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Abstract To predict the stable cutting regions of

high speed milling, one needs to know the frequency

response function of tool tip, which is usually obtained

by the modal test or finite element from a static

spindle. The dynamic characteristics of high speed

spindle which is commonly supported by ball bearing,

however, change dramatically during high speed

rotation. In this paper, the speed dependent dynamic

characteristics of ball bearings are investigated and the

speed-dependent variable bearing stiffness’s are de-

termined. By considering the effects of speed-depen-

dent dynamic characterisitics, and then the influences

on the modal parameters of tool tip, a set of differential

equations with variable mass, stiffness, and damping is

set up to describe the dynamics of a multiple mode

milling system in two orthogonal directions. Semi-

discretization method is used to determine the stability

boundaries related to chatter. Results indicate that the

effects of variable bearing stiffness and higher order

modes of spindle cannot be ignored to predict the

stability of the milling processes.

Keywords Ball bearing � Milling � Stability �
Chatter � Higher order modes

List of symbols

a0 Designed contact angle of bearing

d Deflection of ball

Q Normal contact load at ball race way interface

f r/Db

A Distance between race way groove curvature

centers

xm Orbital speed of ball

B A/Db

d Raceway diameter

dm Bearing pitch diameter

Fc Centrifugal force

N Number of balls

Db Ball diameter

wj Angular position of ball j

aj Contact angle of bearing ball j

r Radius of raceway curvature

Mg Gyroscopic moment

k Constant for the raceway control

xb Angular speed of ball about its own axis

x Speed of rotating ring

un Normal rake angle

g Helix angle

l Cutting friction coefficient
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kt Specific cutting energy

kn Proportionality constant

Subscripts

c Refers to cage

j Refers to the jth ball

o Refers to outer raceway

i Refers to inner raceway

r Refers to radial direction

1 Introduction

Chatter, the high relative vibrations between the

workpiece and tool during milling processes, lead to

a poor quality of surface finished and undesirable wear

of tool. These vibrations limit the material removal

rate, and, consequently, result in low productivity.

Reducing the levels of vibrations and stabilizing the

milling process are of major concerns in the past

decades. Tobias and Fishwick [1, 2] presented the

stability charts, a diagram that associates the onset of

chatter vibrations with certain machining parameters

such as the spindle speed and chip load. Using this

diagram, one can choose to perform the machining

operation at optimal conditions. Following the Tobias

and Fishwick’s celebrated works, considerable re-

searches have been carried out on predicting the

stability chart for the constant speed machining. Tlusty

and Polacek [3] presented a frequency-domain ap-

proach based on transfer functions between the system

displacements and cutting forces to determine the

instability due to the regenerative effect. Minis and

Yanushevsky [4] and Altintas and Budak [5] presented

a frequency-domain approach based on transfer func-

tions between the system displacements and cutting

forces to determine the stable regions. Balachandran

and Zhao [6] presented a unified mechanics based

model with multiple degrees of freedom and nu-

merical simulation were carried to investigate the

stability of milling processes. Insperger and Stépán

[7–9] improved the semi-discretization method to

examine the stability of periodic solutions of delayed

systems. Long and Balachandran [10] and Long et al.

[11] predicted the stable cutting regions in the space of

spindle speed and axial depth of cutting by semi-

discretization method. In order to predict the stability

boundaries related to chatter, one needs the

information of frequency response function (FRF) or

modal parameters of tool tip. Usually, high speed

spindle is supported by the angular contact ball

bearings. The stiffness of the ball bearing decreases

as rotational speed increases. This consequently

causes the decrease of the stiffness and the natural

frequencies of the spindle with the increase of spindle

speed due to the bearing softening. The stability lobe

diagrams generated from stationary FRFs bring about

inaccuracy for stability prediction of high speed

milling. In recent years, some investigations related

to the chatter stability including the speed dependent

spindle dynamics have been carried out theoretically

and experimentally. Shin [12] addressed the nonlinear

behaviours of angular contact bearings at high speed

based on Jones’s bearing model, and pointed out that

the speed-varying characteristics of spindle bearings

must be considered when predicting stability of high

speed machining. Mavahhedy and Mosaddegh [13]

