] the shear stresses sij are
given in terms of the ultimate shear strength Sij, the

shear modulus Go
ij as

sij ¼ Sij 1� exp �Go
ijc=Sij

� �h i
ð5:1Þ

for i, j = 1–3. The cubic polynomial shear stress–

stress relationship

sij ¼ c1cij þ c2c
2
ij þ c3c

3
ij ð5:2Þ

is adopted in several publications [239–241]. Other

approaches for modeling nonlinear shear behavior

have been proposed [242, 243].

A significant issue in using cohesive elements is the

small element size required to achieve convergence.

Typically, elements must be smaller than 0.5 mm

[244]. The main reason is that the stress at the interface

varies greatly over a distance of about 4 or 5 mm.

Several elements are needed to capture this phe-

nomenon since they usually provide linear stress

variations. In Hillerborg et al. [190], the characteristic

length for isotropic materials is a material property

given by lc ¼ EGc=r2max. The length of the cohesive

zone can be estimated with

lcz;z ¼ E
0

IGIc= ro
z

� �2h i1=4
h3=4 ð5:3Þ

lcz;zx ¼ E
0

IIGIIch= sozx
� �2h i1=2

ð5:4Þ

for Mode I and Mode II loadings respectively

[245]. In these formulas, h is the half thickness

of the laminate, ro
z and sozx are the maximum

interfacial strengths, and E0
I and E0

II are the equivalent

moduli under Mode I and Mode II loadings. Reference

[246] provides expressions for calculating the equiv-

alent moduli in terms of the elastic moduli Ei, the

Poisson ratios mij, and the shear moduli Gij where i,

j = 1, 2, 3. Several other approaches for estimating the

length of the cohesive zone are given in [247, 248].

Usually, lcz;z � lcz;zx and it is recommended to have at

least two or three elements in the cohesive zone

defined by lcz;z in order to capture the stress distribu-

tion in that zone.

Table 2 Other references using cohesive zone models to study impact problems

Applications

Foreign object impacts Laminates Low velocity impacts Bilinear: [128, 219–228]

Linear exponential [153, 199, 233, 234]

Others: [229–231]

High velocity impacts Bilinear: [272, 273]

Other: [274]

Sandwich structures Bilinear: [282–285, 288, 295, 296]

Others: [278, 283, 284, 286, 287, 297, 299]

Crash absorbers for

automotive applications

Composite tubes Bilinear: [332, 333]

Others: [327–331, 334]

Others Bilinear: [261, 312, 335] helmet [262] helmet

Crash absorbers for

aerospace applications

Plate crushing Bilinear: [351]

Open section thin-walled

beams

Bilinear: [352, 354]

Sandwich plate [355]
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Several references pointed out that, for successful

modeling using interface elements, two conditions

must be met: (1) the compliance introduced by the

cohesive element before crack propagation should be

negligible; (2) the element size should be less than the

length of the cohesive zone [126, 248].

Several strategies were developed to reduce the

number of elements needed for obtaining stable

solutions. In [244], interface elements are enriched

with the analytical solution of an idealized beam on

elastic foundation. Accurate predictions are obtained

with element sizes of 5 mm. Further developments of

this approach can be found in [249–251]. Other

approaches have been presented including one in

which, ahead of the delamination, the initial stiffness

and strength are lowered while keeping the same onset

displacement and the same fracture toughness which

will increase the final displacement in the cohesive law

[169, 252].

The effects of preloads on impact damage have

received considerable attention since most structures

in normal operating conditions are subjected to stress

while impacted. One study indicated that preloads can

have a significant effect [253]. Tensile preloads result

in smaller delaminations since deflections are reduced.

Compressive preloads resulted in larger size delami-

nations because larger deflections. Realistic delami-

nation sizes are obtained when cohesive elements are

used at many interfaces through the thickness.

Several aircraft components are exposed to the risk

of bird strike [254]: windshield, window frame,

radome, wings and empennage leading edges, engine

inlets and fan blades. Models with stacked shell

elements and bilinear cohesive elements (element

COH3D8R in Abaqus) were developed [254–256].

