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Abstract The rotordynamics of a double-helical
gear transmission system is investigated. The equation
of motion of the system with bearing and gyroscopic
effect is derived by using the finite element method, in
which Timoshenko beam finite element is used to
represent the shaft, a rigid mass for the gear. Natural
frequencies, mode shapes and Campbell diagrams are
illustrated to indicate the effects of gear input speed
and time varying mesh stiffness. Besides, effects of
mesh stiffness on the critical speed of the gear
transmission system are analyzed. The numerical
results show that the axial force has significant
influence on the natural frequency and the mode shape
of the double-helical gear transmission system, for
which the mix whirling motion dominates the natural
characteristics. There are two higher critical speed
curves which increase with the mesh stiffness, but one
of them is related to the gyroscopic effect.
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1 Introduction

Gearing, one of the most important components, is
commonly used in automotive, gas turbine and
aerospace applications. The double-helical gear, as
the main component of a power flow transmission
system, has found wide applications in aeroengines
and rotorcrafts operating under conditions of high
speed and high power, due to its unique characteristics
of large contact ratio, smooth transmission and low
noise, which enable the system to meet the require-
ments of heavy duty working conditions. Theoretical-
ly, the double-helical gear can accommodate the axial
thrust forces and reduce the rigorous request for
bearings. In practice, however, the axial vibration
excitation resulting from the mesh cannot be neglected
and related dynamic analysis is required under high
speed and load conditions for two main reasons. The
first reason is the existence of manufacturing error.
Gearing in most aerospace applications is finished
with a grinding process to achieve desired tooth
accuracy and surface finish. As the two helices of a
double-helical gear cannot be cut simultaneously,
spacing error, lead error and apex position error will
accompany the grinding process. The second main
reason is concerned with the operating conditions
(high speed and load) of the double-helical gear set.
Generally, the gear set in aerospace application
transmits power above the first critical frequency [1,
2]. The deflection of shaft causes gyroscopic effects to
vary axial force distribution and potentially exert an
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adverse impact on the stability of the gear. Hence,
conducting dynamic analysis for a double-helical gear
with a thrust bearing to resist axial forces becomes a
critical step in the design process, and this is where the
rotordynamics come in.

In existing literature, numerous analytical models
on spur or helical gears have been developed for the
purpose of exploring their dynamic characteristics.
First of all, a simple gear dynamic model is adopted to
study the dynamic characteristics along the mesh
plane. In this case, the effects of shaft and bearing
flexibility are simplified or neglected with an under-
lying assumption. The nonlinear phenomena [3-6]
(such as chaos and bifurcation) and parametric
resonance [2, 7-9] due to time varying mesh stiffness,
gear backlash and friction dominate in the gear
dynamic analysis.

Besides, in high speed applications, the coupled
lateral and torsional vibrations of a gear transmission
system may be different from those obtained in an
uncoupled analytical model. The shaft deflection,
together with bearing stiffness and damping, may
affect the dynamic mesh characteristics of a gear pair.
Kang and Kahraman [1] indicate that the shaft
flexibility can alter the dynamic response of a gear
pair. Furthermore, the coupled lateral and torsional
modes are also confirmed experimentally in a
planetary gear system [2]. To occupy these phe-
nomena, abundant researches have been done in recent
decades. The core concept of the methods adopted is to
represent the shaft by a finite element model and
introduce the bearing flexibility via a linearized
8-coefficient bearing model. Many results show that
the stiffness and damping contained in the shaft and
bearing have significant influence on the modal
behavior [10]. Lund [11] was the first to consider
coupled effects in the torsional-lateral vibrations for a
geared rotor system. Subsequently, lida et al. [12].
investigated a simple geared system with coupled
torsional and flexural vibrations. Kahraman [13, 14]
developed a gear rotor system model, in which the
shaft was represented by a finite element model and
the flexibility of the bearing was considered. Baud and
Velex [15] investigated the dynamics of a gear-shaft-
bearing system using a nonlinear gear model. In their
study, a nonlinear approach, proposed by Baguet and
Velex [16], was applied to analyze the dynamic
behaviors of the gear-shaft-bearing model. The shaft
was also represented by a finite element model and the
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proposed gear element could account for time varying
mesh stiffness as well as tooth shape deviations. Later,
Baguet and Jacquenot [17] extended the model to
helical gears and finite-length hydrodynamic bearing
systems. Kang et al. [18] investigated the dynamic
behaviors of a gear-rotor system with the effects of
viscoelastic support, gear eccentricity, transmission
error, and residual shaft bow.

