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Abstract The rotordynamics of a double-helical

gear transmission system is investigated. The equation

of motion of the system with bearing and gyroscopic

effect is derived by using the finite element method, in

which Timoshenko beam finite element is used to

represent the shaft, a rigid mass for the gear. Natural

frequencies, mode shapes and Campbell diagrams are

illustrated to indicate the effects of gear input speed

and time varying mesh stiffness. Besides, effects of

mesh stiffness on the critical speed of the gear

transmission system are analyzed. The numerical

results show that the axial force has significant

influence on the natural frequency and the mode shape

of the double-helical gear transmission system, for

which the mix whirling motion dominates the natural

characteristics. There are two higher critical speed

curves which increase with the mesh stiffness, but one

of them is related to the gyroscopic effect.

Keywords Double-helical gear �Natural frequency �
Whirling � Campbell diagram

1 Introduction

Gearing, one of the most important components, is

commonly used in automotive, gas turbine and

aerospace applications. The double-helical gear, as

the main component of a power flow transmission

system, has found wide applications in aeroengines

and rotorcrafts operating under conditions of high

speed and high power, due to its unique characteristics

of large contact ratio, smooth transmission and low

noise, which enable the system to meet the require-

ments of heavy duty working conditions. Theoretical-

ly, the double-helical gear can accommodate the axial

thrust forces and reduce the rigorous request for

bearings. In practice, however, the axial vibration

excitation resulting from the mesh cannot be neglected

and related dynamic analysis is required under high

speed and load conditions for two main reasons. The

first reason is the existence of manufacturing error.

Gearing in most aerospace applications is finished

with a grinding process to achieve desired tooth

accuracy and surface finish. As the two helices of a

double-helical gear cannot be cut simultaneously,

spacing error, lead error and apex position error will

accompany the grinding process. The second main

reason is concerned with the operating conditions

(high speed and load) of the double-helical gear set.

Generally, the gear set in aerospace application

transmits power above the first critical frequency [1,

2]. The deflection of shaft causes gyroscopic effects to

vary axial force distribution and potentially exert an
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adverse impact on the stability of the gear. Hence,

conducting dynamic analysis for a double-helical gear

with a thrust bearing to resist axial forces becomes a

critical step in the design process, and this is where the

rotordynamics come in.

In existing literature, numerous analytical models

on spur or helical gears have been developed for the

purpose of exploring their dynamic characteristics.

First of all, a simple gear dynamic model is adopted to

study the dynamic characteristics along the mesh

plane. In this case, the effects of shaft and bearing

flexibility are simplified or neglected with an under-

lying assumption. The nonlinear phenomena [3–6]

(such as chaos and bifurcation) and parametric

resonance [2, 7–9] due to time varying mesh stiffness,

gear backlash and friction dominate in the gear

dynamic analysis.

Besides, in high speed applications, the coupled

lateral and torsional vibrations of a gear transmission

system may be different from those obtained in an

uncoupled analytical model. The shaft deflection,

together with bearing stiffness and damping, may

affect the dynamic mesh characteristics of a gear pair.

Kang and Kahraman [1] indicate that the shaft

flexibility can alter the dynamic response of a gear

pair. Furthermore, the coupled lateral and torsional

modes are also confirmed experimentally in a

planetary gear system [2]. To occupy these phe-

nomena, abundant researches have been done in recent

decades. The core concept of the methods adopted is to

represent the shaft by a finite element model and

introduce the bearing flexibility via a linearized

8-coefficient bearing model. Many results show that

the stiffness and damping contained in the shaft and

bearing have significant influence on the modal

behavior [10]. Lund [11] was the first to consider

coupled effects in the torsional–lateral vibrations for a

geared rotor system. Subsequently, Iida et al. [12].

investigated a simple geared system with coupled

torsional and flexural vibrations. Kahraman [13, 14]

developed a gear rotor system model, in which the

shaft was represented by a finite element model and

the flexibility of the bearing was considered. Baud and

Velex [15] investigated the dynamics of a gear-shaft-

bearing system using a nonlinear gear model. In their

study, a nonlinear approach, proposed by Baguet and

Velex [16], was applied to analyze the dynamic

behaviors of the gear-shaft-bearing model. The shaft

was also represented by a finite element model and the

proposed gear element could account for time varying

mesh stiffness as well as tooth shape deviations. Later,

Baguet and Jacquenot [17] extended the model to

helical gears and finite-length hydrodynamic bearing

systems. Kang et al. [18] investigated the dynamic

behaviors of a gear-rotor system with the effects of

viscoelastic support, gear eccentricity, transmission

error, and residual shaft bow.