Large deflections and the effect of preloads were

found to be important. Similar approaches to predict

damage to composite parts induced by bird strikes can

be found in [242, 257–259].

Some studies focus on impacts on particular

components instead of generic plates or shells: com-

posite aircraft wing flap support impacted by a wheel

rim fragment [201], impacts on scarf joints [260], on

helmets [261, 262] or on composite pipes [263]. Most

numerical investigations are conducted using the finite

element method and often some well-known commer-

cial codes. For example, Abaqus is used by many

authors and the bilinear cohesive element COH3D8R

[201, 253–256, 264]. Other numerical approaches are

also used. For example: the element free method for

both matrix cracks and delaminations in [265–267],

modeling of delaminations by the XFEM [268], and

peridynamics [269, 270].

Jalalvand [271] use interface elements to model

fiber failure in plies with carbon fibers and interface

elements to predict delaminations between glass fiber

reinforced plies and plies reinforced by carbon fibers.

The results presented by Bouvet and others show

that the use of cohesive models results in very accurate

and detailed prediction of low velocity impact damage

that was not possible before. The procedure used is a

progressive damage analysis: damage initiates, prop-

agates, and leads to the initiation of other damage

modes. For example, a matrix crack initiates, reaches a

ply interface and induces a delamination. Delamina-

tions can propagate in a self-similar fashion for a while

and then induce a matrix crack in the next ply which

will create another delamination in the next interface.

This process is sometimes called ‘‘ply-jumping’’ or

delamination migration. Those transitions can be

tracked as shown in some of the references cited.

Often, damage is modeled discretely for matrix cracks

and fiber failures for example. Some investigators

account for this type of damage using continuum

damage models that represent the material as a

homogeneous material with reduced properties. The

literature on continuum modeling is very extensive

and to give a coherent presentation of those models is

beyond the scope of the present article. However, that

approach is used by many authors (e.g. [241]).

5.1.2 High velocity impacts

Ballistic impacts of composite structures are modeled

using bilinear cohesive elements in several publica-

tions. For example, Loikkanen [272] analyze the

complete penetration by spherical and cylindrical steel

projectiles with velocities from 100 to 900 ft/s. Varas

et al. [273] study the ballistic impact of a woven fabric

laminate by a cylindrical flat-ended steel projectile and

showed that delamination absorbs relatively little

energy in that process. The delaminated area increases

as projectile velocity increases until the ballistic limit

is reached. As the initial velocity increases further,

both experiments and simulations showed that the

delaminated area decreases. For high velocity impacts

on plate with either tensile or compressive preloads,

matrix cracking and delaminations are the major
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impact damage modes under medium velocities with

rebounding projectile [253]. For higher velocities,

fibre rupture and fibre blow-out also appeared before

full penetration. Tensile preloading leads to a reduced

extent of delaminations resulting from a reduced

bending deflection of the plate under impact. Com-

pressive preload leads to increased delamination size

due to increased bending deflections of the plate

(Fig. 18).

Accurate predictions in case of complete perfora-

tions typically require a very fine mesh. In a typical

example, a 110 mm 9 110 mm plate with 12 layers

and a total thickness of 2.4 mm was modeled by 3D

solid elements with one element per layer and

cohesive elements at each of the 11 interfaces [274].

A total of 270,000 elements were used in this model.

Similar examples are presented in [275].

This subsection shows that the availability of

cohesive interface elements has led to significantly

improved damage predictions with remarkable agree-

ment with experimental results for impacts by both

rigid and soft projectiles. Simulations require a

detailed model of the laminate and a very small time

step at the same time.

5.2 Impact on composite sandwich structures

In sandwich structures, the behaviour with respect to

the crack propagation is strongly depending on the

type of core: structural foams, honeycomb, other type.

Indeed, delaminations either grow near the facesheet-

core interface or kink into the core material. Typically,

cracks are induced near the core-top facing interface

and may not propagate in a self-similar manner but

grow in an inclined direction instead (Fig. 19). The

kink angle X can be estimated using the Erdogan-Shi

formula [276]

X ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 KII=KIð Þ2

q
� 1

	 
�
4KII=KIð Þ

� 

ð5:5Þ

where KI and KII are stress intensity factors. These

mode I and mode II stress intensity factors should be

determined numerically using the VCCT for example

[277].