However, literature on double-helical gears is quite
rare and the corresponding analysis is limited to
geometrical analysis, and load distribution and trans-
mission error under static conditions. Jauregui and
Gonzalez (cited in Ref. [19]) studied the axial
vibrations in double-helical gears using a single
degree-of-freedom dynamic model. Ajmi and Velex
[19] presented a model for analyzing the quasi-static
and dynamic behaviors of the double-helical gear by
taking into account time varying mesh stiffness, gear
distortion and shape modifications. In their model, the
double-helical gears were constructed by two identical
gear elements with opposed helices separated by Euler
beam elements. The gyroscopic effect was ignored and
the mesh stiffness was not independent since they
were all connected to two deformable shafts.

More recently, Sondkar and Kahraman [20] devel-
oped a linear dynamic model of a double-helical
planetary set to study the effect of staggering of gear
teeth. The time varying mesh stiffness and backlash
were neglected in their work. Liu et al. [21]. used a
simple lump-mass model to study the herringbone
gear pair with mesh friction and profile error. Among
the aforementioned literature, no publication is avail-
able on the nonlinear dynamic model of a double-
helical gear set with shaft flexibility. There are rare
works have been reported on the nonlinear dynamic
response of the double-helical gear set especially on
the critical speed of this type of gear set under high
speed condition. It is generally acknowledged that
gear mesh excitations and shaft flexibility coupled
with high speeds have resulted in dynamically com-
plicated gear transmission systems. In our established
model, the backlash is included. The dynamic behav-
iors of a double-helical gear set with time varying
stiffness and shaft flexibility are studied in the paper.
This paper is organized as follows. The system model
including gear rotor, shaft, elastic support and gear
mesh are proposed in the second section. Subsequent-
ly, a consideration of the proposed system model is
given in the first part of Sect. 3. Then the effect of
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input shaft speed and time varying mesh stiffness on
the natural frequencies and critical speeds are inves-
tigated in Sect. 3. Finally, a short conclusion is offered
in Sect. 4.

2 System model

A simple double-helical gear pair is sketched in Fig. 1.
As mentioned above, the shaft flexibility and axial
force are considered in the present analysis. The two
helices of the double-helical gear pair are modeled
separately and connected with a flexible shaft element.
The bodies representing the gear and the pinion are
assumed to be rigid. The gear mesh flexibility is
represented by a linear spring and damper acting on
the plane of action normal to the gear tooth surface
[20]. In the present work, the dynamic model is
developed based on the Finite element method [22,
23]. In the following, the model formulations for the
gear, the shaft element and the bearing are described,
and then the mass matrices, stiffness matrices and
damping matrices (including gyroscopic matrices) of
the gear element, the shaft element and the bearing are
assembled to obtain the overall system formulation.

2.1 Gear rotor

As mentioned in Ref. [22], it is convenient to consider
two angles 0y (i =p,g) and 0y as coordinates de-
scribing the angle motion of the rotor as shown in
Fig. 2. It is assumed that all the deflections are parallel
to the X-Y plane. In this way, 6,; becomes an angular
displacement in the yz plane, describing a small
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2

Fig. 1 Sketch of double-helical gear pair

rotation around the x-axis while 0,; becomes an
angular displacement in the xz plane describing a
rotation around the y-axis. The rotation velocity of
gear i (in vector form) can be written as

w; = {cos (Q,- + Ozi) ()yi + sin (Qi + Ozi) (')x,} X
+ [sin (Q,- + ézi) (9),,- — cos (Q,- + ézi) GOX,} Y