However, literature on double-helical gears is quite

rare and the corresponding analysis is limited to

geometrical analysis, and load distribution and trans-

mission error under static conditions. Jauregui and

Gonzalez (cited in Ref. [19]) studied the axial

vibrations in double-helical gears using a single

degree-of-freedom dynamic model. Ajmi and Velex

[19] presented a model for analyzing the quasi-static

and dynamic behaviors of the double-helical gear by

taking into account time varying mesh stiffness, gear

distortion and shape modifications. In their model, the

double-helical gears were constructed by two identical

gear elements with opposed helices separated by Euler

beam elements. The gyroscopic effect was ignored and

the mesh stiffness was not independent since they

were all connected to two deformable shafts.

More recently, Sondkar and Kahraman [20] devel-

oped a linear dynamic model of a double-helical

planetary set to study the effect of staggering of gear

teeth. The time varying mesh stiffness and backlash

were neglected in their work. Liu et al. [21]. used a

simple lump-mass model to study the herringbone

gear pair with mesh friction and profile error. Among

the aforementioned literature, no publication is avail-

able on the nonlinear dynamic model of a double-

helical gear set with shaft flexibility. There are rare

works have been reported on the nonlinear dynamic

response of the double-helical gear set especially on

the critical speed of this type of gear set under high

speed condition. It is generally acknowledged that

gear mesh excitations and shaft flexibility coupled

with high speeds have resulted in dynamically com-

plicated gear transmission systems. In our established

model, the backlash is included. The dynamic behav-

iors of a double-helical gear set with time varying

stiffness and shaft flexibility are studied in the paper.

This paper is organized as follows. The system model

including gear rotor, shaft, elastic support and gear

mesh are proposed in the second section. Subsequent-

ly, a consideration of the proposed system model is

given in the first part of Sect. 3. Then the effect of
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input shaft speed and time varying mesh stiffness on

the natural frequencies and critical speeds are inves-

tigated in Sect. 3. Finally, a short conclusion is offered

in Sect. 4.

2 System model

A simple double-helical gear pair is sketched in Fig. 1.

As mentioned above, the shaft flexibility and axial

force are considered in the present analysis. The two

helices of the double-helical gear pair are modeled

separately and connected with a flexible shaft element.

The bodies representing the gear and the pinion are

assumed to be rigid. The gear mesh flexibility is

represented by a linear spring and damper acting on

the plane of action normal to the gear tooth surface

[20]. In the present work, the dynamic model is

developed based on the Finite element method [22,

23]. In the following, the model formulations for the

gear, the shaft element and the bearing are described,

and then the mass matrices, stiffness matrices and

damping matrices (including gyroscopic matrices) of

the gear element, the shaft element and the bearing are

assembled to obtain the overall system formulation.

2.1 Gear rotor

As mentioned in Ref. [22], it is convenient to consider

two angles hxi i ¼ p; gð Þ and hyi as coordinates de-

scribing the angle motion of the rotor as shown in

Fig. 2. It is assumed that all the deflections are parallel

to the X–Y plane. In this way, hxi becomes an angular

displacement in the yz plane, describing a small

rotation around the x-axis while hyi becomes an

angular displacement in the xz plane describing a

rotation around the y-axis. The rotation velocity of

gear i (in vector form) can be written as

xi ¼ cos Xi þ _hzi
� �

_hyi þ sin Xi þ _hzi
� �

_hxi
h i

X

þ sin Xi þ _hzi
� �

_hyi � cos Xi þ _hzi
� �

_hxi
h i

Y

þ Xi þ _hzi
� �

þ hxi _hyi � hyi _hxi
2

" #
Z;

ð1Þ

where Xi is spin speed and _ai is torsional velocity.

Then, the kinetic energy of gear i including the

torsional kinetic energy is developed from Shiau and

Hwang [24, 25] and written as

Ti ¼
1

2
mi _x2i þ _y2i þ _z2i
� �

þ 1

2
JDi h2yi þ h2xi

� �

þ 1

2
JPi Xi þ _hzi

� �
hxi _hyi � hyi _hxi

� �

þ 1

2
JPi Xi þ _hzi

� �2

: ð2Þ

The kinetic energy can be rewritten in matrix form

as

Ti ¼
1

2
_qTi M

d
i _qi þ

1

2
_qTi G

d
i qi þ ~Qd

i qi; _qið Þ ð3Þ

Here,

qi ¼ xi; yi; zi; hxi; hyi; hzi
� �T ð4Þ

Then, with Lagrange equations, we can obtain

Md
i

� �
€qi þ Xi G

d
i

� �
_q ¼ Fd

i ð5Þ

Fig. 1 Sketch of double-helical gear pair Fig. 2 Typical rotor configuration and coordinate system
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where

Md
i ¼ diag mi;mi;mi; JDi; JDi; JPið Þ ð6Þ

Gd
i ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 JPi 0

0 0 0 �JPi 0 0

0 0 0 0 0 0

2
6666664

3
7777775

ð7Þ

~Qd
i qi; _qið Þ ¼ 1

2
JPi _hzi hxi _hyi � hyi _hxi

� �
þ 1

2
JPiX

2
i

þ JPiXi
_hzi: ð8Þ

2.2 Shaft element

In this subsection, the Timoshenko beam finite

element model theory is applied to construct the

shaft as discussed by Nelson [26]. A typical cross

section of the element is illustrated in Fig. 3. The

deformation of the shaft element can be described

by translations x s; tð Þ and y s; tð Þ in the X–Y direction

and rotations hx s; tð Þ and hy s; tð Þ about axes X and Y

respectively.