predicated the chatter in high speed milling including

gyroscopic effects of the rotating spindle and he found

that gyroscopic effects lower the borders of stability

lobes. Using Nyquist stability criterion, Cao [14],

Gagnol et al. [15, 16] predicted the chatter stability

lobes of high speed milling with the consideration of

speed-varying spindle dynamics. Schmitz [17] mea-

sured the FRF of the rotating spindle and constructed

the speed-dependent stability boundaries with the

rotating tool FRF. Ertürk et al. [18] studied the tool

point frequency response function by using an

analytical model for spindle-tool assemblies. Rantat-

alo et al. [19] analyzed the machine tool spindle

vibrations based on FEM and a contact-less dynamic

spindle testing equipment. Results indicate the cen-

trifugal force that acted on the bearing balls results in a

softening of the bearing stiffness and this softening is

shown to be more influential on the system dynamics

than the gyroscopic moment of the rotor. In addition,

in the former works with semi-discretization method

to predict stability boundaries [7–10], only the first-

order structural mode was considered. The second or

higher order mode, however, may be dominantly on

the stability of milling processes. Here, a speed

dependent dynamic characteristics of spindle-work-

piece model is constructed for a multiple mode milling

system in two orthogonal directions. Semi-discretiza-

tion method is used to determine the stability bound-

aries of high speed milling processes. The multiple

mode effects of the spindle on the stability of the
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milling processes are also studied in the paper. The

remainder of the paper is organized as follows. In

the next section, the characteristics of ball bearing

and then the effects on the frequency response

functions are detailed. Following that, milling

model with variable dynamic parameters and the

stability analysis on the milling processes are

presented in Sect. 3. Numerical results are present-

ed and discussed in Sect. 4. Conclusions are given

in the last section.

2 Speed-dependent dynamic characteristics

of spindle

2.1 Variable bearing dynamic parameters

As shown in the Fig. 1a, when an angular contact ball

bearing is in a point contact with a mating ball raceway

in the static state, the contact angles between the ball

and inner and outer raceways are identical. When the

spindle starts rotating, the inner raceway contact

angles increase and the outer raceway contact angles

decrease due to the centrifugal force developed

(Fig. 1b). This results in the stiffness of the ball

bearing changes with respect to the rotational speed.

To determine the rotational speed depended contact

angles and stiffness of ball bearing, the ball bearing

such as shown in Fig. 2 is investigated.

When a bearing is installed, there is a preload along

the radial direction or axial direction to increase the

stiffness. When the spindle starts rotating, the addi-

tional loading such as centrifugal force and gyroscopic

moment are applied. The ball loading at angle position

wj is presented in Fig. 3. Considering the equilibrium

of forces of the ball in the horizontal and vertical

directions, one can obtain

where kij and koj are two constants for the raceway

control. For the high speed bearing, the constants kij
and koj equal to zero and two, respectively [20]. Fcj

Qij sin aij � Qoj sin aoj �
Mgj

Db

ðkij cos aij � koj cos aojÞ ¼ 0

Qij cos aij � Qoj cos aoj þ
Mgj

Db

ðkij sin aij � koj sin aojÞ þ Fcj ¼ 0
j ¼ 1; 2; . . .N

8
><

>:
ð1Þ

0α 0α

iα

Fig. 1 Angular contact ball bearing without/with rotation

md

Dd
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Fig. 2 Ball bearing and angular position of ball
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Fig. 3 Ball loading at angle position wj
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and Mgj are the centrifugal force and the gyroscopic

moment at each ball, respectively, and can be written

as

Fcj ¼
1

2
dmx

2 xm

x

� �2

j

Mgj ¼ J
xb

x

� �

j

xm

x

� �

j
x2 sin b

8
><

>:
ð2Þ

where J is the mass moment of inertia. Assuming pure

rolling occurs only at the outer raceway, one can

written the ball attitude angle for inner and outer

raceways, b as

tan b ¼ sin aoj
cos aoj þ Db=dm

ð3Þ

In Eq. (2), (xm/x)j and (xb/x)j are the ratio of

orbital speed and spindle speed and the ratio of angular

speed of ball about its own axis and the spindle speed,

respectively. For the outer-ring control, one has

xm

x

� �

j
¼ 1� Db=dmð Þ cos aij

1þ cosðaij � aojÞ
ð4Þ

xb

x

� �

j
¼ �1

cosaojþtanbsinaoj
1þ Db=dmð Þcosaoj þ

cosaijþtanb sinaij
1� Db=dmð Þcosaij

� �
Db=dmð Þcosb

ð5Þ

When the bearing starts rotating, the centrifugal

force gyroscopic moment are applied to the bearing,

the distance between the curvature center of the

bearing rings changes in the x–y plane. Figure 4 shows

new ball center as well as curvature centers.