To use cohesive elements, one should anticipate the

direction of propagation of the delamination which is

not possible when the crack kinks into the core [278,

279]. The issue of crack kinking from the core-facing

interface and its relation to previous work dealing with

crack kinking at bimaterial interfaces is discussed in

[54–56]. Further studies of crack kinking foam core

sandwich structures include [277, 280].

Cohesive elements are used to predict delamina-

tions induced by low velocity impacts on sandwich

structures. Often a bilinear cohesive law is used [281–

285]. Some studies include the nonlinear behavior of

the facesheet material under inplane shear loading

[281]. Other cohesive laws are used: triangular [286],

cubic polynomial [283, 284]. Reference [278] assume

that the delamination is a mode I interfacial crack and

uses a cubic polynomial cohesive law of type proposed

by Needleman. Reference [287] shows that this model

can predict stable and unstable delamination growth

when large deflections are considered.

Sun and Chen [288] proposed a bilinear rate-

dependent CZM of the viscoelastic interface for

sandwich structures by analogy with the standard

linear solid model in viscoelasticity. That model was

used to studying loading rate effects on delamination

of sandwich structures.

Ply broken by tensile failure 
Crushing breakage 

65° 65° 

2r 

Fig. 18 Damage induced by ballistic impact on laminated

composites [376] Fig. 19 Crack kinking in the foam core of a sandwich beam
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Measuring critical strain energy release rates and

cohesive strengths for interfaces between the face-

sheet and core of sandwich panel is difficult. Several

studies have addressed this problem and developed

tests that produce reliable data [285, 289–294].

Heimbs [295] used a stacked shell model with

cohesive interface to predict composite facesheet

delaminations in sandwich structures with foldcores

subjected to impact. Stacked shell elements with

cohesive elements at the interfaces were also used to

model facesheets in [296].

Gopalakrishnan et al. [297] study the coupled

buckling-debonding of sandwich beam with alu-

minium honeycomb core, use a surface potential /
of the form similar to that proposed by Volokh and

Needleman [298]

/ ¼ exp 1ð Þrmax
�dn 1� 1þ Dnð Þ exp �Dn � D2

t

� �� �
ð5:6Þ

where Dn ¼ dn=�dn and Dt ¼ dt=�dt dn and dt are the

normal and tangential separations and dn �dn and �dt are
their maximum values. rmax is the normal strength of

the interface. The normal and tangential surface

tractions Tn and Tt are obtained by differentiating /
with respect to dn and dt. A similar approach is taken in

[299] to study the same problem.

5.3 Composite energy absorbing structures

Crashworthiness is defined as the ability of a structure

to protect its occupants during an impact. This requires

dissipating the kinetic energy of the vehicle by plastic

deformation of metallic structural elements or by

failure of members made out of composite materials.

The literature dealing composite structures subjected

to crash impacts is reviewed in several articles [300–

304] and books [301].

A typical crash absorbing structure is a composite

tube under axial crushing. It is designed not to fail in a

global mode such as column buckling but in a local

progressive mode. The tube is splayed into several

fronts and energy is dissipated by fiber breakage and

delamination of the fronds and by friction between the

fronds and the surface they come in contact with.

Simulating this continuous process is a challenging

task and the following will show that significant

progress was made using cohesive elements.

5.3.1 Automotive applications

In automotive applications, several components made

out of composite materials are designed to absorb

energy during crashes: bumpers [305–307], parts of

the frame to absorb energy during frontal or rear

impacts, side-door impact beams [308, 309]. The front

end of race cars usually have a shell type crash

absorber made of composite materials [310–315].

They also have a similar type of crash absorber

mounted on the back of the car for rear impacts [316].

On buses for public transportation, composite mate-

rials are used to reinforce roofs to prevent rollovers

and to fabricate rollbars to protect passengers in case

of rollover [317–321]. Composite materials are also

found in roolbars for farm tractors [322]. Composite

materials are also used in the construction of guard-

rails [323–325].