x s; tð Þ
y s; tð Þ

� 	
¼ Nt sð Þ½ � q tð Þf g; ð9Þ

hx s; tð Þ
hy s; tð Þ

� 	
¼ Nb sð Þ½ � q tð Þf g; ð10Þ

hz s; tð Þ ¼ Nr sð Þ½ � q tð Þf g; ð11Þ

z s; tð Þ ¼ Nd sð Þ½ � q tð Þf g: ð12Þ

Here, the displacement vector is qT ¼ xi; yi; zi;ð
hxi; hyi; hzi; xiþ1; yiþ1; ziþ1; hx iþ1ð Þ; hy iþ1ð Þ; hz iþ1ð ÞÞ and

the spatial constraint matrices are expressed as

Nt sð Þ½ �

¼
Nt1 0 0 0 Nt2 0 Nt3 0 0 0 Nt4 0

0 Nt1 0 �Nt2 0 0 0 Nt3 0 �Nt4 0 0


 �
;

ð13Þ

Nb sð Þ½ �

¼
0 �Nb1 0 Nb2 0 0 0 �Nb3 0 Nb4 0 0

Nb1 0 0 0 Nb2 0 Nb3 0 0 0 Nb4 0


 �
;

ð14Þ

Nr sð Þ½ �¼ 0 0 0 0 0 Nr1 0 0 0 0 0 Nr2½ �; ð15Þ

Nd sð Þ½ �¼ 0 0 Nd1 0 0 0 0 0 Nd2 0 0 0½ �; ð16Þ

Nt1 ¼
1

/þ 1
n� 1ð Þ 2n2 � n� /� 1

� �
;

Nt2 ¼
1

2

1

/þ 1
ln n� 1ð Þ 2n� /� 2ð Þ;

Nt3 ¼
1

/þ 1
n �2n2 þ 3nþ /
� �

;

Nt4 ¼
1

2

1

/þ 1
ln 2nþ /ð Þ n� 1ð Þ;

ð17Þ

Nb1 ¼ �Nb3 ¼
6

l /þ 1ð Þ n n� 1ð Þ;

Nb2 ¼
1

/þ 1
n� 1ð Þ 3n� /� 1ð Þ;

Nb4 ¼
1

/þ 1
n 3n� 2þ /ð Þ;

ð18Þ

Nr1 ¼ 1� n;Nr2 ¼ n; ð19Þ

Nd1 ¼ 1� n;Nd2 ¼ n ð20Þ

n ¼ z

l
;/ ¼ 12EI

lAGl2
;G ¼ E

2 1þ tð Þ ; ð21Þ

l ¼ 6 1þ tð Þ 1þ m2ð Þ2

7þ 6tð Þ 1þ m2ð Þ2þ 20þ 12tð Þm2
ð22Þ

where t is Poisson ratio, and m is the ratio of inner

radius to outer radius of the shaft.

Fig. 3 Shaft beam element and coordinate systems
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As for a 2-node shaft element with 12 degrees of

freedom, its kinetic energy including the torsional

motion is

Ts ¼ 1

2

Z l

0

qA _x2þ _y2þ _z2
� �

dsþ 1

2

Z l

0

qIds _h2x þ _h2y

� �
ds

þ 1

2

Z l

0

qIps Xþ _hz
� �2

ds

þ 1

2

Z l

0

qIps Xiþ _hz
� �

hx _hy� hy _hx
� �

ds

ð23Þ

The total potential energy of a Timoshenko beam

element including bending deflection, shear deforma-

tion and torsional deflection is given by

Us ¼ 1

2

Z l

0

qEIps h02x þ h02y

� �
dsþ 1

2

Z l

0

qGIpsh
02
z ds

þ 1

2

Z l

0

lGA x0 � hy
� �2þ y0 þ hxð Þ2
h i

ds

ð24Þ

After Lagrange equations are applied, the equation

of motion for the un-damped system is derived as

Me½ �€qe þ X Ge½ � _qe þ Ke½ �qe ¼ 0 ð25Þ

The mass, gyroscopic and stiffness matrices are

listed in ‘Appendix 1’.

