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Abstract We have analyzed peristaltic flow of an

Oldroyd-B fluid in a curved channel. Assuming the

flow to be incompressible, laminar and two-dimen-

sional, the governing partial differential equations are

reduced under long wavelength and low Reynolds

number approximations into a single nonlinear ordi-

nary differential equation in the stream function.

Matlab built-in routine bvp4c is utilized to solve this

nonlinear ordinary differential equation. The solution

thus obtained is used to investigate the effects of

curvature of the channel and Weissenberg number on

important phenomena of pumping and trapping asso-

ciated with peristaltic motion. It is found that for small

values of Weissenberg number, the effects of curva-

ture are dominant. However, for large values of

Weissenberg number, viscoelastic effects counteract

the effects of curvature and help the flow velocity and

circulating bolus of fluid to regain their symmetry.

Keywords Curved channel � Peristalsis � Wave

frame � Modeling � Oldroyd-B fluid

1 Introduction

A study of the dynamics of fluid transport by

peristaltic motion of the confining walls is important

in understanding a variety of biological and engineer-

ing phenomena. Specifically, such motion appears in

swallowing food through oesophagus, urine transport

from kidney to bladder, the transport of spermatozoa,

roller and finger pumps, the motion of chyme in the

small intestine, the mechanical and neurological

aspects of reflex, transport of lymph in the lymphatic

vessels and in the vasomotion of small blood vessels

such as arterioles, venules and capillaries. Initial

studies on peristalsis were carried out for Newtonian

fluid. These include the work of Shapiro [1], Shapiro

et al. [2], Fung and Yih [3], Jaffrin [4], Brown and

Hung [5], Takabatake and Ayukawa [6] and many

others. It is pertinent to mention that Shapiro et al. [2]

performed the analysis of peristaltic motion in wave

frame of reference while Fung and Yih [3] used

laboratory frame of reference. The choice of Newto-

nian fluid in the above mentioned studies restricted

their application to urine transport only. This is

because most of the fluids occurring in physiology

and industry are non-Newtonian in nature and have a

great impact on the mathematical and physical nature

of the problem. Motivated by this fact, Raju and

Devanathan [7] performed a study regarding peri-

staltic flow of blood using power-law fluid. In

continuation [8], they utilized the constitutive
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equation of a viscoelastic fluid with fading memory in

their analysis. Their work motivated several other

researcher to work on theoretical analysis of peristaltic

motion of different model capable of predicting

different non-Newtonian characteristics such as shear

thinning or shear thickening [9–12], thixotropy [13],

normal stress effect [14], spurt [15, 16], viscoelasticity

[17–19] etc.

In all the above-mentioned attempts peristaltic

flows have been discussed in two-dimensional chan-

nels or axisymmetric tubes. But in reality, the

geometry of most physiological conduits and glandu-

lar ducts is curved. The effect of curvature seems

meaningful in this context. This fact provides a natural

motivation to study peristaltic flow in curved channels.

It is seen from the available studies that very less

attention is focused on the peristaltic flows in curved

channels. Sato et al. [20] discussed the two-dimen-

sional peristaltic flow of a viscous fluid in a curved

channel in the laboratory frame of reference. They

have used long wavelength and low Reynolds number

approximations in deriving the flow equations. Ali

et al. [21] provided the analysis of two-dimensional

peristaltic motion in the wave frame of reference. In

another paper, Ali et al. [22] investigated peristaltic

motion of a third grade fluid in a curved channel. Some

resent studies on peristaltic flows in a curved channel

regarding the effects of compliant wall, non-Newto-

nian rheology, unsteadiness, magnetic field and slip

condition can be found in refs. [23–36].

Literature survey indicates that up till now there is

not available a single attempt regarding peristaltic

motion of an Oldroyd-B fluid in a curved channel

under long wavelength assumption. This is perhaps

because of discrepancy of Oldroyd-B model in

predicting viscoelastic features when peristaltic flow

under long wavelength approximation is considered in

straight geometries. This fact also motivated us to look

whether viscoelastic parameters will retain in the

analysis of peristaltic motion of Oldroyd-B fluid in

curved channel under long wavelength approximation

or not. To our surprise, we found the answer in

affirmative and thus detail analysis is performed to

investigate the simultaneous effects of viscoelasticity

and curvature of the channel on the peristaltic

transport.