Based on Jones’s theory, the relationship between

the positions of ball center and raceway groove

curvature centers could be obtained:

where dij and doj are the inner and outer normal contact

deformations, respectively. ri and ro represent the

inner and outer raceway groove curvature radii,

respectively. aij and aoj are the inner and outer

raceway contact angles at ball location wj.

wj ¼ 2p
N
ðj� 1Þ. A1j and A2j are the axial and radial

distances between the loci of inner and outer raceway

groove curvature centers at ball location wj. Db is the

ball diameter, and N is the number of balls.

Suppose the displacements of bearing along the

axial, radial and angular direction are da, dr, and h,
respectively. By Fig. 4, one has

A1j ¼ BDb sina0 þ da þ hRi coswj

A2j ¼ BDb cosa0 þ dr coswj

j¼ 1; 2; . . .;N

�

ð7Þ

where B = fi ? fo - 1. a0 is the designed contact

angle. fi and fo are the inner and outer ratios of radius of

raceway curvature to ball diameter, respectively. Ri is

the radius to locus of raceway groove curvature

centers.

To determine the relationship between the loading

and deformation of ball, the Hertzian theory is used.

The contact forces between the inner ring and the

balls, and the outer ring and the balls are expressed by

Qij ¼ Kijd
1:5
ij

Qoj ¼ Kojd
1:5
oj

(

j ¼ 1; 2; . . .;N ð8Þ

where Kij and Koj are the load–deflection factor, and

are the functions of contact angles aij and aoj.
Considering the entire bearing, one can obtain the

force and moment equilibrium equations as

Fa �
PN

j¼1

Qij sin aij ¼ 0

Fr �
PN

j¼1

Qij cos aij coswj ¼ 0

M �
PN

j¼1

Qij sin aijRi coswj ¼ 0

8
>>>>>>><

>>>>>>>:

ð9Þ

where Fa and Fr are the external force along the axial

and radial directions, respectively. M is the external

moment. The stiffness of ball bearing can be written

as

K ¼ dF

dd
ð10Þ

A1j � ro � 0:5Db þ doj
� �

sin aoj
� �2� ri � 0:5Db þ dij

� �2ð1� cos2 aijÞ ¼ 0

A2j � ri � 0:5Db þ dij
� �

cos aij
� �2� ro � 0:5Db þ doj

� �2ð1� sin2 aojÞ ¼ 0
j ¼ 1; 2; . . .N

(

ð6Þ
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For a given Fa, Fr, andM, one can obtain the value

of aij, aoj, dij, doj, da, dr and h by solving Eqs. (1), (6),

(8), and (9) through Newton–Raphson method.

To illustrate the analysis, an angular contact ball

bearing which is used in high speed spindle is

examined. The parameters of the ball bearing are

presented in Table 1. In Fig. 5, the centrifugal force

and the gyroscopic moment of ball are presented. By

Fig. 5a, one can find that the centrifugal force of ball

increases quickly with respect to the spindle speed. For

different axial preload, the curve of centrifugal force

are close each other. The centrifugal force of the ball

with higher preload is little smaller than that of the ball

with lower preload. Due to that, the inner raceway

contact angle increases and the outer raceway contact

angle decreases with respect to speed increase, as

shown in Fig. 6. The gyroscopic moment presented in

Fig. 5b has the opposite direction with different

preload. One can find the increase of the gyroscopic

moment of ball with lower preload is faster than that of

the ball with higher preload with the increase of spindle

speed. By observing Fig. 6, one can also find the

variation of the contact angles with respect to speedwill

become smaller when the axial preload is larger.

In Fig. 7, the variations of radial stiffness of angular

contact ball bearing with respect to speed and axial

preload are presented. By this figure, one can say the

radial stiffness increases as the axial preload increases

with a given speed and decreases as the spindle speed

increases with a given axial preload, besides the range

of high speed with very low axial preload. In the case

of small axial preload (lesser than 100 N), the radial

stiffness decreases firstly with the increase of speed

and then increases with the increase of speed in higher

speed range.