4 (Qi 4 Ozi) 4 9xi9yi ; Gyiéxi 7

)

(1)

where €; is spin speed and o; is torsional velocity.
Then, the kinetic energy of gear i including the
torsional kinetic energy is developed from Shiau and
Hwang [24, 25] and written as

1 . . . 1
Ty = Smi (5 + 5 +27) + 5 /oi (951- + 0@)

2
1 . . .
+ EJPi (Qi + in) (exieyi - 9yi9xi)
1 SN2
+ Ejpi (Q,- + 62,) . (2)
The kinetic energy can be rewritten in matrix form
as
1. .1 ~ .
T: = qurM;lqi + qu'TG;]ql' +0{(q;, 4) (3)
Here,
T
q; = [xia))ia Ziy exi; eyiv Hzi] (4)
Then, with Lagrange equations, we can obtain
[M{]d; + :[G{]d = F/ (5)

Fig. 2 Typical rotor configuration and coordinate system
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Fig. 3 Shaft beam element and coordinate systems

where

MY¢ = diag(m;, mi, mi, Jpi, Jpi, Jpi) (6)

Q

QU

I
coococoo
coococoo
cococoo
o~Noc oo oOo
cos ocoo
coococoo

—

~

N~—

_ ) 1 . . . 1
0!(q;,4;) = EJPiezi (.exieyi - 9yi9xi) + EJin2
+ JP[Q[HZ,'. (8)

2.2 Shaft element

In this subsection, the Timoshenko beam finite
element model theory is applied to construct the
shaft as discussed by Nelson [26]. A typical cross
section of the element is illustrated in Fig. 3. The
deformation of the shaft element can be described
by translations x(s, ) and y(s, ¢) in the X-Y direction
and rotations 0, (s, ) and 0,(s, ) about axes X and Y
respectively.

x(s, 1) _
{Hen} = menam, )
(G0} =monam, (10)
0.(51) = N.(5) (a0}, (1)
2(s,1) = Na(o){a(0). (12)
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Here, the displacement vector is q7 = (x;,y;, i,
Osis Oyiy Oz Xig 1, Yit1, Zit1, Ox(iv)s Oy(ivn), Oi1))  and
the spatial constraint matrices are expressed as

[Nt(s)]
|0 NyO-=N, 00 0 N3O —-Ny 0 0]

(13)
[Ni(s)]
B 0 —Nyy ONy 0 0 0O —N3sONpy 0 O
_{N;,] 0 00 NoONyzs 0 0 0 Ny o}’
(14)
[N.(s)]=[00 000N, 00000 N, (15)
[Ny(s)]=[0 0 Ngy 00000 Ng 00 0], (16)
_ 1 2
Ny —m(f—l)(% —E—¢—1),
1 1
No =55l - DRE-6-2),
1 2 (17)
Ng :mé(—% +3¢+¢),
1 1
Ny = Ejlﬁ(zé +¢)(E—1),
N Ny = 6 EE—-1
bl — — b3—m,( - )7
1
szzm(f—l)@f—qﬁ—l)v (18)
1
Nb4=mf(3f—2+¢)7
er - l_éaNr2:§7 (19)
Nap=1-¢Np=¢ (20)
Z 12E1 E
5277¢ZW7GZM7 (21)
2
= 6(1 +v)(1 4+ m?) (22)

(7 + 60)(1 + m2)*+(20 4 120)m?

where v is Poisson ratio, and m is the ratio of inner
radius to outer radius of the shaft.
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As for a 2-node shaft element with 12 degrees of
freedom, its kinetic energy including the torsional
motion is

1! 1 [! o
TS:E/ pA()&2+)}2+Z'2)ds+§/ plds(0§+9§>ds
0 0

1 /! .N\2
+ / ply (2+0.) ds
2Jo

il /0 ot (@0 0.) (0.6, - 0,0,)as
(23)

The total potential energy of a Timoshenko beam
element including bending deflection, shear deforma-
tion and torsional deflection is given by

1! 1!
Us = _/ PEI (9;2 + 0/2)ds + —/ pGIPSG’}dS
2 0 Y 2 0 ¢

!
+l/ UGA [(x' - Hy)z—i-(y/ + (Jx)z} ds
2 Jo

(24)

After Lagrange equations are applied, the equation
of motion for the un-damped system is derived as

[M)q° + Q[G“lq° + [K°]q" = 0 (25)

The mass, gyroscopic and stiffness matrices are
listed in ‘Appendix 1°.