The presentation of paper is as follows: Sect. 2

presents the formulation of the problem. Rate of

volume flow and appropriate boundary conditions are

given in Sect. 3. The method of solution is illustrated

in Sect. 4. Section 5 consists of a detailed discussion

about the results. We end up the paper by giving some

concluding remarks in Sect. 6.

2 Description of the problem

Consider a homogeneous incompressible Oldroyd-B

fluid in a curved channel of width 2a. The channel is

coiled in a circle of radius R* having its centre at origin

O. The schematic diagram of the flow geometry is

given in Fig. 1. Let �V and �U be the velocity

components in radial (�R) and axial ( �X) directions,

respectively. The fluid is set into motion due to the

contraction and expansion of the flexible walls of the

channel. The mathematical expressions describing the

wall geometry are:

H �X;�tð Þ ¼ aþ bsin
2p
k

� �
�X � c�tð Þ

� �
; Upper wall

ð1Þ

�H �X;�tð Þ¼�a�bsin
2p
k

� �
�X�c�tð Þ

� �
; Lowerwall

ð2Þ

In above expressions c is the speed, k is the

wavelength, b is the amplitude and �t is the time.

For the flow under consideration the velocity field is

of the following form

�V ¼ �V �X; �R; �tð Þ; �U �X; �R;�tð Þ; 0½ �; ð3Þ

and equations that given the present flow are

r: �V ¼ 0; ð4Þ

Fig. 1 Schematic diagram of the problem
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q
d �V

d�t
¼ r: �T; ð5Þ

The constitutive equation for an Oldroyd-B fluid is

given by

�T ¼ �p�I þ S; ð6Þ

where the extra stress tensor �S satisfies [31]

1þk1
D

D�t

� �
�S ¼ l 1þk2

D

D�t

� �
�A1: ð7Þ

In the above equation l is the coefficient of shear

viscosity, D=D�t is the contravariant convected deriva-
tive, kt (i = 1, 2) are relaxation and retardation times,

respectively, �A1 is the first Rivlin–Ericksen tensor

defined by [37, 38]

�A1 ¼ grad �Vð Þ þ grad �Vð ÞT ; ð8Þ

D�S

D�t
¼ o�S

o�t
þ �V:rð Þ�S� �L�S

� �S�L
T
;

for a contravariant tensor

of rank 2

 !
ð9Þ

and

D�b

D�t
¼ o�b

o�t
þ �V:rð Þ�b� �L�b:

for a contravriant vectorð Þ
ð10Þ

In view of Eq. (6), we can write Eq. (5) as

q
d �V

d�t
¼ �r�pþr:�S: ð11Þ

Now to find the two-dimensional equations we need

to eliminate �S between Eqs. (11) and (7). To this end,

we apply the operator 1þ k1 D
D�t

� �
to the momentum

Eq. (11) and get

q 1þk1
D

D�t

� �
d �V

d�t
¼ � 1þk1

D

D�t

� �
r�p

þ 1þ k1
D

D�t

� �
r:�S: ð12Þ

Following Harris [38] we use the commutatively of

the operator r and D=D�t i.e.

D

D�t
r:ð Þ ¼ r:

D

D�t

� �
: ð13Þ

Therefore Eq. (12) becomes

q 1þk1
D

D�t

� �
d �V

d�t
¼ �r 1þ k1

D

D�t

� �
�p

þr: 1þ k1
D

D�t

� �
�S;

which in view of Eq. (7) takes the form

q 1þk1
D

D�t

� �
d �V

d�t
¼ �r�p� þ 1þk2

D

D�t

� �
r: �A1;

ð14Þ

where �p� is the modified pressure.

For two-dimensional velocity field defined by (3),

Eqs. (4) and (14) yield the following equations:

o

oR
Rþ R�� �

V
� 	

þ R� oU

oX
¼ 0; ð15Þ

� U
2

RþR� þV
oV

oR
þ oV

ot
þ R�U

RþR�
oV

oX

þ t � R�

RþR�
o2U

oXoR
þ 3R�

RþR�
� �2 oUoX þ 2V

RþR�
� �2

 

� 2

RþR�
oV

oR
� 2

o2V

oR
2
� R�

RþR�

� �2
o2V

oX
2

!