Research in this area typically focuses on compos-

ite tubes with different cross-sections. Such structures

are usually loaded axially and the basic design

requirements are that: (1) the maximal force transmit-

ted be limited in order to limit the deceleration of the

vehicle during the crash; (2) a significant amount of

energy be dissipated. This precludes failure by global

or local buckling, or by fracture. Instead, progressive

failure is sought. Typical failure during axial crushing

of composite tubes (Fig. 20) involve: (1) splaying of

the tube wall into several fronds (Mode I fracture), the

bending of the fronds, fiber fracture, and delamination

of the fronds (Mode II fracture).

The crushing of laminated composite tubes has

been studied numerically using finite elements. With

the ‘‘stacked shell’’ approach several plies or sublam-

inates are each modeled by shell elements connected

by cohesive elements to allow for delaminations.

Palanivelu et al. [203, 326] study the crushing of

circular and square tubes using the Abaqus finite

element software with a bilinear cohesive law and

claim to be the firsts to use cohesive elements for this

problem [326]. With the stacked-shell approach, ply

interfaces can also be modeled using one-dimensional

cohesive elements [327] or ‘‘tie breaks’’ in LS-DYNA

[328–331].

Another approach consists of using three dimen-

sional finite elements with interface elements for both

interlaminar and intralaminar failure. This approach

revealed that, for the case of a braided composite tube

under axial crushing, delamination played a very
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minor role in energy absorption [332]. The dominant

failure modes were splaying, fragmentation, progres-

sive folding and catastrophic failure. Pinho et al. [333]

used solid elements and bilinear cohesive elements to

model interface delamination during the crushing of

square composite tubes. Most composite tubes used as

crash absorbers have unidirectional or woven fiber

reinforcement. However, Ref. [334] considers circular

tubes made out of a glass mat thermoplastic material

with a polypropylene matrix and random fiber mat.

The finite element model of these tubes used 3D solid

elements and tie-break contact interfaces to model

delaminations.

A study of a crash impact attenuator with a shape

described as a square frusta was modeled using two

approaches: one using shell and the other using 3D

solid elements and cohesive elements to account for

delaminations [312].

Cohesive elements are used to model the failure of

composite beams used in structures designed to resist

side impacts or to be used as car bumpers. Greve [335]

used a bilinear cohesive law to model delaminations

between shell elements for the numerical analysis of a

composite thin-walled beam with a complex cross

section under three point bending with an axial

loading. This is an idealization of a pole impact on

an automotive side sill structure.

To model impacts on motorcycle helmets, Ref.

[261] used six 3D brick elements through the thickness

of the composite shell of the helmet with bilinear

cohesive elements at the interfaces.

5.3.2 Aerospace applications

Composite materials are used in the design of energy

absorbing structures in case of crash landing of aircraft

structures. Typically, studies focus on the vertical drop

of a fuselage section impact either a rigid surface

[336], soil, or water. The sub-cargo area of the

fuselage first impacts the ground (Fig. 21). Beams in

the cargo floor are designed to absorb energy. Plastic

hinges in the frames are a second energy absorbing

mechanism [336, 337]. Struts connecting the lower

frames to the passenger floor are designed to also

absorb energy. A significant portion of the kinetic

energy is absorbed by the crushing of composite tubes

used in the design of these struts connecting the two

floors. In one design, end fittings cut the tube into

strips that are then crushed by bending [338, 339].

Similarly, composite tubes are used as energy

absorbers integrated in the design of helicopter

landing gears [340]. Bolted single lap joints have

been suggested as energy absorbing devices [341].

Energy dissipation occurs as metallic bolts are pulled

through composite members. Another type of com-

posite structures designed to absorb energy during

crash is the subfloor structure of helicopters which

generally consist of a network of I-beams running in

two orthogonal directions [342, 343]. The crashwor-

thiness of final designs is based on two main criteria:

(1) the loads applied to passengers; (2) loads applied to

the frame of the structure [337]. For hard-landings and

survival crash scenarios, the maximum deceleration at

passenger seats should be limited to 16 g for 90 ms in

cases of forward landing and 14 g for 80 ms for

downward loadings [344].