2.3 Elastic support

In high-speed aerospace applications, gear devices are
generally supported with journal bearings. However, a
thrust bearing will be recommended to resist axial
forces in a double-helical gear transmission system. In
addition, the stiffness of a journal bearing is dissimilar
to that of a spring support, for the reaction force is not
in the same direction as the displacement [27]. There is
a component of cross-stiffness in the bearing stiffness
matrix as follows,

kxx kxy kx7 kx()_t kx{)y
kye  ky ke Ky, ky Oy
ku kzy kzz sz)x kzey
kox ko koz koo, ko,
kox ko koz koo, koo,

0 0 0 0 0 O

Kp

(26)

[N elNoNoNe)

Here, the subscripts correspond with the coordinate
systems of the shaft in Fig. 3. k;(i = x,y) and k9, and

k.. are radial and tilting stiffnesses due to the journal
bearing respectively. k.. is a simple axial stiffness
produced by the thrust bearing. The word “simple”
here means that the coupling effects of the thrust and
journal bearings are neglected, namely, coupling
cross-stiffnesses k;; = ki, = k;p, = ko,; = 0. The sixth
row and column are zeros because of the free rotation
along the shaft axis. In addition, the damping matrix is
assumed to be identical with the bearing stiffness
matrix.

2.4 Gear mesh process

Figure 4 illustrates the gear mesh model of one side of
the double-helical gear. The mesh process is simplified
as time varying mesh stiffness and damping and
excited by static transmission error. Note that the
damping and the static transmission error are not
included in Fig. 4. The relative displacement of the
gear mesh pair in the direction normal to the tooth
surface along the plane of action is represented as [20]

Om = [(xp = xg) sinp + (3p = yg) cos ¢
+(rpOpz +1g0g2) | €08 B+ [(rpOpy + 1g0gy) cos
A (rpOpx + rglex) sin @ + (zg — 2,) | sin B — ey (7).
(27)

Here, ¢ is the transverse pressure angle, f is the
helix angle and r;(j = p, g) is the base radius of gear j.
Then the mesh force of the gear pair can be written as

Fn = km(ymoém =+ leB) + Cmeoém (28)

and the index of the backlash function is

Ve

Fig. 4 Sketch of gear mesh model
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-1 6,.>B - d
. B 0 nélse , 7 { 1 |5m| > B o — CpS CCp Sp IpSSp  CIpSp  Cplp
ml — » /im0 T else CpS CCp Sp  TeSSp CleSp Cpl,
1 ou,<-—-B § ¢ §

(29)
In vector form, the mesh force can be rewritten as

F, = kmymoém + Cmeoém + kamIB

. (30)
= kmym()rq + CWL%nOFq + kmymlB

Here,

dx, " dy,’ dz, 'db,. db,, db,. dx, dy,’
dé,, do, dé, do,
dz, ' dOg Oy 0,

r— (dém do,, dé, do, do, do, do, do,

(31)
T
q= (xp7YPva> Opxs Opy, Opz, Xg, Ve Zgs Ogrs gy, 9&’1)
(32)
i J
J \’
m m
i—> [K“ ]6i—5:6i,6i—5:6i [Klz :|6i—5:6i,6j—5:6j
J K 6/-5:6 /,6i—5:6i K» 6/-5:67,6j-56]

(35)

cp, = cos fB, s, = sin B, ¢ = cos ¢, s = sin ¢, (36)

The mesh stiffness and damping coefficients are
listed in ‘Appendix 2’.