2.3 Elastic support

In high-speed aerospace applications, gear devices are

generally supported with journal bearings. However, a

thrust bearing will be recommended to resist axial

forces in a double-helical gear transmission system. In

addition, the stiffness of a journal bearing is dissimilar

to that of a spring support, for the reaction force is not

in the same direction as the displacement [27]. There is

a component of cross-stiffness in the bearing stiffness

matrix as follows,

KB ¼

kxx kxy kxz kxhx kxhy 0

kyx kyy kyz kyhx kyhy 0

kzx kzy kzz kzhx kzhy 0

khxx khxy khxz khxhx khxhy 0

khyx khyy khyz khyhx khyhy 0

0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

ð26Þ

Here, the subscripts correspond with the coordinate

systems of the shaft in Fig. 3. kii i ¼ x; yð Þ and khihi and

kzz are radial and tilting stiffnesses due to the journal

bearing respectively. kzz is a simple axial stiffness

produced by the thrust bearing. The word ‘‘simple’’

here means that the coupling effects of the thrust and

journal bearings are neglected, namely, coupling

cross-stiffnesses kzi ¼ kiz ¼ kzhi ¼ khiz ¼ 0. The sixth

row and column are zeros because of the free rotation

along the shaft axis. In addition, the damping matrix is

assumed to be identical with the bearing stiffness

matrix.

2.4 Gear mesh process

Figure 4 illustrates the gear mesh model of one side of

the double-helical gear. Themesh process is simplified

as time varying mesh stiffness and damping and

excited by static transmission error. Note that the

damping and the static transmission error are not

included in Fig. 4. The relative displacement of the

gear mesh pair in the direction normal to the tooth

surface along the plane of action is represented as [20]

dm ¼ xp � xg
� �

sin/þ yp � yg
� �

cos/
�

þ rphpz þ rghgz
� ��

cosbþ rphpy þ rghgy
� �

cos/
�

þ rphpx þ rghgx
� �

sin/þ zg � zp
� ��

sinb� este tð Þ:
ð27Þ

Here, / is the transverse pressure angle, b is the

helix angle and rj j ¼ p; gð Þ is the base radius of gear j.
Then the mesh force of the gear pair can be written as

Fm ¼ km cm0dm þ cm1Bð Þ þ cmcm0 _dm ð28Þ

and the index of the backlash function is

Fig. 4 Sketch of gear mesh model
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cm1 ¼
�1 dm [B

0 else

1 dm\� B

8<
: ; cm0 ¼

1 dmj j[B

0 else

�

ð29Þ

In vector form, the mesh force can be rewritten as

Fm ¼ kmcm0dm þ cmcm0 _dm þ kmcm1B

¼ kmcm0Cqþ cmcm0C _qþ kmcm1B
ð30Þ

Here,

C ¼ ddm
dxp

;
ddm
dyp

;
ddm
dzp

;
ddm
dhpx

;
ddm
dhpy

;
ddm
dhpz

;
ddm
dxg

;
ddm
dyg

;

�

ddm
dzg

;
ddm
dhgx

;
ddm
dhgy

;
ddm
dhgz



ð31Þ

q ¼ xp; yp; zp; hpx; hpy; hpz; xg; yg; zg; hgx; hgy; hgz
� �T

ð32Þ

Then the equation for the gear transmission system

(shown in Fig. 4) is

Mm½ �€q tð Þ þ cmcm0
Cm
11 Cm

12

sym: Cm
22


 �
_q tð Þ

þ kmcm0
Km
11 Km

12

sym: Km
22


 �
q tð Þ ¼ �kmcm1f

m

ð33Þ

where

Mm ¼ diag
mp mp mp Ip Ip Jp
mg mg mg Ig Ig Jg


 �
; ð34Þ

fm ¼
cbs ccb �sb rpssb crpsb cbrp

cbs ccb sb rgssb crgsb cbrg

� T

;

ð35Þ

cb ¼ cos b; sb ¼ sin b; c ¼ cos/; s ¼ sin/; ð36Þ

The mesh stiffness and damping coefficients are

listed in ‘Appendix 2’.

2.5 System equation of gear transmission system

In rotordynamics, the geared rotor system is generally

called a branched system [28], as there are two and

even more shafts connected by the gear mesh process.

Additionally, each shaft rotates at a different speed,

and the gyroscopic terms of the shaft element and the

disc must account for this. Based on the global

coordinate system, the stiffness of a mesh gear pair at

nodes i and j can be obtained as

Here, it is assumed that there are n nodes in total.

The damping term due to gear mesh can also be

constructed in a similar form as Eq. (37). Then every

subsystem will be assembled as mentioned above by

using the Finite element process to obtain the overall

system equation of the double-helical gear transmis-

sion system,

M½ �€qþ C½ � þ X G½ �ð Þ _qþ K½ �f qð Þ ¼ F tð Þ ð38Þ

where M½ �, C½ �, G½ � and K½ � are the overall mass

matrix, damping matrix, gyroscopic matrix and

ð37Þ
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stiffness matrix respectively; f qð Þ is the nonlinear

displacement function due to gear backlash; F tð Þ is the
gear vibration excitation which includes external

torque excitation and internal static transmission error

excitation.

3 Numerical analysis

3.1 Consideration of system model

A finite element analysis of the double-helical gear

transmission system is given in the following section.