2.2 Effects of speed on dynamical characteristics

of spindle

The high speed spindles are most commonly supported

by the ball bearing. The dynamic characteristics of

spindle are functions of rotational speed. To investigate

Table 1 Parameters of angular contact ball bearing B7009C/P4

dm (mm) Db (mm) N a0 (degree) fi fo E (MPa) qm (kg/mm3) m

60 7.5 19 15 0.57 0.54 2.06e?5 7.8e-6 0.3

1 jA

2 jA

BD
b

2 jX

(
)0.5

i

w
ij

f
D

δ
−

+

(
)

0.
5

o

w
oj

f
D

δ
−

+

1 jX

α

oj

o

α

ijα

cosa i jRδ θ ψ+ cosr jδ ψ

Ball center,
final position

Ball center,
initial position

Initial position, inner raceway
groove curvature center

Initial position, inner raceway
groove curvature center

Outer raceway groove 
curvature center fixed

Fig. 4 Positions of ball

center and raceway groove

curvature centers at angular

position wj
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the effects of the spindle speed on the dynamic

characteristics of spindle, a finite element model

(FEM) [22] of spindle is used to calculate the natural

frequency and mode shape of the shaft bearing system,

such as shown in Fig. 8. In this figure, L1 and L2 are the

length of the tool and shaft of spindle, respectively. For

simplification, the connections among the tool, holder,

and shaft are assumed as rigidity. The front bearing and

the back bearing are indicated by two springs with

variable stiffness with the change of the spindle speed.

In this FEMmodel, the Euler beam element is used and

only the lateral vibrations are considered. The gyro-

scopic effect of the shaft is ignored due to this effect

doesn’t result into substantial changes on the natural

frequency by comparing with the effects of the

centrifugal force of bearing ball at the first several order

modes [19]. For a system with p nodes, the displace-

ments at discrete points along the structure are defined

by vectors xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xpðtÞ�T and yðtÞ ¼
½y1ðtÞ; y2ðtÞ; . . .; ypðtÞ�T .

By considering the speed-varying characteristics of

spindle bearings, the governing equation of motion is

of the following form

Mxx Mxy

Myx Myy

" #
€xðtÞ
€yðtÞ

" #

þ
CxxðxÞCxyðxÞ

CyxðxÞCyyðxÞ

" #
_xðtÞ
_yðtÞ

" #

þ
KxxðxÞKxyðxÞ

KyxðxÞKyyðxÞ

" #
xðtÞ

yðtÞ

" #

¼
FxðtÞ

FyðtÞ

" #

ð11Þ

where Mx;y, Cx;yðxÞ, and Kx;yðxÞ represent the

discrete system mass, damping, and stiffness ma-

trices, respectively. FxðtÞ and FyðtÞ are the cutting

forces acted on the tool along x and y-directions,

respectively. The system stiffness matrix consists of

the shaft stiffness matrix and the bearing stiffness

matrix

0 10 20

10

30

50

Spindle speed (krpm)

F c
 (N

)
Fa=200N
Fa=500N

(a)

0 10 20
0

5

10

15

Spindle speed (krpm)

M
g

(N
.m

m
)

Fa=200N
Fa=500N

(b)

Fig. 5 Variations of centrifugal force and gyroscopic moment with respect to the spindle speed. a Centrifugal force, b gyroscopic

moment
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Fig. 6 Variations of contact angle with respect to the spindle

speed
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Fig. 7 Variations of radial stiffness of angular contact ball

bearing with respect to spindle speed and axial preload
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KxxðxÞ ¼ Kxs þKxbðxÞ
KyyðxÞ ¼ Kys þKybðxÞ

(

ð12Þ

where the subscribe s represents the shaft and the

subscribe b represents the bearing. Cx;yðxÞ is propor-
tional damping and can be written as

CxxðxÞCxyðxÞ
CyxðxÞCyyðxÞ

" #

¼ c1
Mxx Mxy

Myx Myy

" #

þ c2
KxxðxÞKxyðxÞ
KyxðxÞKyyðxÞ

" #

ð13Þ

where c1 = 2 9 10-5 and c2 = 6 9 10-6 are con-

stants which are selected to fit the tested frequency

response curves by modal test at the static state. For

the modal analysis, a homogenous equation of the

motion for the finite element assembly used and can

written as

Mxx Mxy

Myx Myy

" #
€xðtÞ
€yðtÞ

" #

þ
CxxðxÞCxyðxÞ

CyxðxÞCyyðxÞ

" #
_xðtÞ
_yðtÞ

" #

þ
KxxðxÞKxyðxÞ

KyxðxÞKyyðxÞ

" #
xðtÞ

yðtÞ

" #

¼ 0 ð14Þ

Solving Eq. (14), one can determine the dynamic

characteristics of spindle with a given axial

preload.