2.5 System equation of gear transmission system

In rotordynamics, the geared rotor system is generally
called a branched system [28], as there are two and
even more shafts connected by the gear mesh process.
Additionally, each shaft rotates at a different speed,
and the gyroscopic terms of the shaft element and the
disc must account for this. Based on the global
coordinate system, the stiffness of a mesh gear pair at
nodes i and j can be obtained as

(37)

6nx6n

Then the equation for the gear transmission system
(shown in Fig. 4) is

, ¢ Ch .
[M’”]q(t)+cmvmo{ N ,ﬂf}q(t)
sym. C%,

:|q(t) = _kmymlfm
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Here, it is assumed that there are n nodes in total.
The damping term due to gear mesh can also be
constructed in a similar form as Eq. (37). Then every
subsystem will be assembled as mentioned above by
using the Finite element process to obtain the overall
system equation of the double-helical gear transmis-
sion system,

Mg + ([C] + Q[G])q + [K]f(q) = F(1) (38)

where [M], [C], [G] and [K] are the overall mass
matrix, damping matrix, gyroscopic matrix and
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stiffness matrix respectively; f(q) is the nonlinear
displacement function due to gear backlash; F(7) is the
gear vibration excitation which includes external
torque excitation and internal static transmission error
excitation.

3 Numerical analysis
3.1 Consideration of system model

A finite element analysis of the double-helical gear
transmission system is given in the following section.
Unless otherwise stated, the shaft and the gear are steel
and have an elastic modulus of 210 GPa, and a density
of 7800 kg/m’ with Poisson’s ratio being 0.3. The
geometrical parameters of the gear transmission
system corresponding to Fig. 1 are listed in Table 1.
The backlash is neglected for the natural frequency
analysis.

Generally speaking, the finite element analysis
result is basic relative to element size. In order to
verify the accuracy of the proposed method above,
natural frequencies of a 12-node model and a 42-node
model are calculated and listed in Table 2. The results

Table 1 System parameters

Components Values

Shaft D, (D;,) (mm) Length (mm)
S1, 83 95 (75) 115

S, 150 (120) 80

S4, Se 100 (80) 115

Ss 160 (130) 80

Gear Gear 1 Gear 2
Tooth number 31 24
Normal module 6 mm

Pressure angle 20°

Helix angle 35°

Face width 40 mm

Mean mesh stiffness 1.855 x 10* N/m

Bearing Bearing 1-2 Bearing 3—4
Kyes kyy (N/m) 2 x 108 2 x 108

k.. (N/m) 1 x 108 1 x 108
ko,0, ko,0, (Nm/rad) 1 x 10° 1 x 10°

for the two models agree well with each other, but less
computation CPU time is required for the 12-node
model. The maximum percentage of the difference
between them is 1.38 % at mode 19. Accordingly, in
the following analysis, the 12-node model is used to
explore the dynamic characteristics of the double-
helical gear transmission system.

3.2 Effect of shaft speed

In the first case, the averaged mesh stiffness is
adopted, the input pinion shaft speed is set as
Q = 5000 rpm. Table 2 lists the natural frequencies
and their corresponding physical descriptions of mode
shape for the system with gear mesh effect. It should
be noted that the axial freedom is considered in our
system model, so the general mode shape diagram is
not suitable for the indication of the mode when the
axial displacement is dominated. In our work, the three
lateral displacements (x, y and z) and bending, rocking
and torsion angle displacements (0y, 0, and 0) at each
node are plotted as the mode shapes.

Figure 5 shows the mode shapes of the first four
modes of the geared rotor system. In every subplot, the
upper one is for the input shaft distinguished by a
superscript 1, and the lower one is for the output shaft
distinguished by a superscript 2. In these four mode
shapes, the geared rotor presents a conical mode as the
curves for lateral displacements (x and y) intersect
with the zero amplitude axis. Interestingly, although
the isotopic bearing stiffness and damping are used,
the geared rotor in the first four mode shapes is
dominated by bending and rocking motions. A proper
explanation may be that the axial freedom of the shaft
element is considered in the proposed system model
and that there are opposite axial forces in the two
helices of the double-helical gear pair. Moreover, the 1
and 4 modes of the lateral modes of the geared rotor
system approximate to the first two modes of the
driven gear shaft, and the 2 and 3 modes approximate
to the first modes of the driving gear shaft. They are
coupled lateral-torsional modes when the gear mesh
effect is neglected.