Cohesive elements are used to model delaminations

during the crushing of composite structures aerospace

applications. Composite tubes in energy absorbing

struts were modeled by two layers of shell elements

Delamination 

Friction 
(adjacent plies) 

Flexural damage 

Friction (plies/plug) 

Pl
ug
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Debris wedge) 
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Friction (plies platen) Debris wedge 

delamination driven 
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Fig. 20 Failure mechanisms for axial crushing of composite

tubes [377]
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connected by interface elements [338, 339]. The

analysis predicted the crushing load but predicting

the peak loads in the crushing process would require a

much more refined model.

The crushing of laminated plates is thought to be

simpler because it involves fewer failure modes than

that of laminated tubes [345–348]. Experiments showed

significant differences between the static and dynamic

crushing of composite materials. In some cases,

changes in crushing modes led to dramatic reductions

in crushing loads for some material systems. High

speed video analyses show that the trigger plays an

important role during the initial of the crushing process

that induces delamination and buckling of individual

plies and evolves in a process of splaying and fracture.

Israr et al. [349–351] model the crushing of laminated

composite plates by meshing each ply of the laminate,

using bilinear cohesive elements between each ply. The

analysis predicts the major failure modes (splaying and

fragmentation) and provides an estimate of the energy

absorbed by each damage mode.

While there is a strong emphasis of the crushing of

composite tubes in the literature, Joosten et al. [352]

analyzed the crushing thin-walled open section com-

posite profiles using stacked shell models with bilinear

cohesive interfaces. David and Johnson considered

thin-walled open sections consisting of a half circle

and two flanges experimentally [353]. The numerical

simulation of these test involved the finite element

modeling of the composite profile using the stacked-

shell approach with cohesive interface elements [354].

The crushing of sandwich plates under edge compres-

sion is studied by Pickett [355].

6 Conclusion

CZM are becoming the method of choice for modeling

delaminations in composite materials particularly

since they are available in some widely available

finite element codes. This article reviews the failure

criteria used to predict the onset of delaminations,

basic fracture mechanics concepts including

approaches for predicting crack kinking, and the basic

formulations of the various CZM. Afterwards a review

of the applications of CZM to impact problems is

presented including low velocity and ballistic impacts

by foreign objects on composite and sandwich struc-

tures, and energy absorbing components of automo-

tive or aerospace structures during crash.

A significant advantage of this method is that it can

be implemented in a general purpose finite element

code in a way that is not problem-dependent. Results

presented by various authors show that impact

damage can be predicted with remarkable accuracy

and a high level of detail. However, a very refined

mesh is required to ensure the stability of the solution

process. The size of the elements is determined from

the length of the cohesive zone which can be

estimated from simple approximate formulas. The

computational effort increases rather dramatically

with the number of delaminations considered. The

choice of technique to model impact on composite

laminates depends on the level of precision needed

and on the size of the modeled structure. A refined

finite element model is required to determine inter-

facial stresses accurately and small size elements are

also needed to avoid stability problems with cohesive

elements. This results in the need for very small time

steps in the analysis and the combination of a large

number of elements and a small time step make such

analyses computationally expensive. At this time

such analyses are only performed on small test size

components. For instance, modeling intra-laminar

failure with cohesive elements provides a good

representation of damage scenario but it is hardly

feasible for a large structure.

CZMs are also used to analyze many other prob-

lems for composite structures with delaminations. For

example, they are used in numerical models to

determine the residual strength of structures with

impact-induced damage, to determine the strength of

bonded or bolted joints and to determine the effec-

tiveness of various repairs.

Cabin floor 
beam 

Cabin strut 

frame 

Fig. 21 Typical fuselage section [378]
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(2011) The influence of the boundary conditions on low-

velocity impact composite damage. Strain 47:e220–

e226

225. Amaro AM, Santos JB, Cirne JS (2011) Delamination

depth in composites laminates with interface elements and

ultrasound analysis. Strain 47:138–145. doi:10.1111/j.

1475-1305.2008.00491.x

226. Geubelle PH, Baylor JS (1998) Impact-induced delami-

nation of composites: a 2D simulation. Compos Part B Eng

29:589–602

227. Wang W, Wan X, Zhou J et al (2014) Damage and failure

of laminated carbon-fiber-reinforced composite under

low-velocity impact. J Aerosp Eng 27:308–317. doi:10.