Unless otherwise stated, the shaft and the gear are steel

and have an elastic modulus of 210 GPa, and a density

of 7800 kg/m3 with Poisson’s ratio being 0.3. The

geometrical parameters of the gear transmission

system corresponding to Fig. 1 are listed in Table 1.

The backlash is neglected for the natural frequency

analysis.

Generally speaking, the finite element analysis

result is basic relative to element size. In order to

verify the accuracy of the proposed method above,

natural frequencies of a 12-node model and a 42-node

model are calculated and listed in Table 2. The results

for the two models agree well with each other, but less

computation CPU time is required for the 12-node

model. The maximum percentage of the difference

between them is 1.38 % at mode 19. Accordingly, in

the following analysis, the 12-node model is used to

explore the dynamic characteristics of the double-

helical gear transmission system.

3.2 Effect of shaft speed

In the first case, the averaged mesh stiffness is

adopted, the input pinion shaft speed is set as

X = 5000 rpm. Table 2 lists the natural frequencies

and their corresponding physical descriptions of mode

shape for the system with gear mesh effect. It should

be noted that the axial freedom is considered in our

system model, so the general mode shape diagram is

not suitable for the indication of the mode when the

axial displacement is dominated. In our work, the three

lateral displacements (x, y and z) and bending, rocking

and torsion angle displacements (hx, hy and hz) at each
node are plotted as the mode shapes.

Figure 5 shows the mode shapes of the first four

modes of the geared rotor system. In every subplot, the

upper one is for the input shaft distinguished by a

superscript 1, and the lower one is for the output shaft

distinguished by a superscript 2. In these four mode

shapes, the geared rotor presents a conical mode as the

curves for lateral displacements (x and y) intersect

with the zero amplitude axis. Interestingly, although

the isotopic bearing stiffness and damping are used,

the geared rotor in the first four mode shapes is

dominated by bending and rocking motions. A proper

explanation may be that the axial freedom of the shaft

element is considered in the proposed system model

and that there are opposite axial forces in the two

helices of the double-helical gear pair. Moreover, the 1

and 4 modes of the lateral modes of the geared rotor

system approximate to the first two modes of the

driven gear shaft, and the 2 and 3 modes approximate

to the first modes of the driving gear shaft. They are

coupled lateral–torsional modes when the gear mesh

effect is neglected.

The Campbell diagrams for the cases without

geared effect and with geared effect are shown in

Fig. 6. The natural frequencies in region (600, 900) Hz

are illustrated for convenience. It is observed that in

this region, the natural frequencies are less sensitive to

Table 1 System parameters

Components Values

Shaft Dout (Din) (mm) Length (mm)

S1, S3 95 (75) 115

S2 150 (120) 80

S4, S6 100 (80) 115

S5 160 (130) 80

Gear Gear 1 Gear 2

Tooth number 31 24

Normal module 6 mm

Pressure angle 20�
Helix angle 35�
Face width 40 mm

Mean mesh stiffness 1.855 9 108 N/m

Bearing Bearing 1–2 Bearing 3–4

kxx, kyy (N/m) 2 9 108 2 9 108

kzz (N/m) 1 9 108 1 9 108

khxhx ; khyhy (Nm/rad) 1 9 106 1 9 106
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the rotation speed.Moreover, the mode damping ratios

for modes 2–5 are critical which are equal to 1.

Therefore, the system vibration amplitude will be

attenuated seriously where the resonance is close to

these natural frequencies, which has no damage to the

gear system. In the Campbell diagrams, the pair of

natural frequencies corresponding to the critical

damping ratio will inversely bifurcate to a single

natural frequency as shown in Fig. 6.

Now, a high frequency region (1900, 2500) Hz is

considered, and the Campbell diagram is shown in

Fig. 7. Five natural frequencies or modes are detected

in this region, and they are followed by mode 15 to

mode 19 listed in Table 2. Obviously, a frequency

veering phenomenon [10, 29] is observed between

curves corresponding to mode 17 and 18 around

6000 rpm. After the veering phenomenon occurs, the

frequency curves, instead of crossing, swap their

trends and maintain continuity as the speed increases.

Although the frequency veering appears in the present

model, the whirl direction of the two shafts is still the

same. This is different from a general rotor case as

noted in Ref. [29] since only the mode shape has

changed at the veering point.

The thin dashed line denoted by SWL represents the

synchronous whirl line, which is corresponding to

mesh frequency in the gear dynamics analysis. The

intersection point between the SWL and the natural

frequency curve is defined as a critical speed in rotor

dynamics. Five critical speeds are detected in Fig. 7

and their corresponding mode shapes are shown in

Fig. 8 where the thick lines show the shaft centerline

shape at the maximum displacement. As the shafts

vibrate, they move from this position to the same

location on the opposite side of the un-displaced

centerline, and then move back [30]. In Fig. 8, the left

is 3Dmode shape and the right is a projection on the x–

y plane. It can be found that they are all coupled

lateral–torsional modes. When the input pinion shaft

speed approximates 3804 rpm (1965.4 Hz), the input

pinion-shaft refers to cylindrical mode and conical

mode (defined in Ref. [30]) for the output gear-shaft.