In Figs. 9, 10, and 11, the speed dependent dynamic

characteristics of spindle which is supported by the

examined angular contact ball bearing in Sect. 2.1

with Fa = 100 N are presented. As shown in Fig. 9,

the first and the second-order natural frequencies

decrease obviously as the increase of speed, however,

the changes of the third-order and forth-order natural

frequencies with respect to the increase of speed are

small. Similar to the radial stiffness of bearing

presented in Fig. 7, the first-order natural frequency

of spindle decreases firstly with the increase of speed

and then increases with the increase of speed in higher

speed range. This is similar to the experimental results

presented by Gradišek et al. [21]. Figures 10 and 11

show the change of the modal stiffness and modal

mass of tool tip (the structural mode unit normalized at

the tool tip) with respect to the speed. By this two

figures, one can say that the speed has a considerable

effect on the modal parameters of the first-order and

second-order modes, especially on the modal pa-

rameters of the first-order mode. However, the effects

of speed on the modal parameters of the third and

fourth-order modes are less. This changes indicate that

the decrease of the bearing stiffness with respect to the

increase of speed has a considerable effect on the first

and second-order modes (the rigid body modes of

shaft, Fig. 12a, b), but has less effects on the

remaining elastic modes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 8 Model of spindle

system
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Fig. 9 Variations of natural frequencies with respect to spindle

speed
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Fig. 10 Variations of modal stiffness of tool tip with respect to

spindle speed
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3 Stability analysis of the milling processes

In this section, the dynamic model of the spindle

presented in Sect. 2 is used for the analysis of stability

of milling processes. The effects of speed dependent

dynamic characteristics of spindle on the stability of

system are investigated. The spindle tool set is

considered to have two orthogonal degrees of freedom

along the x-direction and y-direction, respectively, as

shown in Fig. 13. The displacements along the x-

direction and y-direction can be written in terms of

modal coordinates as

xðtÞ ¼ UxqxðtÞ
yðtÞ ¼ UyqyðtÞ

(

ð15Þ

where Ux ¼ ½ux1; . . .;uxr� and Uy ¼ ½uy1; . . .;uyr� are
the structural mode shapes along the x-direction and

y-direction, respectively. qxðtÞ ¼ ½qx1ðtÞ; . . .; qxrðtÞ�T

and qyðtÞ ¼ ½qy1ðtÞ; . . .; qyrðtÞ�T represent the modal

displacement vectors along x-direction and y-direc-

tion, respectively, and r is the number of mode to be

considered. Considering the symmetry, one has

uxi ¼ uyiði ¼ 1; 2; 3; . . .; rÞ. Ignoring the coupling

effects of the x-direction and y-direction, the modal

mass, damping, and stiffness matrices become

MqðxÞ ¼
UT

xMxxUx

UT
yMyyUy

" #

CqðxÞ ¼
UT

xCxxðxÞUx

UT
yCyyðxÞUy

" #

KqðxÞ ¼
UT

xKxxðxÞUx

UT
yKyyðxÞUy

" #

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð16Þ

The resulted governing equations of motion in the

mode coordinates can be written as

MqðxÞ€qðtÞ þ CqðxÞ _qðtÞ þKqðxÞqðtÞ ¼ FqðtÞ
ð17Þ

where qðtÞ ¼ qTx ðtÞ qTy ðtÞ
h iT

and FqðtÞ ¼
UT

x FxðtÞ
UT

y FyðtÞ

" #

.

3.1 Model of cutting force

Considering the cutting forces applied only on the tool

tip, one has
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g) mode1
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mode3
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Fig. 11 Variations of modal mass of tool tip with respect to

spindle speed
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FxðtÞ ¼ ½Fx1ðtÞ; 0; . . .; 0�T ;
FyðtÞ ¼ ½Fy1ðtÞ; 0; . . .; 0�T