þ k1 � 2U

RþR�
oU

ot
� 2R�U

2

RþR�
� �2 oUoX þ U

2
V

RþR�
� �2

 

� 2UV

RþR�
oU

oR
þ U

2

RþR�
oV

oR
þV

2 o
2V

oR
2
þ o2V

ot
2

þ2V
o2V

oRot
þ 2R�U

RþR�V
o2V

oRoX
� 2R�UV

RþR�
� �2 oVoX

þ 2
R�

RþR�

� �
U
o2V

oX
2
þ R�

RþR�

� �2

U
2 o

2V

oX
2

!

þ k2 � R�

RþR�
o3U

oX
2
oR

� R�

RþR�

� �2

U
o3U

oX
2
oR

 

þ 3R�

RþR�
� �2 o

2U

oXot
þ 3R�2U

RþR�
� �3 o

2U

o2X
� R�V

RþR�
o3U

oR
2
oX

þ 4R�V

RþR�
� �2 o2U

oXoR
� 6R�V

RþR�
� �3 oUoX
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� 4V
2

RþR�
� �3 þ R�

RþR�
o2U

oXoR

oV

oR
� 3R�

RþR�
� �2 oUoX

oV

oR
þ 2V

RþR�
� �2 oVoRþ 2

RþR�
oV

oR

� �2

� 2V

RþR�
o2V

oR
2
þ 2

oV

oR

o2V

oR
2

� 2V
o3V

oR
3
� 2

o3V

oR
2
ot
� 2R�U

RþR�
o3V

oR
2
oX

� 2

RþR�
o2V

oRot
� 2R�U

RþR�
� �2 o2V

oRoX
� R�

RþR�

� �2

V
o3V

oRoX
2
þ 2

RþR�
� �2 oVot

þ 2R�

RþR�
� �2U oV

ot
þ R�

RþR�
oU

oR

oV

oX
þ R�

RþR�

� �
o2U

oR
2

oV

oX
þ 2

R�

RþR�

� �3
o2U

oX
2

oV

oX
þ R�

RþR�

� �2
o2V

oRoX

oV

oX

þ 3R�2

RþR�
� �3 oV

oX

� �2

þ 2R�2

RþR�
� �3V o2V

oX
2
þ R�

RþR�

� �2
oV

oR

o2V

oX
2
� R�

RþR�

� �2
o3V

otoX
2
� R�

RþR�

� �3

U
o3V

oX
3

¼� 1

q
o�p�

oR
;

ð16Þ

oU

o�t
þ R�U

Rþ R�
oU

oX
þ U

Rþ R� V þ V
oU

oR
þ t

U

Rþ R�
� �2 � 1

Rþ R�
oU

oR
� o2U

oR
2
� 2

R�

Rþ R�

� �2
o2U

oX
2
� R�

Rþ R�
o2V

oRoX

 

� 3R�

Rþ R�
� �2 oVoX

!
þ k1 � U

3

Rþ R�
� �2 þ U

2

Rþ R�
oU

oR
þ o2U

ot
2
þ 2

R�U

Rþ R�

� �
o2U

oXot
þ R�

Rþ R�

� �2

U
2 o

2U

oX
2
þ 2V

o2U

oXot

 

þ2R�UV

Rþ R�
o2U

oRoX
� 2R�UV

Rþ R�
� �2 oUoX � 2UV

2

Rþ R�
� �2 þ V

2 o
2U

oR
2
þ 2UV

Rþ R�
oV

oR
þ 2U

Rþ R�
oV

oX
þ 2R�U

2

Rþ R�
� �2 oVoX

!