1061/(ASCE)AS.1943-5525.0000243

228. Airoldi A, Sala G, Bettini P, Baldi A (2013) An efficient

approach for modeling interlaminar damage in composite

laminates with explicit finite element codes. J Reinf Plast

Compos 32:1075–1091. doi:10.1177/0731684412473004

229. Aoki Y, Suemasu H, Ishikawa T (2007) Damage propa-

gation in CFRP laminates subjected to low velocity impact

and static indentation. Adv Compos Mater 16:45–61

230. Aoki Y, Suemasu H (2003) Damage analysis in composite

laminates by using an interface element. Adv Compos

Mater 12:13–21

231. Forghani A, Vaziri R (2009) Computational modeling of

damage development in composite laminates subjected to

transverse dynamic loading. J Appl Mech 76:051304

232. Hongkarnjanakul N, Bouvet C, Rivallant S (2013) Vali-

dation of low velocity impact modelling on different

stacking sequences of CFRP laminates and influence of

fibre failure. Compos Struct 106:549–559

233. Bouvet C, Rivallant S, Barrau JJ (2012) Low velocity

impact modeling in composite laminates capturing per-

manent indentation. Compos Sci Technol 72:1977–1988.

doi:10.1016/j.compscitech.2012.08.019

234. Bouvet C, Hongkarnjanakul N, Rivallant S, Barrau J-J

(2013) Discrete impact modeling of inter- and intra-lam-

inar failure in composites. In: Abrate S, Castanié B,
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(2014) Numerical analysis of high velocity impacts on

unidirectional laminates. Compos Struct 107:629–634.

doi:10.1016/j.compstruct.2013.08.035

275. Phadnis VA, Pandya KS, Naik NK et al (2013) Ballistic

impact behaviour of woven fabric composite: finite

2616 Meccanica (2015) 50:2587–2620

123

http://dx.doi.org/10.1016/j.compositesa.2014.02.013
http://dx.doi.org/10.1016/j.compositesa.2014.02.013
http://dx.doi.org/10.1016/j.engfracmech.2008.06.004
http://dx.doi.org/10.1016/j.engfracmech.2008.06.004
http://dx.doi.org/10.1108/02644401111097000
http://dx.doi.org/10.1108/02644401111097000
http://dx.doi.org/10.1051/jp4:2001506
http://dx.doi.org/10.1016/j.compscitech.2013.02.011
http://dx.doi.org/10.1016/j.compscitech.2013.02.011
http://dx.doi.org/10.1007/s10443-012-9257-8
http://dx.doi.org/10.1016/j.compstruct.2013.12.031
http://dx.doi.org/10.1016/j.compstruct.2013.12.031
http://dx.doi.org/10.1155/2012/372167
http://dx.doi.org/10.1155/2012/372167
http://dx.doi.org/10.1016/j.compstruct.2008.03.025
http://dx.doi.org/10.1016/j.compstruc.2013.02.001
http://dx.doi.org/10.1016/j.compstruc.2013.02.001
http://dx.doi.org/10.1016/j.matdes.2010.03.011
http://dx.doi.org/10.1016/j.matdes.2010.03.011
http://dx.doi.org/10.1177/0021998314525485
http://dx.doi.org/10.1016/j.compstruct.2014.06.010
http://dx.doi.org/10.1016/j.compstruct.2014.06.010
http://dx.doi.org/10.1007/s10443-010-9133-3
http://dx.doi.org/10.1007/s10443-010-9133-3
http://dx.doi.org/10.1016/j.compscitech.2009.05.015
http://dx.doi.org/10.1016/j.compscitech.2009.05.015
http://dx.doi.org/10.1061/(ASCE)0893-1321(2008)21:3(187)
http://dx.doi.org/10.1061/(ASCE)0893-1321(2008)21:3(187)
http://dx.doi.org/10.1016/j.compscitech.2014.01.013
http://dx.doi.org/10.1016/j.compscitech.2014.01.013
http://dx.doi.org/10.1016/j.compstruct.2012.08.015
http://dx.doi.org/10.1016/j.compstruct.2013.08.035