The ratio of the length of the minor axis to the length of

the major axis of the ellipse is very small. However,

Table 2 Natural frequency and mode description for the geared rotor system (X = 5000 rpm)

12 Nodes 42 Nodes Error

Natural frequency/kHz Damping ratio Natural frequency/kHz Natural frequency error (%)

0 0 – – –

1 0.6241 0.0171 0.6245 0.06

2 0.6529 1.0000 0.6515 0.21

3 0.6634 1.0000 0.6640 0.09

4 0.6991 1.0000 0.7011 0.28

5 0.7435 1.0000 0.7392 0.57

6 0.7581 0.0340 0.7573 0.11

7 0.7713 0.0337 0.7761 0.62

8 0.7969 0.0322 0.7963 0.08

9 0.7970 0.0319 0.7965 0.06

10 0.8358 0.0359 0.8351 0.08

11 0.8561 1.0000 0.8563 0.02

12 0.8599 1.0000 0.8600 0.01

13 0.9901 1.0000 0.9901 0.00

14 0.9915 1.0000 0.9906 0.09

15 1.9654 0.0017 1.9563 0.46

16 2.0631 0.1088 2.0549 0.39

17 2.1422 0.1105 2.1386 0.17

18 2.1511 0.0926 2.1551 0.19

19 2.4745 0.0761 2.4404 1.38
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Fig. 5 Mode shapes of the first four lateral modes. a 624.9 Hz, b 652.9 Hz, c 663.4 Hz, d 699.1 Hz

Fig. 6 Campbell diagram in region (600, 900) Hz
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the two shafts are both a combination of forward and

backward motions. The bending motion between the

two helices of the output gear is obvious.

3.3 Effect of time varying mesh stiffness

In the preceding section, the time averaged mesh

stiffness is used. However, the mesh stiffness will be

varied due to the variation of contact position in the

mesh process. The mesh stiffness, which is modeled as

an internal parametric excitation in numerous studies

[3–6], is generally neglected in the geared rotor

dynamics analysis, especially in the gear whirling

analysis. In the present section, the effects of mesh

stiffness on the critical speed of the geared rotor

system are illustrated in Fig. 9. For comparison, only

the critical speeds appearing in region (1700, 2600) Hz

are considered. In Fig. 9, the five curves from bottom

to top are indicated by Ncs1 to Ncs5 successively. It

can be seen that the critical speed curve Ncs5 increases

linearly with the mesh stiffness. However, the critical

speed curve Ncs1 no longer monotonically increases

with the mesh stiffness, the reason for which is that the

action of the special frequency veering occurs when

the mesh stiffness is changed. Moreover, a comparison

between Figs. 9 and 7 can yield the following findings:

(1) The critical speed curve Ncs1 is less sensitive to the

gear shaft spin speed and gyroscopic effect, which can

be contributed to the torsional motion of the gear pair;

(2) The effect of mesh stiffness on Ncs2, Ncs3 and

Ncs4 can be neglected, but the gyroscopic effect is

implied in these critical speeds; (3) Ncs5 is a coupled

result of the gear mesh stiffness and the gyroscopic

effect of the system.

4 Conclusions

The rotordynamics of a double-helical gear transmis-

sion system was investigated. A model for the shaft

element with 2 nodes and 12 degrees of freedom was

built to meet the need of double-helical gear analysis,

since the axial force is an important factor and cannot

Fig. 7 Campbell diagram in region (1900, 2500) Hz

Fig. 8 Mode shape for critical speed. a 1965.4 Hz;

b 2068.5 Hz; c 2137.8 Hz; d 2152.4 Hz; e 2474.3 Hz
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be neglected. The equation of motion of the system

was derived by using the finite element method, in

which Timoshenko beam finite element was used to

represent the shaft, a rigid mass for the gear. The

gyroscopic effects of the shaft and the gear were also

included in the present model. A simple bearing

stiffness and a damping matrix were used to explore

the effect of the journal bearing as an elastic support

boundary. Natural frequencies, mode shapes and

Campbell diagrams were illustrated to indicate the

effects of gear input speed and time varying mesh

stiffness. Meanwhile, effects of mesh stiffness on the

critical speed of the gear transmission system were

also analyzed. The main findings of the present paper

are concluded as follows:

1. The axial force has significant influence on the

natural frequency and the mode shape of the

double-helical gear transmission system. The mix

whirling motion dominates the natural character-

istics of the transmission system.

2. Although the isotopic bearing stiffness and damp-

ing are used, and the gear pair is assembled

symmetrically, the geared rotors are dominated by

bending and rocking motions, which may be

attributed to the action of the axial force in the

shaft element. The coupled lateral–torsional mod-

es occur in this system.