ð18Þ

In the case of the structural modes have been unit

normalized at the tool tip, the right-hand side of

Eq. (17) becomes

FqðtÞ ¼
UT

x FxðtÞ

UT
y FyðtÞ

" #

¼ ½Fx1ðtÞ; . . .;Fx1ðtÞ;Fy1ðtÞ; . . .;Fy1ðtÞ�T

ð19Þ

Similar to the cutting force model developed by

Balachandran and Zhao [6] and Balachandran [23], in

the cutting zone h0s\hði; t; zÞ\h0e, when the ith cutting
tooth is in contact with workpiece, the corresponding

cutting force components along the x-direction and the

y-direction can be written as

Fi
xðtÞ

Fi
yðtÞ

� 	

¼
Zz2ðt;iÞ

z1ðt;iÞ

k̂i11ðt; zÞ k̂i12ðt; zÞ
k̂i21ðt; zÞ k̂i22ðt; zÞ


 �
AðtÞ
BðtÞ

� 	� 


dz

ð20Þ

where

AðtÞ ¼ qxðtÞ � qxðt � sÞ þ f s

BðtÞ ¼ qyðtÞ � qyðt � sÞ
ð21Þ

In Eq. (20), the time-periodic coefficient matrices

are given by

k̂i11ðt; zÞ k̂i12ðt; zÞ
k̂i21ðt; zÞ k̂i22ðt; zÞ

" #

¼
� sin hðt; i; zÞ � cos hðt; i; zÞ
� cos hðt; i; zÞ sin hðt; i; zÞ


 �

k1kt

k2kt


 �

� sin hðt; i; zÞ cos hðt; i; zÞ½ � ð22Þ

where

k1 ¼
kn

cos g

k2 ¼ 1þ tan g l cosun � kn sinunð Þ½ �
ð23Þ

When a cutting flute is outside the cutting zone or

the dynamic uncut chip thickness associated with this

flute is zero, there is loss of contact, then, the cutting

force components associated with this flute are zero;

that is,

Fi
xðtÞ

Fi
yðtÞ

� 	

¼ 0 ð24Þ

Summing the cutting forces those act on the N

cutting flutes, one can obtain the total cutting force

acting on the tool; this takes the form

Fx1ðtÞ
Fy1ðtÞ

� 	

¼
XN

i¼1

Zz2ðt;iÞ

z1ðt;iÞ

k̂i11ðt; zÞ k̂i12ðt; zÞ
k̂i21ðt; zÞ k̂i22ðt; zÞ

" #

dz
AðtÞ
BðtÞ

� 	

ð25Þ

Spindle

Workpiece
X

Y
Z

A Tool 

eθ ′

sθ′

θ

X

Y

Fx(t)

Fy(t) 

ω

Workpiece A 
Fig. 13 Mechanical model

of milling process
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Let

k�cðtÞ ¼
XN

i¼1

Zz2ðt;iÞ

z1ðt;iÞ

k̂i11ðt; zÞ k̂i12ðt; zÞ
k̂i21ðt; zÞ k̂i22ðt; zÞ


 �

dz ð26Þ

One has

Fx1ðtÞ

Fy1ðtÞ

" #

¼ k�cðtÞ
x1ðtÞ � x1ðt � sÞ

y1ðtÞ � y1ðt � sÞ

" #

þ f�0ðtÞ

¼ k�cðtÞ
1 � � � 1 0 � � � 0

0 � � � 0 1 � � � 1

" #

2�2r

qxðtÞ � qxðt � sÞ

qyðtÞ � qyðt � sÞ

" #

þ f�0ðtÞ
ð27Þ

where s is the time delay; f�0ðtÞ is the cutting force due
to the feed effect and can be neglected on the stability

analysis of the periodic motion [10].

Then the modal cutting forces FqðtÞ can be

expressed as

FqðtÞ ¼ kcðtÞ½qðtÞ � qðt � sÞ� ð28Þ

where

kcðtÞ ¼

k�cð1; 1Þ0 � � � 0 k�cð1; 2Þ0 � � � 0

..

. ..
. ..
. ..
. ..
. ..
.

k�cð1; 1Þ0 � � � 0 k�cð1; 2Þ0 � � � 0

k�cð2; 1Þ0 � � � 0 k�cð2; 2Þ0 � � � 0

..

. ..
. ..
. ..
. ..
. ..
.

k�cð2; 1Þ0 � � � 0 k�cð2; 2Þ0 � � � 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2r�2r

1 � � � 10 � � � 0

..

. ..
. ..
. ..
.

1 � � � 10 � � � 0

0 � � � 01 � � � 1

..

. ..
. ..
. ..
.