element analysis and experiments. J Phys Conf Ser

451:012019. doi:10.1088/1742-6596/451/1/012019

276. Erdogan F, Sih GC (1963) On the crack extension in plates

under plane loading and transverse shear. J Basic Eng

85:519–525

277. Yokozeki T (2011) Analysis of crack kinking in foam core

sandwich beams. Compos Part A Appl Sci Manuf

42:1493–1499. doi:10.1016/j.compositesa.2011.06.017

278. El-Sayed S, Sridharan S (2002) Cohesive layer models for

predicting delamination growth and crack kinking in

sandwich structures. Int J Fract 117:63–84

279. Berggreen C, Simonsen BC, Borum KK (2006) Experi-

mental and numerical study of interface crack propagation

in foam-cored sandwich beams. J Compos Mater

41:493–520. doi:10.1177/0021998306065285

280. Carlsson LA, Matteson RC, Aviles F, Loup DC (2005)

Crack path in foam cored DCB sandwich fracture speci-

mens. Compos Sci Technol 65:2612–2621

281. Feng D, Aymerich F (2013) Damage prediction in com-

posite sandwich panels subjected to low-velocity impact.

Compos Part A Appl Sci Manuf 52:12–22

282. Theotokoglou EE (2012) Prediction of crack propagation

in sandwich beams under flexural loading. In: 15th Euro-

pean conference on composite materials (ECCM15),

Venice, Italy

283. Chen J (2002) Predicting progressive delamination of

stiffened fibre-composite panel and repaired sandwich

panel by decohesion models. J Thermoplast Compos

Mater 15:429–442

284. Chen J (2001) Application of decohesion model in pre-

dicting progressive delamination of stiffened fibre com-

posite panel and repaired sandwich panel. In: 13th

International conference on composite materials

285. Ramantani DA, de Moura MFSF, Campilho RDSG,

Marques AT (2010) Fracture characterization of sandwich

structures interfaces under mode I loading. Compos Sci

Technol 70:1386–1394. doi:10.1016/j.compscitech.2010.

04.018
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376. López-Puente J, Zaera R, Navarro C (2007) An analytical

model for high velocity impacts on thin CFRPs woven

laminated plates. Int J Solids Struct 44:2837–2851. doi:10.

1016/j.ijsolstr.2006.08.022

377. McGregor C, Vaziri R, Xiao X (2010) Finite element

modelling of the progressive crushing of braided com-

posite tubes under axial impact. Int J Impact Eng

37:662–672. doi:10.1016/j.ijimpeng.2009.09.005

378. Xue P,Wang L, Qiao CF (2011) Crashworthiness Study on

Fuselage Section and Struts under Cabin Floor. Int J Prot

Struct 2:515–526

2620 Meccanica (2015) 50:2587–2620

123

http://dx.doi.org/10.1016/j.compstruct.2013.07.008
http://dx.doi.org/10.1016/j.compstruct.2013.07.008
http://dx.doi.org/10.1016/j.compstruct.2015.03.021
http://dx.doi.org/10.1016/j.apm.2014.11.052
http://dx.doi.org/10.1016/j.apm.2014.11.052
http://dx.doi.org/10.1016/0266-3538(90)90049-B
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.022
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.022
http://dx.doi.org/10.1016/j.ijimpeng.2009.09.005

	Cohesive zone models and impact damage predictions for composite structures
	Abstract
	Introduction
	Failure criteria for predicting the onset of delamination
	Fracture mechanics approach
	Historical background
	Fracture mechanics approach to delamination propagation
	Virtual crack closure technique

	Cohesive element approach
	Bilinear cohesive law
	Other cohesive laws
	Exponential cohesive laws
	Polynomial cohesive laws
	Linear exponential cohesive laws
	Trapezoidal cohesive law
	Loading rate, moisture and other complicating effects

	Interface elements formulation

	Applications of cohesive elements
	Impact on composite laminates
	Low velocity impacts
	High velocity impacts

	Impact on composite sandwich structures
	Composite energy absorbing structures
	Automotive applications
	Aerospace applications


	Conclusion
	References