3. Same as general rotordynamics, frequency veer-

ing is detected in the double-helical gear trans-

mission system. One special frequency veering

occurs at a higher rotational speed when the gear

mesh stiffness is varied.

4. The sensitivity of higher critical speeds to the

mesh stiffness is distinguished. Two higher

critical speeds increase with the mesh stiffness,

but one of them is related to the gyroscopic effect.

This is of importance when the operating speed

(tooth mesh frequency) of the gear system falls in

this range.
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Appendix 1

Mass and stiffness matrices for the shaft beam element

are listed as follows:

Mass matrix Me

The mass matrix consists of three parts, which can be

represented as

Me ¼ Me
T þMe

R þMe
h ð39Þ

1. Translational mass matrix Me
T

Me
T ¼ Me

T1 þ /Me
T2 þ /2Me

T3 ð40Þ

Here,

Fig. 9 Effect of gear mesh stiffness on critical speed
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Me
T1 ¼ mT

312 0 0 0 44L 0 108 0 0 0 �26L 0

0 312 0 �44L 0 0 0 108 0 26L 0 0

0 0 280 0 0 0 0 0 140 0 0 0

0 �44L 0 8L2 0 0 0 �26L 0 �6L2 0 0

44L 0 0 0 8L2 0 26L 0 0 0 �6L2 0

0 0 0 0 0 0 0 0 0 0 0 0

108 0 0 0 26L 0 312 0 0 0 �44L 0

0 108 0 �26L 0 0 0 312 0 44L 0 0

0 0 140 0 0 0 0 0 280 0 0 0

0 26L 0 �6L2 0 0 0 44L 0 8L2 0 0

�26L 0 0 0 �6L2 0 �44L 0 0 0 8L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð41Þ

Me
T2

mT
¼

588 0 0 0 77L 0 252 0 0 0 �63L 0

0 588 0 �77L 0 0 0 252 0 63L 0 0

0 0 560 0 0 0 0 0 280 0 0 0

0 �77L 0 14L2 0 0 0 �63L 0 �14L2 0 0

77L 0 0 0 14L2 0 63L 0 0 0 �14L2 0

0 0 0 0 0 0 0 0 0 0 0 0

252 0 0 0 63L 0 588 0 0 0 �77L 0

0 252 0 �63L 0 0 0 588 0 77L 0 0

0 0 280 0 0 0 0 0 560 0 0 0

0 63L 0 �14L2 0 0 0 77L 0 14L2 0 0

�63L 0 0 0 �14L2 0 �77L 0 0 0 14L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð42Þ

Me
T3 ¼ mT

280 0 0 0 35L 0 140 0 0 0 �35L 0

0 280 0 �35L 0 0 0 140 0 35L 0 0

0 0 280 0 0 0 0 0 140 0 0 0

0 �35L 0 7L2 0 0 0 �35L 0 �7L2 0 0

35L 0 0 0 7L2 0 35L 0 0 0 �7L2 0

0 0 0 0 0 0 0 0 0 0 0 0

140 0 0 0 35L 0 280 0 0 0 �35L 0

0 140 0 �35L 0 0 0 280 0 35L 0 0

0 0 140 0 0 0 0 0 280 0 0 0

0 35L 0 �7L2 0 0 0 35L 0 7L2 0 0

�35L 0 0 0 �7L2 0 �35L 0 0 0 7L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð43Þ
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and

mT ¼ qAL

840 1þ /ð Þ2
ð44Þ

2. Rotational mass matrix Me
R

Me
R ¼ Me

R1 þ /Me
R2 þ /2Me

R3 ð45Þ

Here,

Me
R1 ¼ mR

36 0 0 0 3L 0 �36 0 0 0 3L 0

0 36 0 �3L 0 0 0 �36 0 �3L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 �3L 0 4L2 0 0 0 3L 0 �L2 0 0

3L 0 0 0 4L2 0 �3L 0 0 0 �L2 0

0 0 0 0 0 0 0 0 0 0 0 0

�36 0 0 0 �3L 0 36 0 0 0 �3L 0

0 �36 0 3L 0 0 0 36 0 3L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 �3L 0 �L2 0 0 0 3L 0 4L2 0 0

3L 0 0 0 �L2 0 �3L 0 0 0 4L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð46Þ

Me
R2 ¼ mR

0 0 0 0 �15L 0 0 0 0 0 �15L 0

0 0 0 15L 0 0 0 0 0 15L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 15L 0 5L2 0 0 0 �15L 0 �5L2 0 0

�15L 0 0 0 5L2 0 15L 0 0 0 �5L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 15L 0 0 0 0 0 15L 0

0 0 0 �15L 0 0 0 0 0 �15L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 15L 0 �5L2 0 0 0 �15L 0 5L2 0 0