0 � � � 01 � � � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2r�2r

ð29Þ

3.2 Stability analysis

Substituting Eq. (28) into (17), one has

MqðxÞ€qðtÞ þ CqðxÞ _qðtÞ þKqðxÞqðtÞ
¼ kcðtÞ½qðtÞ � qðt � sÞ� ð30Þ

Let QðtÞ ¼ ½qTðtÞ _qTðtÞ�T , Eq. (30) can be put in

the state-space form

_QðtÞ ¼ W0ðt;xÞQðtÞ þW1ðt;xÞQðt � sÞ ð31Þ

where W0ðt;xÞ is the coefficient matrix associated

with present states and W1ðt;xÞ are the coeffi-

cient matrix associated with delayed states. They

are piecewise, periodic functions of time and given

by

W0ðt;xÞ ¼
0 I

�M�1
q ðxÞKqðxÞ þM�1

q ðxÞkcðtÞ �M�1
q ðxÞCqðxÞ

" #

ð32Þ

W1ðt;xÞ ¼
0 0
�M�1

q ðxÞkcðtÞ 0


 �

ð33Þ

Equation (31) is a delay-differential system with

time-periodic coefficients.

Next, the formulation of the semi-discretization

method is presented. The time period T of the periodic

orbit is first divided into n equal intervals with length

Dt and the time interval Dt is chosen as

Dt ¼ T

n
ð34Þ

For t 2 ½tj; tjþ1�, the time-periodic coefficient ma-

trices in Eq. (31) are approximated as

Wj;0ðxÞ �
1

Dt

Ztjþ1

tj

W0ðt;xÞdt ð35Þ

Wj;1ðxÞ �
1

Dt

Ztjþ1

tj

W1ðt;xÞdt ð36Þ

Then, over each time interval t 2 tj; tjþ1

� �
for

j = 0, 1, …, k - 1, Eq. (31) can be approximated as

_QðtÞ ¼ Wj;0ðxÞQðtÞ þWj;1ðxÞQj�n ð37Þ

3128 Meccanica (2015) 50:3119–3132

123



Thus, the infinite-dimensional Eq. (31) has been

replaced by a piecewise system of ordinary differential

equations with constant coefficients in the time period

t 2 t0; t0 þ T½ �.
To proceed further, it is assumed that Wj;0ðxÞ is

invertible for all j. Then, writing Q(tj) as Qj, the

solution of Eq. (37) takes the form

QðtÞ ¼ eWj;0ðxÞ�ðt�tjÞQj

þ eWj;0ðxÞ�ðt�tjÞ � I
� �

W�1
j;0 ðxÞWj;1ðxÞQj�n

ð38Þ

When t = tj ? 1, Eq. (38) leads to

Qjþ1 ¼ Mj;0ðxÞQj þMj;1ðxÞQj�n ð39Þ

where the associated matrices are given by

Mj;0ðxÞ ¼ eWj;0ðxÞ�Dt ð40Þ

Mj;1ðxÞ ¼ eWj;0ðxÞ�Dt � I
� �

W�1
j;0 ðxÞWj;1ðxÞ ð41Þ

The Eq. (39) can be used to construct the state

vector

Yj ¼ ðQT
j ;Q

T
j�1; . . .;Q

T
j�nÞ

T ð42Þ

and the linear discrete map

Yjþ1 ¼ BjYj ð43Þ

where, each Bj matrix is given by

Bj ¼

Mj;0ðxÞ 0 � � � 0 0 Mj;1ðxÞ
I 0 � � � 0 0 0
0 I � � � 0 0 0
..
. ..

. . .
. ..

. ..
. ..

.

0 0 � � � I 0 0
0 0 � � � 0 I 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð44Þ

For the Eq. (43), it follows that

Yk ¼ Bk�1. . .B1B0Y0 ð45Þ

Fromwhich the transitionmatrix can be identified as

U ¼ Bk�1. . .B1B0 ð46Þ

This matrix U represents a finite-dimensional

approximation of the ‘‘monodromymatrix’’ associated

with the trivial solution Q(t) = 0 of (31). If the

eigenvalues of this matrix are all within the unit circle,

then the trivial fixed point of (31) is stable, and hence,

the associated periodic orbit of (17) is stable.