þ k2 � o3U

oR
2
ot
� R�U

Rþ R�
o3U

oR
2
oX

� 1

Rþ R�
o2U

oRoX
� 2R�U

Rþ R�
� �2 o2U

oRoX
þ R�

Rþ R�
oU

oR

o2U

oRoX
þ 1

Rþ R�
� �2 oUot

 

þ 3R�

Rþ R�
� �3U oU

oX
� 2R�

Rþ R�
� �2 oUoR

oU

oX
þ R�

Rþ R�
o2U

oR
2

oU

oX
þ 2

R�

Rþ R�

� �3
o2U

oX
2

oU

oX
� 2

R�

Rþ R�

� �2
o3U

oX
2
ot

� 2
R�

Rþ R�

� �3
o3U

oX
3
� U

Rþ R�
� �3 V þ V

Rþ R�
� �2 oUoR � V

o3U

oX
3
� 2

R�

Rþ R�

� �2

V
o3U

oRoX
2
þ 6R�2V

Rþ R�
� �3 o

2U

oX
2

� 2U

Rþ R�
� �2 oVoR þ 2

Rþ R�
oU

oR

oV

oR
� 2U

Rþ R�
o2V

oR
2
þ 2

oU

oR

o2V

oR
2
� R�V

Rþ R�
o3V

oR
2
oX

þ R�

Rþ R�

� �2
oU

oX

o2V

oRoX

� R�

Rþ R�
� �2 V o2V

oRoX
� R�

Rþ R�
o3V

oRoX
2
� R�

Rþ R�

� �2

U
o3V

oRoX
2
þ 3R�2

Rþ R�
� �3 oUoX

oV

oX
þ 9R�

Rþ R�
� �3 V oV

oX

� 3RR�2

Rþ R�
� �3 o2V

oXot
� 3R�2

Rþ R�
� �3 o2V

oXot
þ R�

Rþ R�

� �2
oU

oR

o2V

oX
2

!
¼ � 1

q
R�

Rþ R�
o�p�

oX
;

ð17Þ
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It is pointed out here that Eqs. (16) and (17) do not

contain term involving k2. Thus using the approach of
Harris [38], one would get the same governing

equations for Oldroyd-B and Maxwell fluids for

peristaltic flow in a curved channel. Note that we

have used curvilinear coordinates �R; �Xð Þ with scale

factor given by h1 = 1 and h2 ¼ �Rþ R�ð Þ=R� in

deriving the above equations.

Employing the transformations given below to

switch from laboratory frame to wave frame

�x ¼ �X � c�t; �r ¼ �R; �u ¼ �U � c; �v ¼ �V; ð18Þ

Equations (15)–(17) can be put in the following

form

o

or
�r þ R�ð Þ�vf g þ R� o�u

o�x
¼ 0; ð19Þ

� �uþ cð Þ2

�r þ R� þ �v
o�v

or
� c

o�v

o�x
þ R� �uþ cð Þ

�r þ R�
o�v

o�x
þ t � R�

�r þ R�
o2�u

o�xo�r
þ 3R�

�r þ R�ð Þ2
o�u

o�x
þ 2�v

�r þ R�ð Þ2
� 2

�r þ R�
o�v

o�r

 
� 2

o2�v

o�r2

� R�

�r þ R�

� �2
o2�v

o�x2

!
þ k1 2c

�uþ cð Þ
�r þ R�

o�u

o�x
� 2

R� �uþ cð Þ2

�r þ R�ð Þ2
o�u

o�x
þ �uþ cð Þ2

�r þ R�ð Þ2
�v� 2

�uþ cð Þ�v
�r þ R�

o�u

o�r
þ �uþ cð Þ2

�r þ R�
o�v

o�r

 
þ �v2

o2�v

o�r2

�2c�v
o2�v

o�ro�x
þ 2R��v �uþ cð Þ

�r þ R�
o2�v

o�ro�x
� 2R��v �uþ cð Þ

�r þ R�ð Þ2
o�v

o�x
þ c2

o2�v

o�x2
þ 2

R�

�r þ R�

� �
�uþ cð Þ o

2�v

o�x2
þ R�

�r þ R�

� �2

�uþ cð Þ2o
2�v

o�x2

!