�15L 0 0 0 �5L2 0 15L 0 0 0 5L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð47Þ
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where

mR ¼ qIds
30L 1þ /ð Þ2

ð49Þ

3. Torsional mass matrix Me
R

Me
R¼

qIpel
6

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð50Þ

Gyroscopic matrix Ge

G ¼ 1

2

Z l

0

qIps _hz hx _hy � hy _hx
� �

ds

þ 1

2

Z l

0

qIpsXi hx _hy � hy _hx
� �

ds

¼ 1

2
qIpsXi

Z l

0

qTNT
b1Nb2 _q� qTNT

b2Nb1 _q
� �

ds

ð51Þ

Ge ¼ Ge
1 þ /Ge

2 þ /2Ge
3 ð52Þ

Me
R3 ¼ mR

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 10L2 0 0 0 0 0 5L2 0 0

0 0 0 0 10L2 0 0 0 0 0 5L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 5L2 0 0 0 0 0 10L2 0 0

0 0 0 0 5L2 0 0 0 0 0 10L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð48Þ

Ge
1 ¼ mR

0 36 0 �3L 0 0 0 �36 0 �3L 0 0

�36 0 0 0 �3L 0 36 0 0 0 �3L 0

0 0 0 0 0 0 0 0 0 0 0 0

3L 0 0 0 4L2 0 �3L 0 0 0 �L2 0

0 3L 0 �4L2 0 0 0 �3L 0 L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 �36 0 3L 0 0 0 36 0 3L 0 0

36 0 0 0 3L 0 �36 0 0 0 3L 0

0 0 0 0 0 0 0 0 0 0 0 0

3L 0 0 0 �L2 0 �3L 0 0 0 4L2 0

0 3L 0 L2 0 0 0 �3L 0 �4L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð53Þ
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Stiffness matrix

The stiffness matrix of the beam element is written as

Ke ¼ Ke
0 þ /Ke

1 þKe
2; ð56Þ

where

Ge
2 ¼ mR

0 0 0 15L 0 0 0 0 0 15L 0 0

0 0 0 0 15L 0 0 0 0 0 15L 0

0 0 0 0 0 0 0 0 0 0 0 0

�15L 0 0 0 5L2 0 15L 0 0 0 �5L2 0

0 �15L 0 �5L2 0 0 0 15L 0 5L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �15L 0 0 0 0 0 �15L 0 0

0 0 0 0 �15L 0 0 0 0 0 �15L 0

0 0 0 0 0 0 0 0 0 0 0 0

�15L 0 0 0 �5L2 0 15L 0 0 0 5L2 0

0 �15L 0 5L2 0 0 0 15L 0 �5L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð54Þ

Ge
3 ¼ mR

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 10L2 0 0 0 0 0 5L2 0

0 0 0 �10L2 0 0 0 0 0 �5L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 5L2 0 0 0 0 0 10L2 0

0 0 0 �5L2 0 0 0 0 0 �10L2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð55Þ

Ke
0 ¼ ks

12 0 0 0 6L 0 �12 0 0 0 6L 0

0 12 0 �6L 0 0 0 �12 0 �6L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 �6L 0 4L2 0 0 0 6L 0 2L2 0 0

6L 0 0 0 4L2 0 �6L 0 0 0 2L2 0

0 0 0 0 0 0 0 0 0 0 0 0

�12 0 0 0 �6L 0 12 0 0 0 �6L 0

0 �12 0 6L 0 0 0 12 0 6L 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 �6L 0 2L2 0 0 0 6L 0 4L2 0 0

6L 0 0 0 2L2 0 �6L 0 0 0 4L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð57Þ
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and

ks ¼
EI

L3 1þ /ð Þ ð59Þ

Appendix 2

Coefficients of mesh stiffness and damping

Ke
1 ¼ ks

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 L2 0 0 0 0 0 �L2 0 0

0 0 0 0 L2 0 0 0 0 0 �L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �L2 0 0 0 0 0 L2 0 0

0 0 0 0 �L2 0 0 0 0 0 L2 0

0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð58Þ

Ke
2 ¼

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0
EA

L
0 0 0 0 0 �EA

L
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
GIps

L
0 0 0 0 0 �GIps

L
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 �EA

L
0 0 0 0 0

EA

L
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �GIps

L
0 0 0 0 0

GIps

L

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; ð60Þ

Km
11 ¼

c2bs
2 cc2bs �cbssb cbrps

2sb ccbrpssb c2brps

cc2bs c2c2b �ccbsb ccbrpssb c2cbrpsb cc2brp
�cbssb �ccbsb s2b �rpss

2
b �crps

2
b �cbrpsb

cbrps
2sb ccbrpssb �rpss

2
b r2p s

2s2b cr2p ss
2
b cbr

2
p ssb

ccbrpssb c2cbrpsb �crps
2
b cr2p ss

2
b c2r2p s

2
b ccbr

2
p sb

c2brps cc2brp �cbrpsb cbr
2
p ssb ccbr

2
p sb c2br

2
p

0
BBBBBBB@

1
CCCCCCCA

ð61Þ
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