The Campbell diagrams for the cases without
geared effect and with geared effect are shown in
Fig. 6. The natural frequencies in region (600, 900) Hz
are illustrated for convenience. It is observed that in
this region, the natural frequencies are less sensitive to
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Table 2 Natural frequency and mode description for the geared rotor system (Q = 5000 rpm)

12 Nodes

Natural frequency/kHz Damping ratio

42 Nodes Error

Natural frequency/kHz Natural frequency error (%)

0 0 -

1 0.6241 0.0171
2 0.6529 1.0000
3 0.6634 1.0000
4 0.6991 1.0000
5 0.7435 1.0000
6 0.7581 0.0340
7 0.7713 0.0337
8 0.7969 0.0322
9 0.7970 0.0319
10 0.8358 0.0359
11 0.8561 1.0000
12 0.8599 1.0000
13 0.9901 1.0000
14 0.9915 1.0000
15 1.9654 0.0017
16 2.0631 0.1088
17 2.1422 0.1105
18 2.1511 0.0926
19 2.4745 0.0761

0.6245 0.06
0.6515 0.21
0.6640 0.09
0.7011 0.28
0.7392 0.57
0.7573 0.11
0.7761 0.62
0.7963 0.08
0.7965 0.06
0.8351 0.08
0.8563 0.02
0.8600 0.01
0.9901 0.00
0.9906 0.09
1.9563 0.46
2.0549 0.39
2.1386 0.17
2.1551 0.19
2.4404 1.38

the rotation speed. Moreover, the mode damping ratios
for modes 2-5 are critical which are equal to 1.
Therefore, the system vibration amplitude will be
attenuated seriously where the resonance is close to
these natural frequencies, which has no damage to the
gear system. In the Campbell diagrams, the pair of
natural frequencies corresponding to the critical
damping ratio will inversely bifurcate to a single
natural frequency as shown in Fig. 6.

Now, a high frequency region (1900, 2500) Hz is
considered, and the Campbell diagram is shown in
Fig. 7. Five natural frequencies or modes are detected
in this region, and they are followed by mode 15 to
mode 19 listed in Table 2. Obviously, a frequency
veering phenomenon [10, 29] is observed between
curves corresponding to mode 17 and 18 around
6000 rpm. After the veering phenomenon occurs, the
frequency curves, instead of crossing, swap their
trends and maintain continuity as the speed increases.
Although the frequency veering appears in the present
model, the whirl direction of the two shafts is still the
same. This is different from a general rotor case as
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noted in Ref. [29] since only the mode shape has
changed at the veering point.

The thin dashed line denoted by SWL represents the
synchronous whirl line, which is corresponding to
mesh frequency in the gear dynamics analysis. The
intersection point between the SWL and the natural
frequency curve is defined as a critical speed in rotor
dynamics. Five critical speeds are detected in Fig. 7
and their corresponding mode shapes are shown in
Fig. 8 where the thick lines show the shaft centerline
shape at the maximum displacement. As the shafts
vibrate, they move from this position to the same
location on the opposite side of the un-displaced
centerline, and then move back [30]. In Fig. 8, the left
is 3D mode shape and the right is a projection on the x—
y plane. It can be found that they are all coupled
lateral-torsional modes. When the input pinion shaft
speed approximates 3804 rpm (1965.4 Hz), the input
pinion-shaft refers to cylindrical mode and conical
mode (defined in Ref. [30]) for the output gear-shaft.
The ratio of the length of the minor axis to the length of
the major axis of the ellipse is very small. However,
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Fig. 6 Campbell diagram in region (600, 900) Hz
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the two shafts are both a combination of forward and
backward motions. The bending motion between the
two helices of the output gear is obvious.