þ k2 � R�

�r þ R�
o3�u

o�x2or

�
� R�

�r þ R�

� �2

�uþ cð Þ o3�u

o�x2or
� 3cR�

�r þ R�ð Þ2
o2�u

o�x2
þ 3R�2 �uþ cð Þ

�r þ R�ð Þ3
o2�u

o�x2
� R��v

�r þ R�
o3�u

o�r2o�x

þ 4R��v

�r þ R�ð Þ2
o2�u

o�xo�r
� 6R�

�r þ R�ð Þ3
�v
o�u

o�x
� 4

�r þ R�ð Þ3
�v2 þ R�

�r þ R�
o2�u

oxo�r

o�v

o�r
� 3R�

�r þ R�ð Þ2
o�u

o�x

o�v

o�r
þ 2

�r þ R�ð Þ2
�v
o�v

o�r

þ 2

�r þ R�
o�v

o�r

� �2

� 2�v

�r þ R�
o2�v

o�r2
þ 2

o�v

o�r

o2�v

o�r2
� 2�v

o3�v

o�r3
þ 2c

o3�v

o�r2ox
� 2

R� �uþ cð Þ
�r þ R�

o3�v

o�r2o�x
þ 2c

1

�r þ R�
o2�v

o�ro�x

� 2
R� �uþ cð Þ
�r þ R�ð Þ2

o2�v

o�ro�x
� R�

�r þ R�

� �2

�v
o3�v

o�ro�x2
� 2c

�r þ R�ð Þ2
o�v

o�x
� 2cR� �uþ cð Þ

�r þ R�ð Þ2
o�v

o�x
þ R�

�r þ R�
o�u

o�r

o�v

o�x
þ R�

�r þ R�

� �
o2�u

o�r2
o�v

o�x

þ 2
R�

�r þ R�

� �3
o2�u

o�x2
o�v

o�x
þ R�

�r þ R�

� �2
o2�v

o�ro�x

o�v

o�x
þ 3R�2

�r þ R�ð Þ3
o�v

o�x

� �2

þ 2R�2

�r þ R�ð Þ3
�v
o2�v

o�x2
þ R�

�r þ R�

� �2
o�v

o�r

o2�v

o�x2
þ

c
R�

�r þ R�

� �2
o3�v

o�x3
� R�

�r þ R�

� �3

�uþ cð Þ o
3�v

o�x3

!
¼ � 1

q
o�p�

o�r
;

ð20Þ
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Defining the following dimensionless variables

x ¼ 2p
k
�x; g ¼ �r

a
; u ¼ �u

c
; v ¼ �v

c
;Re ¼ qca

p
;

p ¼ 2pa2

klc
�p�; d ¼ 2pa

k
; S ¼ a

lc
�S; k ¼ R�

a
;

ð22Þ

and the stream function [21]

u ¼ � ow
og

; v ¼ d
k

k þ g
ow
ox

: ð23Þ

The continuity Eq. (19) is satisfied identically and

Eqs. (20) and (21) after using long wavelength and

low Reynolds number approximations [11–13, 20–22]

reduce to

op

og
¼ 0; ð24Þ

� k

kþ g
1� ow

og

� �
� o2w

og2
� kþ gð Þo

3w
og3

þWe
k

kþ g
1� ow

og

� �3

þ 1� ow
og

� �2
o2w
og2

 !
¼ k

op

ox
;

ð25Þ

where We ¼ k1c2=t is the Weissenberg number and

k is the dimensionless radius of curvature.

Eliminating pressure between Eqs. (24) and (25),

we get the following compatibility equation

o

og
� k

kþ g
1� ow

og

� �
� o2w

og2
� kþ gð Þo

3w
og3

�

þWe
k

kþ g
1� ow

og

� �3

þ 1� ow
og

� �2
o2w
og2

 !!
¼ 0:

ð26Þ

We mention here that under long wavelength

assumption, Eq. (26) corresponds to peristaltic flow

of Maxwell fluid due to vanishing of the terms

involving retardation constant. But still it is capable

of predicting simultaneous effects of viscoelasticity

and curvature of the channel. Such an equation

cannot be obtained when peristaltic flow is consid-

ered in straight channel or tube which is evident by

taking limit of Eq. (26) when k ? ?. In that case

Eq. (26) reduces to the corresponding equation of

peristaltic transport of Newtonian fluid in a straight

channel.
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3 Volume flow rate and boundary conditions

In laboratory frame, we define

Q ¼
Z �H

� �H

�Ud �R; ð27Þ

as volume flow rate.