4 Numerical results and discussions

In order to investigate the effect of dynamic modal

parameters (DMP) on the stability, milling processes

performed by the machine with the examined high

speed spindle are to be studied. The workpiece is a cast

iron. The machining parameters of milling processes

are chosen as shown in Table 2 to illustrate the

analysis. In the numerical analysis, the step number

n = 40. The computational cost is about 110 s with a

2.8 GHz CPU to get a stability lobe diagram.

In Fig. 14a–d, the predicted stability lobes con-

structed for the first four dynamic modal parameters

and static modal parameters (SMP) are presented. It is

obviously that the minimum of the axial critical depth

of cut (ADOC) obtained for the dynamic modal

parameters is less than that obtained for the static

modal parameters, and that the stability lobes obtained

for the DMP shift to the low speed regions. By

observing Fig. 14a, for the first-order mode, one can

find there is remarkable difference between the

stability lobes obtained by SMP and the stability

lobes obtained by DMP, especially, in the high spindle

speed regions. That is due to the first order modal

stiffness of spindle decreases dramatically with the

increase of the spindle speed. For example, one may

choose 10,000 rpm as a stable and optimum operating

speed, based on the stable lobes of SMP. However, the

lobes of DMP indicate it isn’t a recommendable speed

in term of stability. For the second-order mode, one

can find the minimum of the ADOC obtained by the

Table 2 Tool and machining parameters of milling system

un g Number

of teeth

Radius

(mm)

kt (Mpa) kn Cutting friction

coefficient (l)
Radial immersion

ratio

Operation

6 0 4 6.35 1800 0.42 0 50 % Up-milling
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DMP is less than those obtained for the SMP, and that

the stability lobes obtained for the DMP shift to the

low speed range obviously. Due to effects on the third

and the fourth-order modes are the less, the difference

between the stability lobes obtained by the DMP and

SMP is small, such as shown in Fig. 14c, d.

By comparing the stability lobes obtained for

different modes with the static modal parameters in

Fig. 14, one can find the stability lobes obtained for

the first-order mode is far higher than those obtained

for the second, third, and fourth-order mode in the case

of system with static modal parameters. That is

because the modal stiffness of first-order mode is far

higher than the modal stiffness of the second, third,

and fourth-order modes in the case of the spindle speed

is zero (Fig. 10). With the increase of spindle speed,

the modal stiffness of the first-order mode decreases

dramatically and the others decrease less. In the case

of the spindle speed up to 8000 rpm, the modal

stiffness of the first-order mode closes to the modal

stiffness of the others. The stability of the milling

processes is determined by the first-order mode with

the dynamic modal parameters. In Fig. 14e, the

stability lobes obtained by the first-four-order modes

of SMP and DMP are presented. By Fig. 14e, one can

find the stability lobes obtained by the DMP are almost

coinciding with the lobes obtained by the SMP in the

low speed regions (less than 8000 rpm). This is

because the dominant mode in term of stability is the

fourth-order mode in the low speed regions. However,

there is remarkable difference in the high spindle

speed regions. That is due to the first order modal
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Fig. 14 Stability lobes

obtained for: a) the first

mode, b) the second mode,

c) the third mode, d) the

fourth mode, e) the first four

modes
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stiffness of spindle decreases dramatically with the

increase of the spindle speed and the dominant mode

in term of stability is the first-order mode in the high

speed regions, such as shown in Fig. 10. In addition,

one need to be notified is the loci of bifurcations are

different between the system with SMP and the system

with DMP.

In Fig. 15, from which one can find that as the

number of modes considered increases, the stability

boundaries decrease until the first-four-order modes

are considered at the low rotational speed region

(0–8000 rpm), so it will bring big errors if one predicts

the stability boundaries only with the consideration of

the first-order mode in such region. At the high speed

region (above 8000 rpm), however, the variations with

respect to the higher order modes are small and the

first-order mode is dominant to determine the stability

boundaries. These indicate both the effects of variable

bearing stiffness and higher order modes cannot be

ignored to predict the stability of the milling

processes.

5 Conclusions

In this study, the speed dependent dynamic character-

istics of high speed spindle with angular contact

bearing have been presented through an analysis of

bearing dynamics. Results show the stiffness and the

natural frequencies of spindle decreases as spindle

speed increases, especially for the first-order mode.

The effects of variable dynamic characteristics with

respect to the change of speed on the stability of

milling processes are explored. By comparing the

stability lobes obtained for different mode of the

spindle-tool system, one can find higher order modes

are dominant on the stability of milling processes in

some cutting operation parameter space. To select a

stable machining speed in high speed, the speed

varying dynamic characteristics and higher order

modes of a spindle should be considered properly.
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