3.3 Effect of time varying mesh stiffness

In the preceding section, the time averaged mesh
stiffness is used. However, the mesh stiffness will be
varied due to the variation of contact position in the
mesh process. The mesh stiffness, which is modeled as
an internal parametric excitation in numerous studies
[3-6], is generally neglected in the geared rotor
dynamics analysis, especially in the gear whirling
analysis. In the present section, the effects of mesh
stiffness on the critical speed of the geared rotor
system are illustrated in Fig. 9. For comparison, only
the critical speeds appearing in region (1700, 2600) Hz
are considered. In Fig. 9, the five curves from bottom
to top are indicated by Ncs1 to NcsS successively. It
can be seen that the critical speed curve Ncs5 increases
linearly with the mesh stiffness. However, the critical
speed curve Ncsl no longer monotonically increases
with the mesh stiffness, the reason for which is that the
action of the special frequency veering occurs when
the mesh stiffness is changed. Moreover, a comparison
between Figs. 9 and 7 can yield the following findings:
(1) The critical speed curve Ncsl is less sensitive to the
gear shaft spin speed and gyroscopic effect, which can
be contributed to the torsional motion of the gear pair;
(2) The effect of mesh stiffness on Ncs2, Ncs3 and
Ncs4 can be neglected, but the gyroscopic effect is
implied in these critical speeds; (3) Ncs5 is a coupled
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(b)

(d)

(e)

Fig. 8 Mode shape for critical speed. a 1965.4 Hz;
b 2068.5 Hz; ¢ 2137.8 Hz; d 2152.4 Hz; e 2474.3 Hz

result of the gear mesh stiffness and the gyroscopic
effect of the system.

4 Conclusions

The rotordynamics of a double-helical gear transmis-
sion system was investigated. A model for the shaft
element with 2 nodes and 12 degrees of freedom was
built to meet the need of double-helical gear analysis,
since the axial force is an important factor and cannot
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Fig. 9 Effect of gear mesh stiffness on critical speed

be neglected. The equation of motion of the system
was derived by using the finite element method, in
which Timoshenko beam finite element was used to
represent the shaft, a rigid mass for the gear. The
gyroscopic effects of the shaft and the gear were also
included in the present model. A simple bearing
stiffness and a damping matrix were used to explore
the effect of the journal bearing as an elastic support
boundary. Natural frequencies, mode shapes and
Campbell diagrams were illustrated to indicate the
effects of gear input speed and time varying mesh
stiffness. Meanwhile, effects of mesh stiffness on the
critical speed of the gear transmission system were
also analyzed. The main findings of the present paper
are concluded as follows:

1. The axial force has significant influence on the
natural frequency and the mode shape of the
double-helical gear transmission system. The mix
whirling motion dominates the natural character-
istics of the transmission system.

2. Although the isotopic bearing stiffness and damp-
ing are used, and the gear pair is assembled

symmetrically, the geared rotors are dominated by
bending and rocking motions, which may be
attributed to the action of the axial force in the
shaft element. The coupled lateral-torsional mod-
es occur in this system.

3. Same as general rotordynamics, frequency veer-

ing is detected in the double-helical gear trans-
mission system. One special frequency veering
occurs at a higher rotational speed when the gear
mesh stiffness is varied.

4. The sensitivity of higher critical speeds to the

mesh stiffness is distinguished. Two higher
critical speeds increase with the mesh stiffness,
but one of them is related to the gyroscopic effect.
This is of importance when the operating speed
(tooth mesh frequency) of the gear system falls in
this range.
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Appendix 1

Mass and stiffness matrices for the shaft beam element
are listed as follows:

Mass matrix M¢

The mass matrix consists of three parts, which can be
represented as

M = M7 + Mj; + Mj (39)
1. Translational mass matrix M7,

M7 = M7, + ¢M7, + ¢2Mer3 (40)

Here,
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2. Rotational mass matrix Mj
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K = K§ + ¢K¢ + KS,

Stiffness matrix

where

The stiffness matrix of the beam element is written as
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Coefficients of mesh stiffness and damping
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