The above expression in the wave frame becomes

F ¼
Z �H

� �H

�ud�r; ð28Þ

where �H is a function of �x alone. In views of Eqs. (18),

(27) and (28) we can write

Q ¼ F þ 2c �H; ð29Þ

Defining the time-averaged flux over a period T at a

fixed position �X as

�Q ¼ 1

T

ZT

0

Qdt; ð30Þ

and utilizing Eq. (29) into (30), one finds

�Q ¼ qþ 2ac; ð31Þ

In dimensionless variables Eq. (29) reads

H ¼ qþ 2; ð32Þ

where H ¼ �Q=ac and q ¼ F=ac are the dimensionless

mean flows in laboratory frame and wave frame,

respectively.

In terms of stream function W we can write

q ¼ �
Zh

�h

ow
og

dg ¼ � W hð Þ �W �hð Þð Þ; ð33Þ

Selecting W hð Þ ¼ �q=2, we haveW �hð Þ ¼ q=2.

Therefore, the appropriate boundary conditions in

the wave frame are

w ¼ � q

2
;
ow
og

¼ 1; at g ¼ h ¼ 1þ Usinx; ð34Þ

w ¼ q

2
;
ow
og

¼ 1; at g ¼ �h ¼ �1� Usinx; ð35Þ

where U = b/a is the amplitude ratio.

The dimensionless pressure rise over one wave-

length is defined by [21, 22]

Dp ¼
Z2p

0

dp

dx
dx: ð36Þ

4 Method of solution

Due to nonlinear nature of Eq. (26), an exact solution

is not possible. Therefore, we opted to go for

numerical solution. To this end, we employed built-

in routine bvp4c for solving nonlinear ordinary

differential equation using computational software

Matlab. In the limit when k ? ? or We = 0, our

result reduce to the corresponding results for a

Newtonian fluid in a straight channel.

5 Results and discussion

In this section graphical results are displayed for

various values of Weissenberg number (We) and

dimensionless radius of curvature (k) in order to

analyze flow characteristics, pumping and trapping

phenomena associated with peristaltic motion.

Figure 2a shows the velocity profile u(g) at cross–
sections x = -p/2 (narrow part the channel) for

different values of We when H = 4 and k = 2. We

observe from this figure that for We = 0 and k = 2,

velocity profile is not symmetric about g = 0 and

maximum in it lies below g = 0. A symmetry about

g = 0 is observed forWe = 0.25. A further increase in

We shifts the maximum in velocity towards the upper

wall.

The velocity profiles for different values of We, by

takingH = 2 and keeping other parameters same as in

Fig. 2a, are shown in Fig. 2b. This figure depicts the

same behavior as predicted by Fig. 2a but for very

large values of We compared with those chosen in

Fig. 2a. Figure 2c illustrates velocity profiles at x = 0

(undisturbed part of the channel) by keeping other

parameters same as chosen in Fig. 2a. Again this

figure shows similar behavior of velocity profile as

observed in Fig. 2a. Figure 2d exhibits asymmetry

and shift of maximum in velocity towards the upper

wall for values ofWe greater in comparison with those
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chosen in Fig. 2c. Similar observations can be drawn

from Fig. 2e, f.

The effects of dimensionless radius of curvature

(k) on velocity profile of Oldroyd-B fluid are shown

through Fig. 3. A striking observation is made from

this figure i.e. velocity becomes asymmetric and

maximum in it shifts towards the upper wall for small

values of k. This observation to contrary to that what is

observed for a Newtonian fluid. For a Newtonian fluid,

Fig. 2 Variation of u(g) for
different values of We at

cross section x = -p/2 (a,
b), x = 0 (c, d) and x = p/2
(e, f) with U = 0.4 and

k = 2. Left panel

correspond to H = 4 while

right panel are for H = 2

Fig. 3 Variation of u(g) for different values of k at a cross

section x = p/2 with We = 5, H = 1.64 with U = 0.4 Fig. 4 Variation of dp/dx over one wavelength for differential

values of We with k = 2, U = 0.4 and H = 0
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a decrease in k shifts the maximum in velocity towards

the lower wall. In general it is concluded from Figs. 2

and 3 are that viscoelastic fluid driven by peristaltic

waves in a curved channel behaves in a very different

way than that of a Newtonian fluid. Perhaps the role of

Weissenberg number here, which characterizes the

viscoelastic fluid is to counteract the effects of curvature

and make the velocity symmetric even for very small

values of k. For large values of We the viscoelastic

effects dominate the effect of curvature and shift the

maximum in velocity profile towards the upper wall.

The plots of pressure gradient dp/dx over one wave

length for various values of We and k are shown in

Figs. 4 and 5, respectively. We observe from Fig. 4

that dp/dx increases in the wider part of the channel

while it decreases in the narrow part of the channel by

increasing We. Opposite trend can be observed by

increasing k as evident from Fig. 5.

Figures 6 and 7 are plotted to see the variation of

pressure rise per wavelength (Dp) against dimension-

less mean flow rate H for various values of We and k,

respectively.

Following interesting observations can be made

from these figures.

• In pumping region (Dp[ 0, H[ 0) there exists a

critical value of flow rate H, below which Dp de-

creases and above which it increases, by increasing

We. Thus pressure resistance for a viscoelastic

fluid is lesser in magnitude than that for a

Newtonian fluid.

• The situation is different in free pumping (Dp = 0)

and co-pumping region (Dp\ 0; H[ 0). Here

Dp increases by increasing We.

• Dp in pumping region increases in going from

curved to straight channel below a certain critical

value of H. Above this critical value a reverse

trend is observed. This reverse trend also prevails

in free pumping and co-pumping regions.

The streamline patterns for different values of We

and k are shown in Figs. 8 and 9. It is observed that the

presence of curvature in channel destroys the symme-

try of circulating bolus of the fluid. However, as

expected the circulating bolus of fluid regain its

symmetry for large values of k.

The effects of We on streamline patterns are quite

interesting. Here, as observed for velocity profile there

is competition between We and k. For small values of

We the effects of k are dominant and bolus is shifting

towards the upper wall. However, an increase in We

counteracts the effects of k and as a result bolus regain

its symmetry. A further increase in We dominates the

effects of k thus making the bolus asymmetric and at

the same time shifts it towards the lower wall.

Figure 10 is plotted to see the effects of curvature

on lower trapping limit (i.e. maximum value of H for

Fig. 5 Variation of dp/dx over one wavelength for differential

values of k with We = 5, U = 0.4 and H = 0

Fig. 6 Variation of Dp for different values of We with k = 2

and U = 0.4

Fig. 7 Variation of Dp for differential values of k withWe = 5

and U = 0.4
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which trapping occurs). It is observed that lower

trapping limit increases by increasing curvature of the

channel.

A general observation after examining streamlines

plots is that for a symmetric channel mixing phe-

nomenon is strong due symmetric nature of the

circulating region. However, for a curved channel

due to shift of bolus in lower half of the channel, there

is no mixing of fluid in the upper half of the channel.

6 Concluding remarks

A mathematical model is presented to explore the

simultaneous effects of curvature of channel and

viscoelasticity on peristaltic transport. The problem is

governed by fourth order nonlinear ordinary

differential equation which is solved numerically

using Matlab built-in routine bvp4c. The effects of

various emerging parameters on basic features of

peristalsis are explained through various plots. The

main points of the conducted study can be summarized

as follows:

• An increase in curvature results in asymmetric

velocity profiles with maxima lying below g = 0.

• The effects of Weissenberg number are to coun-

teract the effects of curvature and thus making the

velocity profiles symmetric. For large values of

We, the viscoelastic effects dominate resulting in

asymmetric velocity profiles whose maxima lie

above g = 0.

• Dp decreases by increasingWe or k below a certain

critical values of H. Above this value a reverse

trend is observed.

Fig. 8 Streamlines for a We = 0, b We = 2, c We = 5 and d We = 8 with k = 2. The other parameters chosen are H = 1.5 and

U = 0.8
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• The circulating bolus of fluid becomes asymmetric

by increasing curvature of channel. However, an

increase in We counteract the effects of curvature

and helps the bolus to regain its symmetrical shape.

• For large value ofWe viscoelastic effects dominate

resulting in asymmetry of bolus.

• The mixing phenomena in a straight channel is

stronger than that in a curved channel.

Fig. 9 Streamlines for a k = 2, b k = 3.5, c k = 5 and d k ? ?withWe = 5. The other parameters chosen areH = 1.5 andU = 0.8

Fig. 10 Streamlines for a k = 2 and b k ? ? with We = 0.2. The other parameters chosen are H = 1 and U = 0.8
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